JPH0576961B2 - - Google Patents

Info

Publication number
JPH0576961B2
JPH0576961B2 JP61177512A JP17751286A JPH0576961B2 JP H0576961 B2 JPH0576961 B2 JP H0576961B2 JP 61177512 A JP61177512 A JP 61177512A JP 17751286 A JP17751286 A JP 17751286A JP H0576961 B2 JPH0576961 B2 JP H0576961B2
Authority
JP
Japan
Prior art keywords
glucoamylase
powder
gel
filtered
amylase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61177512A
Other languages
Japanese (ja)
Other versions
JPS6335605A (en
Inventor
Masahiko Ishida
Jusaku Nishimura
Ryoichi Haga
Masami Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17751286A priority Critical patent/JPS6335605A/en
Publication of JPS6335605A publication Critical patent/JPS6335605A/en
Publication of JPH0576961B2 publication Critical patent/JPH0576961B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポリグルカンに係り、特にグルコア
ミラーゼを高選択的に吸着精製できる架橋化ポリ
グルカンの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to polyglucan, and particularly to a method for producing crosslinked polyglucan that can highly selectively adsorb and purify glucoamylase.

〔従来の技術〕[Conventional technology]

現在、ぶどう糖及び異性化糖は、殿粉をα−ア
ミラーゼとグルコアミラーゼを用いて加水分解し
て工業生産されている。このように、アミラーゼ
類(殿粉加水分解酵素群)は殿粉から有用な低分
子物質を工業生産するのに極めて有用である。
Currently, glucose and high fructose isomerized sugar are industrially produced by hydrolyzing starch using α-amylase and glucoamylase. As described above, amylases (starch hydrolase group) are extremely useful in the industrial production of useful low-molecular substances from starch.

一般に、酵素は酵素生産菌を液体培養して製造
される。工業用酵素製剤としては、培養濾液をそ
のまま濃縮した濃縮液か、乾燥した粉末、あるい
は分離精製して得られる濃縮液もしくはその乾燥
粉末として得られる。しかし、培養濾液の濃縮液
や粗乾燥品には、培養液中に含まれる不快臭成分
及び着色成分が多量に含まれるため、目的とする
反応生成物を分離精製する際、最終的に除去する
ことが必要となつてくる。また、培養濾液中に
は、目的酵素を破壊するプロテアーゼをも含むこ
とが多い。このため、酵素反応を利用して有用物
質を生産する際には、これら不利益となる不純物
を除去することが必要となつてくる。このため、
後続の反応生成物の分離精製工程に著しく負担を
かける。一方、一般的な精製方法として知られる
塩析法や液体クロマト単独では部分的な濃縮が限
界であり、分離精度を高めるためにはこれらの操
作条件、例えば沈殿剤の種類、濃度、PH、充填剤
の種類、吸脱着液の種類等、を変えこれらを組み
合せた複雑なプロセスを経ることが必要となる。
それだけではなく、例えば、特開昭61−12284号
公報に記載されるように操作には沈殿剤、溶出剤
として多量の塩を添加することになり、次工程へ
移る際の着塩操作も行わねばならない。以上のこ
とから、これら公知の精製方法は専ら研究用試薬
等に限定されている。なかでも、精製が困難とさ
れているグルコアミラーゼを選択的に効率よく吸
着できる吸着剤が開発されれば、培養濾液から酵
素を一段で高純度に濃縮精製できる。
Generally, enzymes are produced by liquid culturing enzyme-producing bacteria. Industrial enzyme preparations can be obtained as a concentrate obtained by concentrating the culture filtrate as it is, as a dried powder, or as a concentrate obtained by separation and purification or as a dry powder thereof. However, concentrated liquids and crudely dried culture filtrates contain large amounts of unpleasant odor components and coloring components contained in the culture solution, so they must be removed when separating and purifying the desired reaction product. It becomes necessary. Furthermore, the culture filtrate often contains protease that destroys the target enzyme. Therefore, when producing useful substances using enzymatic reactions, it is necessary to remove these disadvantageous impurities. For this reason,
This places a significant burden on the subsequent separation and purification process of the reaction product. On the other hand, salting-out methods and liquid chromatography alone, which are known as general purification methods, have a limit to partial concentration, and in order to improve separation accuracy, these operating conditions, such as the type of precipitant, concentration, pH, and packing It is necessary to go through a complicated process that involves changing the type of agent, type of adsorption/desorption liquid, etc. and combining these.
Not only that, for example, as described in JP-A-61-12284, a large amount of salt is added as a precipitant and eluent during the operation, and a salting operation is also performed when moving to the next step. Must be. From the above, these known purification methods are limited to research reagents and the like. In particular, if an adsorbent that can selectively and efficiently adsorb glucoamylase, which is difficult to purify, is developed, it will be possible to concentrate and purify the enzyme from culture filtrate to high purity in one step.

発明者らは、最近、α−アミラーゼの精製方法
として研究されはじめたアミロース(グルコース
の直鎖状ポリマー)を吸着剤とする吸着法に着目
し、これをグルコアミラーゼに適用してみた。し
かし、吸着容量が極めて低く、グルコアミラーゼ
に対しては実用的でないことが判明した。
The inventors focused on an adsorption method using amylose (a linear polymer of glucose) as an adsorbent, which has recently begun to be studied as a method for purifying α-amylase, and applied this to glucoamylase. However, it was found that the adsorption capacity was extremely low and it was not practical for glucoamylase.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、培養液などのグルコアミラー
ゼ以外に多種多様の不純物を含むグルコアミラー
ゼ含有液から、該酵素のみを選択的に効率よく吸
着できる吸着剤としてりポリグルカンの製造方法
を提供することにある。
An object of the present invention is to provide a method for producing polyglucan using an adsorbent that can selectively and efficiently adsorb only glucoamylase from a glucoamylase-containing liquid containing various impurities other than glucoamylase, such as a culture solution. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、α−アミラーゼの精製方法とし
て、従来から公知であるアミロース(グルコース
の直鎖状ポリマー)を吸着剤とする吸着法に着目
し、これをグルコアミラーゼに適用してみた。し
かし、吸着容量は極めて低く、実用的でないこと
が判明した。グルコアミラーゼの吸着剤を探索し
た結果、分岐度の高いグリコーゲンに効果的に吸
着されることならびにアミロペクチンにも比較的
吸着されやすい現象を見い出した。
The present inventors focused on a conventionally known adsorption method using amylose (a linear polymer of glucose) as an adsorbent as a method for purifying α-amylase, and applied this to glucoamylase. However, the adsorption capacity was found to be extremely low and impractical. As a result of searching for an adsorbent for glucoamylase, we discovered that it is effectively adsorbed to glycogen, which has a high degree of branching, and that it is also relatively easily adsorbed to amylopectin.

しかし、これらの高分岐多糖類は水溶性であ
り、吸着剤としては極めて操作しにくいことを知
つた。すなわち、高分岐多糖類や粉末やゲルを添
加しても、これらには吸着されず、溶解している
高分岐多糖類の分子とグルコアミラーゼ分子とが
複合体を形成し溶解したままとなる。本発明者ら
は鋭意研究を続けた結果、グリコーゲンを化学的
に架橋して不溶化することにより上記問題を解決
し、本発明に到達した。
However, we learned that these highly branched polysaccharides are water-soluble and extremely difficult to manipulate as adsorbents. That is, even if hyperbranched polysaccharides, powders, or gels are added, they are not adsorbed, and the dissolved hyperbranched polysaccharide molecules and glucoamylase molecules form a complex and remain dissolved. As a result of intensive research, the present inventors solved the above problem by chemically crosslinking glycogen to make it insolubilized, and thus arrived at the present invention.

