JPS6335568B2 - - Google Patents

Info

Publication number
JPS6335568B2
JPS6335568B2 JP57057705A JP5770582A JPS6335568B2 JP S6335568 B2 JPS6335568 B2 JP S6335568B2 JP 57057705 A JP57057705 A JP 57057705A JP 5770582 A JP5770582 A JP 5770582A JP S6335568 B2 JPS6335568 B2 JP S6335568B2
Authority
JP
Japan
Prior art keywords
xonotrite
crystals
raw material
calcium silicate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57057705A
Other languages
Japanese (ja)
Other versions
JPS58176117A (en
Inventor
Kazuo Kondo
Shigeharu Naka
Shinichi Hirano
Taketo Fukura
Kazuyuki Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP5770582A priority Critical patent/JPS58176117A/en
Publication of JPS58176117A publication Critical patent/JPS58176117A/en
Publication of JPS6335568B2 publication Critical patent/JPS6335568B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はゾノトライト系珪酸カルシウムの製造
方法に関するものである。 珪酸カルシウム成形体は軽量で強度が高く、し
かも、断熱性及び耐熱性に優れているため、主
に、建材、耐火断熱材及び保温材に使用されてい
る。又、メカニカルシール材、合成樹脂充填材又
は、例えば、NO×分解、シランカツプリングな
どの触媒担体にも広く利用されている。 珪酸カルシウムは通常、石灰原料と珪酸原料と
の水性スラリーを水熱合成反応させることにより
製造されるが、得られる珪酸カルシウムの結晶型
としては、ゾノトライト結晶(Ca6(Si6O17)・
(OH)2)及びトバモライト結晶(Ca5
(Si6O18H2)・8H2O)が知られている。これらの
結晶はいずれも、高温焼成すれば、ウオラストナ
イト結晶となるが、この結晶で成形、脱水する際
には、ゾノトライト結晶の場合には、トポタキシ
ヤルな脱水ができるため収縮がほとんどないが、
トバモライト結晶の場合には、トポタキシヤルな
脱水ができないため、工業的にはゾノトライト結
晶の方が好ましい。 ゾノトライト結晶を得るための方法としては、
従来、例えば、反応性の高い非晶質シリカを珪酸
材料として用い、しかも、280℃以上の高温で水
熱合成反応することにより製造する方法が知られ
ている。この際の反応温度が280℃未満の場合、
例えば、200〜280℃の温度では、ゾノトライト結
晶も焼成するが、トバモライト結晶も同時に生成
するため、ゾノトライト結晶を単相で得ることは
できず、又、例えば150〜200℃の温度ではトバモ
ライト結晶のみが生成していた。そのため、この
方法では280℃以上と言う経済的に有利でない高
温を選択する必要があつた。又、珪酸原料につい
ても、反応性の高い非晶質シリカのみが有効であ
り、結晶性シリカを用いることは難しかつた。 本発明者は上記実情に鑑み、結晶性シリカを用
いても、従来よりも低温で水熱合成反応を行つて
も、ゾノトライト結晶が単相で良好に得られる方
法を提供するため種々検討を行つた結果、ある特
定の触媒を用いて水熱合成反応を行うことによ
り、結晶性シリカを珪酸原料として用いた場合で
も、ゾノトライト結晶とトバモライト結晶とが同
時に生成する温度領域が従来の200〜280℃の温度
範囲から220〜230℃で言う狭い温度範囲に変化
し、そのため、230℃以上の温度でもゾノトライ
ト結晶が単相として得られることを見い出し本発
明を完成した。 即ち、本発明の要旨は、石灰原料と珪酸原料よ
りなる水性スラリーを水熱合成反応させてゾノト
ライト系珪酸カルシウムを製造する方法におい
て、触媒として、Fe、Ti、V、Co、Cr、Mn及
びNiから選ばれた少なくとも1種の金属又はそ
の化合物を、石灰原料と珪酸原料の和に対して5
〜100重量%添加し、230〜400℃の温度で反応さ
せることを特徴とするゾノトライト系珪酸カルシ
ウムの製造方法に存する。 以下、本発明を詳細に説明する。 本発明で対象となる珪酸原料は反応性の高い非
晶質シリカの他に、結晶性シリカを用いることが
できる。本発明では結晶性シリカを用いても後述
する触媒の存在下で水熱合成反応を行えば、ゾノ
トライト結晶を良好に得ることができるので好ま
しい。珪酸原料の具体例としては、例えば、クリ
ストバライト、トリジマライト、石英などの天然
鉱物、珪酸鉄、金属珪素、珪酸カルシウムを製造
する際に副生するシリコンダストあるいはホワイ
トカーボンなどが挙げられる。この結晶性シリカ
の平均粒径は通常、1〜20μm程度が好ましい。 一方、石灰原料としては種々の石炭が使用され
特に限定されるものではなく、通常、生石灰、消
石灰又はカーバイド滓等が挙げられる。 石灰原料と珪酸原料との使用割り合いは通常、
Ca/Siモル比が0.8〜1.4、好ましくは0.95〜1.1と
なるように調節するのが、ゾノトライト結晶を効
果的に得るためには好ましい。 上述のような石灰原料と珪酸原料より水性スラ
リーを形成させるが、その際の水の使用割合とし
ては、通常、固形成分に対し20〜80重量倍程度で
ある。この水性スラリーの調製に当つては、必要
に応じて、例えば、石綿、岩綿、セラミツクフア
イバー、ガラス繊維などの無機繊維等を添加して
も差し支えない。 上記水性スラリーを水熱合成反応させて珪酸カ
ルシウムを製造するが、本発明では触媒として、
Fe、Ti、V、Co、Cr、Mn及びNiから選ばれた
少なくとも1種の金属又はその化合物を反応系に