本発明は、グルコースがα−1,4結合により
重合した主鎖に、グルコースがα−1,4結合に
より重合し、α−1,6結合により主鎖から分岐
した、非還元性グルコース残基を開放末端とする
分岐鎖が結合してなるポリグルカンをアミラーゼ
で処理して分岐鎖を短縮化した短縮化ポリグルカ
ン、或はグリコーゲンを分子間、分子内で架橋し
てなる架橋化ポリグルカンにあり、好ましくは、
分岐鎖の分岐点に相当するグルコース残基が、分
子中全グルコース残基数の少なくとも5%以上を
占め、また分岐鎖のグルコース重合数が2以上6
以下である架橋型ポリグルカンにある。また、本
発明は、グルコースがα−1,4結合により重合
した主鎖に、グルコースがα−1,4結合により
重合し、α−1,6結合により主鎖から分岐し
た、非還元性グルコース残基を開放末端とする分
岐鎖が結合してなるポリグルカンを、水に対する
溶解度が60℃において0.01以下となるまで架橋処
理する架橋化ポリグルカンの製造方法にあり、好
ましくは、架橋化前のポリグルカンにアミラーゼ
を添加して、グルコース重合数を短縮化する点に
あり、アミラーゼとしては、β−アミラーゼ、グ
ルコアミラーゼのいずれか一方もしくは両方が通
常、用いられる。
The present invention provides non-reducing glucose residues in which glucose is polymerized through α-1,4 bonds and branched from the main chain through α-1,6 bonds. A shortened polyglucan is obtained by treating a polyglucan formed by linking branched chains with an open end with amylase to shorten the branched chains, or a crosslinked polyglucan obtained by crosslinking glycogen intermolecularly or intramolecularly. Yes, preferably
The glucose residues corresponding to the branching points of the branched chain account for at least 5% or more of the total number of glucose residues in the molecule, and the number of glucose polymerizations in the branched chain is 2 or more and 6
The following are crosslinked polyglucans. In addition, the present invention provides non-reducing glucose in which glucose is polymerized through α-1,4 bonds and branched from the main chain through α-1,6 bonds. A method for producing a crosslinked polyglucan, in which a polyglucan formed by bonding branched chains with residues at open ends is crosslinked until the solubility in water becomes 0.01 or less at 60°C. The purpose of this method is to shorten the number of glucose polymerizations by adding amylase to polyglucan, and as amylase, one or both of β-amylase and glucoamylase are usually used.

本発明になるポリグルカンに適用しうる酵素
は、α−1,4グリコシド結合の非還元性末端側
を加水分解するアミラーゼ、いわゆるグルコアミ
ラーゼ(γ−アミラーゼ)全般に適用できる。本
酵素としてはグルコアミラーゼであれば、その起
源生物に特に限定されるものではない。例えば、
アスペルギルス属、リゾープス属等の糸状菌を起
源とするグルコアミラーゼ、バシルス属、クロス
トリジウ属などの細菌起源のグルコアミラーゼで
あつても適用できる。
Enzymes applicable to the polyglucan of the present invention are generally applicable to amylases that hydrolyze the non-reducing terminal side of α-1,4 glycosidic bonds, so-called glucoamylases (γ-amylases). The present enzyme is not particularly limited to its originating organism as long as it is glucoamylase. for example,
Glucoamylase originating from filamentous fungi such as Aspergillus and Rhizopus, and glucoamylase originating from bacteria such as Bacillus and Clostridium can also be applied.

本発明の吸着剤にするための原料のグルカンと
しては、高度に分岐したグルカンが用いられる。
分岐の程度は、分岐点に相当するグルコース残基
が、分子中のグルコース残基総数の5%以上あれ
ば用いることができる。15%以上の分岐点を含む
グルカンならなお好適である。したがつて、グル
カンの例としてはグリコーゲンや高度分岐型のア
ミロペクチンがあげられる。これらグリコーゲン
や高度分岐型アミロペクチンも起源生物には特に
限定されない。例えばグリコーゲンは動物起源の
ものであつても微生物起源のものでも使用でき
る。
Highly branched glucan is used as the raw material glucan for producing the adsorbent of the present invention.
The degree of branching can be used as long as the glucose residues corresponding to the branching points account for 5% or more of the total number of glucose residues in the molecule. Glucans containing 15% or more branch points are even more preferred. Therefore, examples of glucan include glycogen and highly branched amylopectin. These glycogen and highly branched amylopectin are also not particularly limited to the originating organisms. For example, glycogen can be of animal or microbial origin.

また、これらのグルカンとしては、上述した天
然原料から分離したグルカンだけでなく、これら
の分岐を酵素処理で短鎖化した加工グルカンを用
いてもよい。グルカンの短鎖化処理には、前述し
たようにグルコアミラーゼもしくはβ−アミラー
ゼが用いられる。これらの酵素の種類は特に限定
されない。処理時の反応条件は基質のグルカンの
種類、濃度等により適宜選択されるが、分岐鎖の
グルコース重合数2以上、6以下にとどめる様、
適宜調節される。
Furthermore, as these glucans, not only glucans separated from the above-mentioned natural raw materials but also processed glucans in which these branches are shortened by enzymatic treatment may be used. As mentioned above, glucoamylase or β-amylase is used to shorten the glucan chains. The types of these enzymes are not particularly limited. The reaction conditions during the treatment are appropriately selected depending on the type and concentration of the substrate glucan, but the number of branched glucose polymerizations should be kept at 2 or more and 6 or less.
Adjustments will be made as appropriate.

グルカンの分岐度が5%未満になると、グルコ
アミラーゼの吸着容量が低下し、実用的でない。
When the degree of branching of glucan is less than 5%, the glucoamylase adsorption capacity decreases, making it impractical.

上述したグルカンの架橋方法は特に限定されな
いが、その架橋の程度は、グルコアミラーゼを吸
着する際に使用される温度である60℃以下におい
て、100gの水に対し、本発明なる吸着剤の溶解
度が0.01g以下になる様に、分子間の架橋を行え
ばよい。したがつて、架橋処理により調製された
本発明なる吸着剤は水和性のゲル又は固体であ
る。
The above-mentioned glucan cross-linking method is not particularly limited, but the degree of cross-linking is such that the solubility of the adsorbent of the present invention in 100 g of water is below 60°C, which is the temperature used to adsorb glucoamylase. Intermolecular crosslinking may be performed so that the weight becomes 0.01 g or less. Therefore, the adsorbent according to the invention prepared by crosslinking is a hydratable gel or solid.

架橋反応及び条件は、グルカンの種類、濃度、
吸着時の使用条件により適宜選択される。反応と
しては例えば、エピハロゲンヒドリンによるグル
コース残基のOH基間の架橋等があげられる。エ
ピハロゲンとしてはエピクロラルヒドリンが最も
実用的である。エピハロゲンの場合その添加量は
原料ポリグルカンの溶液の0.5〜3倍が好適であ
る。原料液中のポリグルカン濃度は少なくとも1
%以上が好ましい。アルカリは苛性ソーダ、苛性
カリ等の強アルカリが用いられるが、その濃度は
1N以上でエピハロゲンのハロゲンに対し等量以
上のアルカリを含むことが必要である。温度は30
℃以上で行われる。時間は温度、アルカリ濃度に
より適宜選定されるが60℃の際30分間以上必要で
ある。
The crosslinking reaction and conditions depend on the type and concentration of glucan,
It is selected as appropriate depending on the usage conditions during adsorption. Examples of the reaction include crosslinking between OH groups of glucose residues using epihalogenhydrin. Epichloralhydrin is the most practical epihalogen. In the case of epihalogen, the amount added is preferably 0.5 to 3 times the amount of the raw material polyglucan solution. The polyglucan concentration in the raw material solution is at least 1
% or more is preferable. Strong alkalis such as caustic soda and caustic potash are used as alkali, but the concentration is
It is necessary to contain an alkali of 1N or more and an equivalent amount or more to the halogen of the epihalogen. temperature is 30
It is carried out above ℃. The time is appropriately selected depending on the temperature and alkali concentration, but 30 minutes or more is required at 60°C.

〔作用〕[Effect]

本発明のポリグルカンは、分岐鎖の長さがグル
コース数2〜6とグルコアミラーゼ分子鎖と同程
度の長さであることから、酵素生産菌の培養濾液
など多糖多様の有機性、機性不純物及び他種の酵
素を含む液中から、本発明実施例に示すように、
グルコアミラーゼを選択的に吸着できる。特に蛋
白質分解酵素など酵素精製に不都合な酵素を除去
できる。さらに高密度にグルコアミラーゼを吸着
できる。
The polyglucan of the present invention has a branched chain length of 2 to 6 glucose, which is about the same length as the glucoamylase molecular chain. and other types of enzymes, as shown in the examples of the present invention,
Can selectively adsorb glucoamylase. In particular, enzymes that are inconvenient for enzyme purification, such as proteolytic enzymes, can be removed. Furthermore, glucoamylase can be adsorbed at a higher density.

また、本発明のポリグルカンは、いわゆる分子
間および/または分子内三次元架橋されており、
このため水に不溶となつており、単に吸着したグ
ルコアミラーゼを脱着させることにより、容易に
培養濾液から一拠に精製でき、精製プロセスを大
幅に簡略化可能である。
In addition, the polyglucan of the present invention has so-called intermolecular and/or intramolecular three-dimensional crosslinking,
Therefore, it is insoluble in water, and can be easily purified from the culture filtrate by simply desorbing the adsorbed glucoamylase, greatly simplifying the purification process.

〔実施例〕〔Example〕

実施例 1 大腸菌のグリコーゲン(推定分子量4×105
推定分岐度25%)の乾燥粉末5gに0.05M酢酸ソ
ーダ緩衝液(PH5.0)を95ml添加し、撹拌しなが
ら70℃に加熱して溶解した。これを50℃まで冷却
し、そのうち30mlを取りアスペルギルス属
(Aspergillus orizea IFO−4M6)起源のグルコ
アミラーゼ10単位を溶解したグルコアミラーゼ溶
液2mlを添加し、40℃に保持した。
Example 1 Escherichia coli glycogen (estimated molecular weight 4×10 5 ,
95 ml of 0.05 M sodium acetate buffer (PH 5.0) was added to 5 g of dry powder with an estimated degree of branching of 25%) and dissolved by heating to 70° C. with stirring. This was cooled to 50°C, 30ml of which was taken, 2ml of a glucoamylase solution containing 10 units of glucoamylase originating from Aspergillus orizea IFO-4M6 was added thereto, and the mixture was maintained at 40°C.

2時間後のグルコース生成量を測定した結果、
供試グリコーゲン分子のグルコース残基数に対し
約30%に達した。その時点の分子量は6×104
あつた。
As a result of measuring the amount of glucose produced after 2 hours,
This amount reached approximately 30% of the number of glucose residues in the sample glycogen molecule. The molecular weight at that point was 6×10 4 .

本液を透析用セロフアンチユーブに充填し、10
℃の水5に対し10時間透析した。内容液を凍結
乾燥し、白色粉末0.9gを得た。
Fill this solution into a cellophane tube for dialysis, and
Dialysis was performed against water at 5°C for 10 hours. The contents were freeze-dried to obtain 0.9 g of white powder.

これに水10mlを添加し、撹拌しながら70℃に加
熱して溶解して粘性の液体とした。次に6Nの苛
性ソーダ33mlを添加し、これを撹拌機と還流冷却
器を付した200mlの反応フラスコに入れた。次い
で、100mlのエピクロヒドリンを加え、20rpmで
撹拌しつつ、70℃で5時間加熱した。
To this was added 10 ml of water, and while stirring, the mixture was heated to 70°C to dissolve and form a viscous liquid. Next, 33 ml of 6N caustic soda was added and placed in a 200 ml reaction flask equipped with a stirrer and reflux condenser. Next, 100 ml of epichlorohydrin was added and heated at 70° C. for 5 hours while stirring at 20 rpm.

反応終了後、内容物を室温に冷却し、下部の水
層巾のゲル状物を濾別した。このゲル状物にエタ
ノール50mlを添加し、撹拌後濾過してゲル状物を
回収した。回収ゲルを再度エタノール50mlに再懸
濁し、濾過してゲル状物を回収した。本操作をさ
らに3回繰り返した。次に、蒸溜水50mlに懸濁
し、濾別した。本操作を3回繰り返した後再度、
エタノール50mlに分散した。これを濾過し、ゲル
状物を乾燥後、粉砕し、白色粉末0.7gを得た。
After the reaction was completed, the contents were cooled to room temperature, and the gelatinous material in the aqueous layer at the bottom was filtered off. 50 ml of ethanol was added to this gel-like material, stirred, and then filtered to recover the gel-like material. The recovered gel was resuspended in 50 ml of ethanol and filtered to recover a gel-like substance. This operation was repeated three more times. Next, it was suspended in 50 ml of distilled water and filtered. After repeating this operation three times,
Dispersed in 50ml of ethanol. This was filtered, and the gel-like material was dried and crushed to obtain 0.7 g of white powder.

本粉末の60℃における水への溶解度は水100g
に対し、0.001gであつた。さらに、本粉末を60
℃水に1日間浸漬した後の水和ゲルの本粉末に対
する重量比は13.2であつた。本粉末の非還元末端
基を測定により分岐鎖の平均重合度は4.2であつ
た。次に、本粉末へのグルコアミラーゼの吸着性
を見るため、以下の実験を行つた。
The solubility of this powder in water at 60℃ is 100g of water.
However, it was 0.001g. In addition, 60% of this powder
The weight ratio of the hydrated gel to the present powder after being immersed in ℃ water for one day was 13.2. The average degree of polymerization of branched chains was found to be 4.2 by measuring the non-reducing end groups of this powder. Next, in order to examine the adsorption of glucoamylase to this powder, the following experiment was conducted.