添加することを必須の要件とするものである。こ
れら触媒の具体例としては、前記元素の金属ある
いは合金;又は例えば、硫酸塩、硝酸塩、塩酸
塩、炭酸塩などの無機酸塩;蓚酸塩、プロピオン
酸塩、酢酸塩、ナフテン酸塩などの有機酸塩;酸
化物;水酸化物;シアン化物;チオシアン化物;
錯化合物等が挙げられ、なかでも、金属、合金及
び酸化物が好ましい。触媒として金属、合金、又
は酸化物を用いる場合は、通常、それらの粒径は
200メツシユ以下の粉末として用いるのが望まし
い。触媒の使用量は使用する金属の種類及び形態
により多少異なるので、特に限定されるものでは
ないが、通常、石灰原料及び珪酸原料の和に対
し、5〜100重量%、好ましくは10〜50重量%で
ある。触媒使用量があまり少なすぎると280℃以
下の反応温度でゾノトライト結晶を得ることがで
きず、又、あまり多すぎても効果に差異はなく経
済的でないので好ましくない。 水熱合成反応は通常、水性スラリーを静置状態
でオートクレーブ中にて加圧下、加熱処理して実
施される。本発明の反応温度は230〜400℃、好ま
しくは240〜280℃である。この温度が230℃末満
220℃以上である場合には、ゾノトライト結晶と
トバモライト結晶とが共存状態となり、又、220
℃末満である場合にはトバモライト結晶のみが得
られることとなる。このように本発明では230℃
以上の温度でもゾノトライト結晶を単相で得るこ
とができるものであり、本発明の触媒を使用しな
い場合には、280℃以下の温度ではこのような現
象は期待できないものである。一方、前記温度は
必要以上に高くても何の利益もなく経済的損失を
招くのみであるが、280〜400℃の温度の場合に
は、更に良好なゾノトライト結晶が得られるばか
りか、反応時間も短かくてよいと言う効果を有す
る。又、水熱合成反応の時間は反応温度などによ
り多少、異なるが、通常、4〜48時間程度であ
る。 本発明では上述のような水熱合成反応におい
て、ゾノトライト結晶を有する珪酸カルシウムを
得ることができる。 ここで得たゾノトライト結晶はその用途に応じ
て、通常、自然沈降法、鋳型注入法、プレス脱水
成形法、抄造法、押し出し成形法、ロール脱水成
形法又は遠心成形法などの公知の成形法により成
形体を得ることができる。この成形に際しては、
例えば、石綿、炭素繊維、金属繊維、岩綿、セラ
ミツクフアイバーなどの無機繊維、又は、パル
プ、木綿などの天然繊維、又は、ポリアミド、ポ
リエステルなどの合成繊維等を添加することもで
きる。 上記の成形体は常法により乾燥され、目的とす
る珪酸カルシウム成形体が得られるが、必要に応
じて、これを例えば、800℃以上の温度で加熱処
理すれば、ゾノトライト結晶をウオラストナイト
結晶に変化させることもできる。ウオラスト結晶
は例えば、0.3μ程度の針状結晶で、比表面積が大
きく、耐熱性に優れている。 本発明で得られる製品は種々の用途に利用さ
れ、例えば、建材、メカニカルシール材、保温
材、断熱材などの他に、触媒担体、合成樹脂充填
材として特に適している。 以上、本発明によれば、結晶性シリカを珪酸原
料として用いても、230℃以上と言う低温の水熱
合成反応において、ゾノトライト結晶が単相で得
られる。従つて、従来の非晶性シリカを用いた場
合と較べても、60℃も低い温度でゾノトライト結
晶を得ることができるので、エネルギーコストが
安価であり、しかも、反応装置の製作コストも安
価でよいので、本発明の方法は工業的に極めて価
値のあるものである。 次に、本発明を実施例を挙げて更に詳細に説明
するが、本発明は以下の実施例の記載に限定され
るものでない。 実施例1〜3及び比較例1〜3 結晶性シリカ(クオルツ、トリジマライト及び
クリストバライトの混合物)とCa(OH)2粉末と
をCa/Siモル比が1.0となるように混合し、更に、
これに100メツシユの鉄粉を46重量%を添加し、
固形成分に対し10重量倍の水中に分散させ、水性
スラリーを形成させたのち、オートクレーブにて
第1表に示す温度にて24時間、水熱合成反応を行
い、結晶スラリーを得た。この結晶につきX線回
折分折したところ、その結晶型は第1表に示す通
りであつた。
The present invention relates to a method for producing xonotrite-based calcium silicate. Calcium silicate molded bodies are lightweight, have high strength, and have excellent heat insulation and heat resistance, so they are mainly used for building materials, fireproof insulation materials, and heat insulation materials. It is also widely used as a mechanical sealing material, a synthetic resin filler, or a catalyst support for NOx decomposition, silane coupling, etc. Calcium silicate is usually produced by subjecting an aqueous slurry of lime raw materials and silicate raw materials to a hydrothermal synthesis reaction, but the crystal type of the calcium silicate obtained is xonotrite crystals (Ca 6 (Si 6 O 17 )
(OH) 2 ) and tobermorite crystals (Ca 5
(Si 6 O 18 H 2 )・8H 2 O) is known. All of these crystals become wollastonite crystals when fired at high temperatures, but when molded and dehydrated with these crystals, in the case of xonotrite crystals, there is almost no shrinkage because topaxial dehydration is possible.