アスペルギルス・オリゼIFO−4176の培養液40
ml(α−アミラーゼ0.50単位/ml、グルコアミラ
ーゼ1.30単位/mlを含む)を6℃に冷却し、上記
の吸着剤粉末0.2gを添加し、5rpmで2分間混合
して接触させた。これを濾過し、濾液中のα−ア
ミラーゼ活性、グルコアミラーゼ活性を測定し
た。
Culture solution of Aspergillus oryzae IFO-4176 40
ml (containing 0.50 units/ml of α-amylase and 1.30 units/ml of glucoamylase) was cooled to 6°C, 0.2 g of the above adsorbent powder was added, and the mixture was mixed and contacted at 5 rpm for 2 minutes. This was filtered, and α-amylase activity and glucoamylase activity in the filtrate were measured.

上澄液中のα−アミラーゼは0.50単位/ml、グ
ルコアミラーゼは0.01単位/mlであつた。上記吸
着剤に吸着した酵素量を、吸着剤との接触前の酵
素濃度から接触後の酵素濃度を減じた値として計
算した。その結果、培養濾液中に存在したα−ア
ミラーゼは実質上吸着されず、グルコアミラーゼ
の99%(1.29単位)が吸着された。
The α-amylase in the supernatant was 0.50 units/ml, and the glucoamylase was 0.01 units/ml. The amount of enzyme adsorbed on the adsorbent was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 99% (1.29 units) of glucoamylase was adsorbed.

次に、本発明吸着剤の代りにα−アミラーゼ吸
着剤として公知のアミロース(馬鈴薯起源)を用
いてα−アミラーゼ及びグルコアミラーゼの吸着
実施を比較例として実施した。
Next, as a comparative example, adsorption of α-amylase and glucoamylase was carried out using amylose (derived from potato), which is known as an α-amylase adsorbent, instead of the adsorbent of the present invention.

比較例 1 実施例と同一ロツトのアスペルスギルス・オリ
ゼIFO−4176の培養液40ml(α−アミラーゼ0.50
単位/ml、グルコアミラーゼ1.30単位/mlを含
む)を6℃に冷却し、アミロース粉末0.2gを添
加し、5rpmで2分間混合して接触させた。これ
を濾過し、濾液中のα−アミラーゼ活性及びグル
コアミラーゼ活性を測定した。
Comparative Example 1 40 ml of culture solution of Aspergillus oryzae IFO-4176 from the same lot as in Example (α-amylase 0.50
units/ml, containing 1.30 units/ml of glucoamylase) was cooled to 6°C, 0.2 g of amylose powder was added, and mixed and contacted at 5 rpm for 2 minutes. This was filtered, and α-amylase activity and glucoamylase activity in the filtrate were measured.

上澄液中のα−アミラーゼは0.02単位/ml、グ
ルコアミラーゼは1.29単位であつた。上記アミロ
ース粉末に吸着した酵素量を、アミロースとの接
触前の酵素濃度から接触後の酵素濃度を減じた値
として計算した。その結果、培養濾過中に存在し
たα−アミラーゼはその96%(0.48単位/ml)が
吸着され、グルコアミラーゼは1%(0.01単位/
ml)と事質上吸着されなかつた。
The α-amylase in the supernatant was 0.02 units/ml, and the glucoamylase was 1.29 units. The amount of enzyme adsorbed to the amylose powder was calculated as the value obtained by subtracting the enzyme concentration after contact with amylose from the enzyme concentration before contact with amylose. As a result, 96% (0.48 units/ml) of α-amylase present in the culture filtration was adsorbed, and 1% (0.01 units/ml) of glucoamylase was adsorbed.
ml) and was virtually not adsorbed.

以下、本発明の実施例を用いて、さらに詳しく
紹介する。
Hereinafter, the present invention will be introduced in more detail using examples.

実施例 2 大腸菌のグリコーゲン(推定分子量4×105
推定分岐度25%)の乾燥粉末10gに水90mlを添加
し、撹拌しながら、70℃に加熱して溶解して粘性
の液体とした。これに6Nの苛性ソーダ33mlを添
加し、これを撹拌機と還流冷却器を付した500ml
の反応フラスコに入れた。次いで、140mlのエピ
クロルヒドリンを加え、20rpmで撹拌しつつ、50
℃で5時間加熱した。
Example 2 Escherichia coli glycogen (estimated molecular weight 4×10 5 ,
90 ml of water was added to 10 g of dry powder with an estimated degree of branching of 25%), and while stirring, the mixture was heated to 70°C to dissolve and form a viscous liquid. Add 33ml of 6N caustic soda to this, and mix this into 500ml with a stirrer and reflux condenser.
into a reaction flask. Then add 140 ml of epichlorohydrin and stir at 20 rpm for 50 min.
Heated at ℃ for 5 hours.

反応終了後、内容物を室温に冷却し、下部の水
層中のゲル状物を濾別した。このゲル状物にエタ
ノール50mlを添加し、撹拌後濾過してゲル状物を
回収した。回収ゲルを再度エタノール50mlに再懸
濁し、濾過してゲル状物を回収した。本操作をさ
らに3回繰り返した。次に、蒸溜水50mlに懸濁
し、濾別した。本操作を3回繰り返した後再度、
エタノール50mlに分散した。これを濾過し、ゲル
状物を乾燥後、粉砕し、白色粉末9.2gを得た。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. 50 ml of ethanol was added to this gel-like material, stirred, and then filtered to recover the gel-like material. The recovered gel was resuspended in 50 ml of ethanol and filtered to recover a gel-like substance. This operation was repeated three more times. Next, it was suspended in 50 ml of distilled water and filtered. After repeating this operation three times,
Dispersed in 50ml of ethanol. This was filtered, and the gel-like material was dried and crushed to obtain 9.2 g of white powder.

本粉末の60℃における水への溶解度は水100g
に対し、0.002g以下であつた。さらに、本粉末
を60℃水に1日間浸漬した後の水和ゲルの本粉末
に対する重量比は11.5であつた。
The solubility of this powder in water at 60℃ is 100g of water.
However, it was less than 0.002g. Furthermore, after immersing this powder in 60°C water for 1 day, the weight ratio of the hydrated gel to this powder was 11.5.

次に、本粉末へのグルコアミラーゼの吸着性を
見るため、以下の実験を行つた。
Next, in order to examine the adsorption of glucoamylase to this powder, the following experiment was conducted.

アスペルスギルス・オリゼIFO−4176の培養液
40ml(α−アミラーゼ0.50単位/ml、グルコアミ
ラーゼ1.30単位/mlを含む)を6℃に冷却し、上
記の吸着剤粉末0.2gを添加し、5rpmで2分間混
合して接触させた。これを濾過し、濾過中のα−
アミラーゼ活性、グルコアミラーゼ活性を測定し
た。
Culture solution of Aspergillus oryzae IFO−4176
40 ml (containing 0.50 units/ml of α-amylase and 1.30 units/ml of glucoamylase) was cooled to 6°C, 0.2 g of the above adsorbent powder was added, and the mixture was mixed and contacted at 5 rpm for 2 minutes. This is filtered, and the α-
Amylase activity and glucoamylase activity were measured.

上澄液中のα−アミラーゼは0.50単位/ml、グ
ルコアミラーゼは0.01単位/mlであつた。上記吸
着剤に吸着した酵素量を、吸着剤との接触前の酵
素濃度から接触後の酵素濃度を減じた値として計
算した。その結果、培養濾液中に存在したα−ア
ミラーゼは実質上吸着されず、グルコアミラーゼ
の99%(51.6単位)が吸着された。
The α-amylase in the supernatant was 0.50 units/ml, and the glucoamylase was 0.01 units/ml. The amount of enzyme adsorbed on the adsorbent was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 99% (51.6 units) of glucoamylase was adsorbed.

実施例 3 大腸菌のグリコーゲン(推定分子量4×105
推定分岐度25%)の乾燥粉末20gに水80mlを添加
し、撹拌しながら10Nの苛性ソーダ40mlを添加
し、これを撹拌機と還流冷却器を付した500mlの
反応フラスコに入れた。次いで、200mlのエピク
ロルヒドリンを加え、20rpmで撹拌しつつ、70℃
で48時間加熱した。
Example 3 Escherichia coli glycogen (estimated molecular weight 4×10 5 ,
80 ml of water was added to 20 g of dry powder with an estimated degree of branching of 25%), 40 ml of 10N caustic soda was added with stirring, and the mixture was placed in a 500 ml reaction flask equipped with a stirrer and a reflux condenser. Next, add 200 ml of epichlorohydrin and heat to 70°C while stirring at 20 rpm.
It was heated for 48 hours.

反応終了後、内容物を室温に冷却し、下部の水
層巾のゲル状物を濾別した。このゲル状物にエタ
ノール50mlを添加し、撹拌後濾過してゲル状物を
回収した。回収ゲルを再度エタノール50mlに再懸
濁し、濾過してゲル状物を回収した。本操作をさ
らに3回繰り返した。次に、蒸溜水50mlに懸濁
し、濾別した。本操作を3回繰り返した後、再度
エタノール50mlに分散した。これを濾過し、ゲル
状物を乾燥後、粉砕し、白色粉末18.3gを得た。
After the reaction was completed, the contents were cooled to room temperature, and the gelatinous material in the aqueous layer at the bottom was filtered off. 50 ml of ethanol was added to this gel-like material, stirred, and then filtered to recover the gel-like material. The recovered gel was resuspended in 50 ml of ethanol and filtered to recover a gel-like substance. This operation was repeated three more times. Next, it was suspended in 50 ml of distilled water and filtered. After repeating this operation three times, the mixture was again dispersed in 50 ml of ethanol. This was filtered, and the gel-like material was dried and crushed to obtain 18.3 g of white powder.

本粉末の60℃における水への溶解度は水100g
に対し、0.001g以下であつた。さらに、本粉末
を60℃水に1日間浸漬した後の水和ゲルの本粉末
に対する重量比は9.6であつた。
The solubility of this powder in water at 60℃ is 100g of water.
However, it was less than 0.001g. Furthermore, after immersing this powder in 60°C water for 1 day, the weight ratio of the hydrated gel to this powder was 9.6.

次に、本粉末へのグルコアミラーゼの吸着性を
見るため、以下の実験を行つた。
Next, in order to examine the adsorption of glucoamylase to this powder, the following experiment was conducted.

アスペルスギルス・オリゼIFO−4176の培養液
40ml(α−アミラーゼ0.50単位/ml、グルコアミ
ラーゼ1.30単位/mlを含む)を6℃に冷却し、上
記の吸着剤粉末0.2gを添加し、5rpmで2分間混
合して接触させた。これを濾過し、濾過中のα−
アミラーゼ活性、グルコアミラーゼ活性を測定し
た。
Culture solution of Aspergillus oryzae IFO-4176
40 ml (containing 0.50 units/ml of α-amylase and 1.30 units/ml of glucoamylase) was cooled to 6°C, 0.2 g of the above adsorbent powder was added, and the mixture was mixed and contacted at 5 rpm for 2 minutes. This is filtered, and the α-
Amylase activity and glucoamylase activity were measured.

上澄液中のα−アミラーゼは0.51単位/ml、グ
ルコアミラーゼは0.01単位/mlであつた。上記吸
着剤に吸着した酵素量を、吸着剤との接触前の酵
素濃度から接触後の酵素濃度を減じた値として計
算した。その結果、培養濾液中に存在したα−ア
ミラーゼは実質上吸着されず、グルコアミラーゼ
の99%(51.6単位)が吸着された。
The α-amylase and glucoamylase concentrations in the supernatant were 0.51 unit/ml and 0.01 unit/ml, respectively. The amount of enzyme adsorbed on the adsorbent was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 99% (51.6 units) of glucoamylase was adsorbed.

実施例 4 大腸菌のグリコーゲン(推定分子量4×105
推定分岐度25%)の乾燥粉末30gに水70mlを添加
し、撹拌しながら10Nの苛性ソーダ40mlを添加
し、これを撹拌機と還流冷却器を付した500mlの
反応フラスコに入れた。次いで、40mlのエピクロ
ルヒドリンを加え、20rpmで撹拌しつつ、80℃で
48時間加熱した。
Example 4 Escherichia coli glycogen (estimated molecular weight 4×10 5 ,
70 ml of water was added to 30 g of dry powder with an estimated degree of branching of 25%), 40 ml of 10N caustic soda was added with stirring, and the mixture was placed in a 500 ml reaction flask equipped with a stirrer and a reflux condenser. Next, add 40 ml of epichlorohydrin and heat at 80°C while stirring at 20 rpm.
Heated for 48 hours.

反応終了後、内容物を室温に冷却し、下部の水
層中のゲル状物を濾別した。このゲル状物にエタ
ノール150mlを添加し、撹拌後濾過してゲル状物
を回収した。回収ゲルを再度エタノール50mlに再
懸濁し、濾過してゲル状物を回収した。本操作を
さらに3回繰り返した。次に、蒸溜水150mlに懸
濁し、濾別した。本操作を3回繰り返した後、再
度エタノール150mlに分散した。これを濾過し、
ゲル状物を乾燥後、粉砕し、白色粉末25gを得
た。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. 150 ml of ethanol was added to this gel-like material, stirred, and then filtered to recover the gel-like material. The recovered gel was resuspended in 50 ml of ethanol and filtered to recover a gel-like substance. This operation was repeated three more times. Next, it was suspended in 150 ml of distilled water and filtered. After repeating this operation three times, the mixture was again dispersed in 150 ml of ethanol. Filter this and
After drying the gel-like material, it was crushed to obtain 25 g of white powder.

本粉末の60℃における水への溶解度は水100g
に対し、0.001g以下であつた。さらに、本粉末
を60℃水に1日間浸漬した後の水和ゲルの本粉末
に対する重量比は7.9であつた。
The solubility of this powder in water at 60℃ is 100g of water.
However, it was less than 0.001g. Furthermore, after immersing this powder in 60°C water for one day, the weight ratio of the hydrated gel to this powder was 7.9.

次に本粉末へのグルコアミラーゼの吸着性を見
るため、以下の実験を行つた。
Next, in order to examine the adsorption of glucoamylase to this powder, the following experiment was conducted.

アスペルスギルス・オリゼIFO−4176の培養液
40ml(α−アミラーゼ0.50単位/ml、グルコアミ
ラーゼ1.30単位/mlを含む)を6℃に冷却し、上
記の吸着剤粉末0.2gを添加し、5rpmで2分間混
合して接触させた。これを濾過し、濾過中のα−
アミラーゼ活性、グルコアミラーゼ活性を測定し
た。
Culture solution of Aspergillus oryzae IFO−4176
40 ml (containing 0.50 units/ml of α-amylase and 1.30 units/ml of glucoamylase) was cooled to 6°C, 0.2 g of the above adsorbent powder was added, and the mixture was mixed and contacted at 5 rpm for 2 minutes. This is filtered, and the α-
Amylase activity and glucoamylase activity were measured.

上澄液中のα−アミラーゼは0.51単位/ml、グ
ルコアミラーゼは0.02単位/mlであつた。上記吸
着剤に吸着した酵素量を、吸着剤との接触前の酵
素濃度から接触後の酵素濃度を減じた値として計
算した。その結果、培養濾液中に存在したα−ア
ミラーゼは実質上吸着されず、グルコアミラーゼ
の98%(1.28単位)が吸着された。
The α-amylase in the supernatant was 0.51 units/ml, and the glucoamylase was 0.02 units/ml. The amount of enzyme adsorbed on the adsorbent was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 98% (1.28 units) of glucoamylase was adsorbed.

実施例 5 大腸のグリコーゲン(推定分子量4×105、推
定分岐度25%)の乾燥粉末15gに水85mlを添加
し、撹拌しながら、6Nの苛性ソーダ33mlを添加
し、これを撹拌機と還流冷却器を付した500mlの
反応フラスコに入れた。次いで、150mlのエピク
ロルヒドリンを加え、15rpmで撹拌しつつ、75℃
で36時間加熱した。
Example 5 85 ml of water was added to 15 g of dry powder of large intestine glycogen (estimated molecular weight 4 x 10 5 , estimated degree of branching 25%), and while stirring, 33 ml of 6N caustic soda was added, and this was cooled with a stirrer and reflux. into a 500 ml reaction flask with a container. Next, add 150 ml of epichlorohydrin and heat to 75°C while stirring at 15 rpm.
It was heated for 36 hours.

反応終了後、内容物を室温に冷却し、下部の水
層中のゲル状物を濾別した。このゲル状物にエタ
ノール100mlを添加し、撹拌後、濾過してゲル状
物を回収した。回収ゲルを再度エタノール50mlに
再懸濁し、濾過してゲル状物を回収した。本操作
をさらに3回繰り返した。次に、蒸溜水50mlに懸
濁し、濾別した。本操作を3回繰り返した後、再
度エタノール150mlに分散した。これを濾過し、
ゲル状物を乾燥後、粉砕し、白色粉末14gを得
た。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. 100 ml of ethanol was added to this gel-like material, stirred, and then filtered to recover the gel-like material. The recovered gel was resuspended in 50 ml of ethanol and filtered to recover a gel-like substance. This operation was repeated three more times. Next, it was suspended in 50 ml of distilled water and filtered. After repeating this operation three times, the mixture was again dispersed in 150 ml of ethanol. Filter this and
After drying the gel-like material, it was crushed to obtain 14 g of white powder.

本粉末の60℃における水への溶解度は水100g
に対し、0.001g以下であつた。さらに、本粉末
を60℃水に1日間浸漬した後の水和ゲルの本粉末
に対する重量比は8.1であつた。
The solubility of this powder in water at 60℃ is 100g of water.
However, it was less than 0.001g. Furthermore, after immersing this powder in 60°C water for one day, the weight ratio of the hydrated gel to this powder was 8.1.

次に、本粉末へのグルコアミラーゼの吸着性を
見るため、以下の実験を行つた。
Next, in order to examine the adsorption of glucoamylase to this powder, the following experiment was conducted.

アスペルスギルス・オリゼIFO−4176の培養液
40ml(α−アミラーゼ0.50単位/ml、グルコアミ
ラーゼ1.30単位/mlを含む)を6℃に冷却し、上
記の吸着剤粉末0.2gを添加し、5rpmで2分間混
合して接触させた。これを濾過し、濾過中のα−
アミラーゼ活性、グルコアミラーゼ活性を測定し
た。
Culture solution of Aspergillus oryzae IFO-4176
40 ml (containing 0.50 units/ml of α-amylase and 1.30 units/ml of glucoamylase) was cooled to 6°C, 0.2 g of the above adsorbent powder was added, and the mixture was mixed and contacted at 5 rpm for 2 minutes. This is filtered, and the α-
Amylase activity and glucoamylase activity were measured.

上澄液中のα−アミラーゼは0.50単位/ml、グ
ルコアミラーゼは0.01単位/mlであつた。上記吸
着剤に吸着した酵素量を、吸着剤との接触前の酵
素濃度から接触後の酵素濃度を減じた値として計
算した。その結果、培養濾液中に存在したα−ア
ミラーゼは実質上吸着されず、グルコアミラーゼ
の99%(1.29単位)が吸着された。
The α-amylase in the supernatant was 0.50 units/ml, and the glucoamylase was 0.01 units/ml. The amount of enzyme adsorbed on the adsorbent was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 99% (1.29 units) of glucoamylase was adsorbed.

実施例 6 牛肝臓のグリコーゲン(推定分子量3.5×105
推定分岐度27%)の乾燥粉末10gに水90mlを添加
し、撹拌しながら70℃に加熱して溶解して粘性の
液体を得た。これに4Nの苛性カリ33mlを添加し、
これを撹拌機と還流冷却器を付した500mlの反応
フラスコに入れた。次いで、140mlのエピクロル
ヒドリンを加え、20rpmで撹拌しつつ、50℃で5
時間加熱した。
Example 6 Bovine liver glycogen (estimated molecular weight 3.5×10 5 ,
90 ml of water was added to 10 g of dry powder with an estimated degree of branching (estimated degree of branching of 27%), and the mixture was heated to 70° C. with stirring to dissolve it to obtain a viscous liquid. Add 33ml of 4N caustic potash to this,
This was placed in a 500 ml reaction flask equipped with a stirrer and reflux condenser. Next, add 140 ml of epichlorohydrin and heat at 50°C for 5 minutes while stirring at 20 rpm.
heated for an hour.

反応終了後、内容物を室温に冷却し、下部の水
層中のゲル状物を濾別した。このゲル状物にエタ
ノール50mlを添加し、撹拌後濾過してゲル状物を
回収した。回収ゲルを再度エタノール50mlに再懸
濁し、濾過してゲル状物を回収した。本操作をさ
らに3回繰り返した。次に、蒸溜水50mlに懸濁
し、濾別した。本操作を3回繰り返した後、再度
エタノール50mlに分散した。これを濾過し、ゲル
状物を乾燥後、粉砕し、白色粉末9.3gを得た。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. 50 ml of ethanol was added to this gel-like material, stirred, and then filtered to recover the gel-like material. The recovered gel was resuspended in 50 ml of ethanol and filtered to recover a gel-like substance. This operation was repeated three more times. Next, it was suspended in 50 ml of distilled water and filtered. After repeating this operation three times, the mixture was again dispersed in 50 ml of ethanol. This was filtered, and the gel-like material was dried and crushed to obtain 9.3 g of white powder.

本粉末の60℃における水への溶解度は水100g
に対し、0.003gであつた。さらに、本粉末を60
℃水に1日間浸漬した後の水和ゲルの本粉末に対
する重量比は12.3であつた。
The solubility of this powder in water at 60℃ is 100g of water.
However, it was 0.003g. In addition, 60% of this powder
The weight ratio of the hydrated gel to the present powder after being immersed in ℃ water for one day was 12.3.

次に、本粉末へのグルコアミラーゼの吸着性を
見るため、以下の実験を行つた。
Next, in order to examine the adsorption of glucoamylase to this powder, the following experiment was conducted.

アスペルギルス・オリゼIFO−4176の培養液40
ml(α−アミラーゼ0.50単位/ml、グルコアミラ
ーゼ1.30単位/mlを含む)を6℃に冷却し、上記
の吸着剤粉末0.2gを添加し、5rpmで2分間混合
して接触させた。これを濾過し、濾過中のα−ア
ミラーゼ活性、グルコアミラーゼ活性を測定し
た。
Culture solution of Aspergillus oryzae IFO-4176 40
ml (containing 0.50 units/ml of α-amylase and 1.30 units/ml of glucoamylase) was cooled to 6°C, 0.2 g of the above adsorbent powder was added, and the mixture was mixed and contacted at 5 rpm for 2 minutes. This was filtered, and α-amylase activity and glucoamylase activity during filtration were measured.

上澄液中のα−アミラーゼは0.50単位/ml、グ
ルコアミラーゼは0.02単位/mlであつた。上記吸
着剤に吸着した酵素量を、吸着剤との接触前の酵
素濃度から接触後の酵素濃度を減じた値として計
算した。その結果、培養濾液中に存在したα−ア
ミラーゼは実質上吸着されず、グルコアミラーゼ
の98%(1.28単位)が吸着された。
The α-amylase in the supernatant was 0.50 units/ml, and the glucoamylase was 0.02 units/ml. The amount of enzyme adsorbed on the adsorbent was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 98% (1.28 units) of glucoamylase was adsorbed.

実施例 7 牛肝臓のグリコーゲン(推定分子量3.5×105
推定分岐度27%)の乾燥粉末20gに水80mlを添加
し、撹拌しながら80℃に加熱して糊状物とした。
これに6Nの苛性ソーダ66mlを添加し、これを撹
拌機と還流冷却器を付した500mlの反応フラスコ
に入れた。次いで、180mlのエピクロルヒドリン
を加え、10rpmで撹拌しつつ、70℃で9時間加熱
した。
Example 7 Bovine liver glycogen (estimated molecular weight 3.5×10 5 ,
80 ml of water was added to 20 g of dry powder with an estimated degree of branching of 27%) and heated to 80° C. with stirring to form a paste.
To this was added 66 ml of 6N caustic soda, which was placed in a 500 ml reaction flask equipped with a stirrer and reflux condenser. Next, 180 ml of epichlorohydrin was added and heated at 70° C. for 9 hours while stirring at 10 rpm.

反応終了後、内容物を室温に冷却し、下部の水
層中のゲル状物を濾別した。このゲル状物にエタ
ノール80mlを添加し、撹拌後濾過してゲル状物を
回収した。回収ゲルを再度エタノール80mlに懸濁
し、濾過してゲル状物を回収した。本操作をさら
に3回繰り返した。次に、蒸溜水50mlに懸濁し、
濾別した。本操作を3回繰り返した後、再度エタ
ノール80mlに分散した。これを濾過し、ゲル状物
を乾燥後、粉砕し、白色粉末9.3gを得た。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. 80 ml of ethanol was added to this gel-like material, stirred, and then filtered to recover the gel-like material. The recovered gel was suspended again in 80 ml of ethanol and filtered to recover a gel-like substance. This operation was repeated three more times. Next, suspend in 50ml of distilled water,
It was filtered. After repeating this operation three times, the mixture was again dispersed in 80 ml of ethanol. This was filtered, and the gel-like material was dried and crushed to obtain 9.3 g of white powder.

本粉末の60℃における水への溶解度は水100g
に対し、0.001gであつた。さらに、本粉末を60
℃水に1日間浸漬した後の水和ゲルの本粉末に対
する重量比は7.2であつた。
The solubility of this powder in water at 60℃ is 100g of water.
However, it was 0.001g. In addition, 60% of this powder
The weight ratio of the hydrated gel to the present powder after being immersed in °C water for 1 day was 7.2.

次に、本粉末へのグルコアミラーゼの吸着性を
見るため、以下の実験を行つた。
Next, in order to examine the adsorption of glucoamylase to this powder, the following experiment was conducted.

アスペルギルス・オリゼIFO−4176の培養液40
ml(α−アミラーゼ0.50単位/ml、グルコアミラ
ーゼ1.30単位/mlを含む)を6℃に冷却し、上記
の吸着剤粉末0.2gを添加し、5rpmで2分間混合
して接触させた。これを濾過し、濾液中のα−ア
ミラーゼ活性、グルコアミラーゼ活性を測定し
た。
Culture solution of Aspergillus oryzae IFO-4176 40
ml (containing 0.50 units/ml of α-amylase and 1.30 units/ml of glucoamylase) was cooled to 6°C, 0.2 g of the above adsorbent powder was added, and the mixture was mixed and contacted at 5 rpm for 2 minutes. This was filtered, and α-amylase activity and glucoamylase activity in the filtrate were measured.

上澄液中のα−アミラーゼは0.50単位/ml、グ
ルコアミラーゼは0.02単位/mlであつた。上記録
着剤に吸着した酵素量を、吸着剤との接触前の酵
素濃度から接触後の酵素濃度を減じた値として計
算した。その結果、培養濾液中に存在したα−ア
ミラーゼは実質上吸着されず、グルコアミラーゼ
の98%(1.28単位)が吸着された。
The α-amylase in the supernatant was 0.50 units/ml, and the glucoamylase was 0.02 units/ml. The amount of enzyme adsorbed to the above-mentioned adhesive was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 98% (1.28 units) of glucoamylase was adsorbed.

実施例 8 かき貝のグリコーゲン(推定分子量4×105
推定分岐度25%)の乾燥粉末10gに水90mlを添加
し、撹拌しながら70℃に加熱して溶解して粘性の
液体とした。
Example 8 Oyster shell glycogen (estimated molecular weight 4×10 5 ,
90 ml of water was added to 10 g of dry powder with an estimated degree of branching of 25%), and heated to 70° C. with stirring to dissolve and form a viscous liquid.

これに6Nの苛性ソーダ33mlを添加し、これを
撹拌機と還流冷却器を付した500mlの反応フラス
コに入れた。次いで、140mlのエピクロルヒドリ
ンを加え、15rpmで撹拌しつつ、50℃で5時間加
熱した。
To this was added 33 ml of 6N caustic soda, which was placed in a 500 ml reaction flask equipped with a stirrer and reflux condenser. Next, 140 ml of epichlorohydrin was added and heated at 50° C. for 5 hours while stirring at 15 rpm.

反応終了後、内容物を室温に冷却し、下部の水
層中のゲル状物を濾別した。このゲル状物にエタ
ノール50mlを添加し、撹拌後濾過してゲル状物を
回収した。回収ゲルを再度エタノール50mlに再懸
濁し、濾過してゲル状物を回収した。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. 50 ml of ethanol was added to this gel-like material, stirred, and then filtered to recover the gel-like material. The recovered gel was resuspended in 50 ml of ethanol and filtered to recover a gel-like substance.

本操作をさらに3回繰り返した。次に、蒸溜水
50mlに懸濁し、濾別した。本操作をさらに3回繰
り返した。次に蒸溜水50mlに懸濁し、濾別した。
本操作を3回繰り返した後、再度エタノール50ml
に分散した。
This operation was repeated three more times. Next, distilled water
It was suspended in 50 ml and filtered. This operation was repeated three more times. Next, it was suspended in 50 ml of distilled water and filtered.
After repeating this operation three times, use 50ml of ethanol again.
dispersed into

これを濾過し、ゲル状物を乾燥後、粉砕し、白
色粉末9.1gを得た。
This was filtered, and the gel-like material was dried and crushed to obtain 9.1 g of white powder.

本粉末の60℃における水への溶解度は水100g
に対し、0.001g以下であつた。さらに、本粉末
を60℃水に1日間浸漬した後の水和ゲルの紛粉末
に対する重量比は10.8であつた。
The solubility of this powder in water at 60℃ is 100g of water.
However, it was less than 0.001g. Furthermore, after immersing this powder in 60°C water for one day, the weight ratio of hydrated gel to powder was 10.8.

次に、本粉末へのグルコアミラーゼの吸着性を
見るため、以下の実験を行つた。
Next, in order to examine the adsorption of glucoamylase to this powder, the following experiment was conducted.

アスペルギルス・オリゼIFO−4176の培養液40
ml(α−アミラーゼ0.50単位/ml、グルコアミラ
ーゼ1.30単位/mlを含む)を6℃に冷却し、上記
の吸着剤粉末0.2gを添加し、5rpmで2分間混合
して接触させた。これを濾過し、濾液中のα−ア
ミラーゼ活性、グルコアミラーゼ活性を測定し
た。
Culture solution of Aspergillus oryzae IFO-4176 40
ml (containing 0.50 units/ml of α-amylase and 1.30 units/ml of glucoamylase) was cooled to 6°C, 0.2 g of the above adsorbent powder was added, and the mixture was mixed and contacted at 5 rpm for 2 minutes. This was filtered, and α-amylase activity and glucoamylase activity in the filtrate were measured.

上澄液中のα−アミラーゼは0.50単位/ml、グ
ルコアミラーゼは0.02単位/mlであつた。上記吸
着剤に吸着した酵素量を、吸着剤との接触前の酵
素濃度から接触後の酵素濃度を減じた値として計
算した。その結果、培養濾液中に存在したα−ア
ミラーゼは実質上吸着されず、グルコアミラーゼ
の98%(1.28単位)が吸着された。
The α-amylase in the supernatant was 0.50 units/ml, and the glucoamylase was 0.02 units/ml. The amount of enzyme adsorbed on the adsorbent was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 98% (1.28 units) of glucoamylase was adsorbed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、酵素性産菌の培養濾液など多
種多様の有機性、無機性不純物及び他種の酵素を
含む液中から、グルコアミラーゼを選択的に吸着
できる。また、かかる機能を有する吸着剤を容易
に製造できる。
According to the present invention, glucoamylase can be selectively adsorbed from a liquid containing a wide variety of organic and inorganic impurities and other types of enzymes, such as a culture filtrate of enzymatic producing bacteria. Moreover, an adsorbent having such a function can be easily produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、架橋剤としてエピハロゲンヒドリン
を用いた本発明請求範囲第1項に相当する物質の
代表的構造単位を示す。第2図は、架橋剤として
エピハロゲンヒドリンを用いた本発明請求範囲第
1項に相当する物質の代表的単位を示す。 1…非還元性端、2…分岐鎖、3…架橋鎖、4
…主鎖、5…分岐点。
FIG. 1 shows a typical structural unit of a substance corresponding to claim 1 of the present invention using epihalogenhydrin as a crosslinking agent. FIG. 2 shows a representative unit of a substance according to claim 1 of the present invention using epihalogenhydrin as a crosslinking agent. 1... Non-reducing end, 2... Branched chain, 3... Crosslinked chain, 4
...main chain, 5...branch point.

Claims (1)

【特許請求の範囲】[Claims] 1 グルコースがα−1,4結合により重合した
主鎖にグルコースがα−1,4結合により重合し
α−1,6結合により主鎖から分岐した非還元性
グルコース残基を開放末端とする分岐鎖が結合し
てなるポリグルカンをアミラーゼで処理して分岐
鎖を短縮化したポリグルカン、或はグリコーゲン
を水に対する溶解度が60℃において0.01以下とな
るまで架橋処理することを特徴とする架橋化ポリ
グルカンの製造方法。
1. Branching with an open end at a non-reducing glucose residue branched from the main chain by α-1,6 bonds, in which glucose is polymerized by α-1,4 bonds and branched from the main chain by α-1,6 bonds. A polyglucan in which the branched chains are shortened by treating a polyglucan formed by linking chains with amylase, or a crosslinked polyglucan characterized in that glycogen is crosslinked until its solubility in water becomes 0.01 or less at 60°C. Method for producing glucan.
JP17751286A 1986-07-30 1986-07-30 Crosslinked polyglucan and its production Granted JPS6335605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17751286A JPS6335605A (en) 1986-07-30 1986-07-30 Crosslinked polyglucan and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17751286A JPS6335605A (en) 1986-07-30 1986-07-30 Crosslinked polyglucan and its production

Publications (2)

Publication Number Publication Date
JPS6335605A JPS6335605A (en) 1988-02-16
JPH0576961B2 true JPH0576961B2 (en) 1993-10-25

Family

ID=16032201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17751286A Granted JPS6335605A (en) 1986-07-30 1986-07-30 Crosslinked polyglucan and its production

Country Status (1)

Country Link
JP (1) JPS6335605A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763303A (en) * 1980-10-03 1982-04-16 Yoshiaki Motozato Spherical particles of crosslinked porous amylopectin and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763303A (en) * 1980-10-03 1982-04-16 Yoshiaki Motozato Spherical particles of crosslinked porous amylopectin and its production

Also Published As

Publication number Publication date
JPS6335605A (en) 1988-02-16

Similar Documents

Publication Publication Date Title
JPS5840474B2 (en) A method of using enzymes to convert an organic substance into at least one other organic substance by an enzymatic reaction
JPH01285188A (en) Lipase-immobilized polyacrylic acid-based material and utilization thereof
Lilly [4] Enzymes immobilized to cellulose
JPH0576961B2 (en)
JPH0258918B2 (en)
US5202250A (en) Method for isolation and purification of amylases, and adsorbents used for the same as well as devices for the isolation and purification
JPS5974984A (en) Preparation of immobilized enzyme or microorganism
JPH06197757A (en) Method for separating beta-amylase
JP2659086B2 (en) Method for producing high-purity carbohydrate-related enzyme and immobilized carbohydrate-related enzyme
Kennedy et al. Immobilization of glucoamylase on gelatin by transition-metal chelation
JPH0372083B2 (en)
JPS632595B2 (en)
JPS643480B2 (en)
KR950014967B1 (en) Preparation method of moranoline derivatives
IL43573A (en) Enzymes fixed on a solid cellulose support
Su et al. A novel method for continuous production of cyclodextrins using an immobilized enzyme system
JPH0466094A (en) Enzymatic decomposition of starch-containing material and production of oligosaccharide
WO2022151828A1 (en) Membrane-shaped immobilized cell, polypeptide, oligopeptide or protein, and preparation method therefor
JPH089988A (en) Production of maltopentaose
JPH07102145B2 (en) Process for producing maltose transfer sugar mixture
SU510479A1 (en) Method of immobilization of proteolytic enzymes
JPH0328194B2 (en)
JPS6248381A (en) Production of insoluble derivative of aryl sulfotransferase
JPS6017511B2 (en) Purification method of invertase
JPS6222590A (en) Dried composition containing high polymer hydrolyzing enzyme and production thereof