In the case of tobermorite crystals, topotaxial dehydration is not possible, so xonotrite crystals are preferred industrially. The method for obtaining xonotrite crystals is as follows:
Conventionally, a manufacturing method is known in which, for example, highly reactive amorphous silica is used as a silicic acid material and a hydrothermal synthesis reaction is carried out at a high temperature of 280° C. or higher. If the reaction temperature at this time is less than 280℃,
For example, at a temperature of 200 to 280°C, xonotrite crystals are also fired, but tobermorite crystals are also formed at the same time, so it is not possible to obtain xonotrite crystals in a single phase. was being generated. Therefore, in this method, it was necessary to select a high temperature of 280°C or higher, which is not economically advantageous. Further, as for the silicic acid raw material, only highly reactive amorphous silica is effective, and it is difficult to use crystalline silica. In view of the above-mentioned circumstances, the present inventors have conducted various studies in order to provide a method by which xonotrite crystals can be obtained satisfactorily in a single phase even if crystalline silica is used or the hydrothermal synthesis reaction is carried out at a lower temperature than before. As a result, by carrying out a hydrothermal synthesis reaction using a specific catalyst, even when crystalline silica is used as a silicic acid raw material, the temperature range in which xonotrite crystals and tobermorite crystals are generated simultaneously is 200 to 280 °C, which is lower than the conventional temperature range. The present invention has been completed by discovering that xonotrite crystals can be obtained as a single phase even at temperatures above 230°C. That is, the gist of the present invention is a method for producing xonotrite-based calcium silicate by subjecting an aqueous slurry consisting of a lime raw material and a silicic acid raw material to a hydrothermal synthesis reaction, in which Fe, Ti, V, Co, Cr, Mn, and Ni are used as catalysts. At least one metal or its compound selected from
The present invention relates to a method for producing xonotrite calcium silicate, which comprises adding 100% by weight of xonotrite and reacting at a temperature of 230 to 400°C. The present invention will be explained in detail below. As the silicic acid raw material targeted in the present invention, crystalline silica can be used in addition to highly reactive amorphous silica. In the present invention, even if crystalline silica is used, it is preferable to carry out the hydrothermal synthesis reaction in the presence of a catalyst to be described later, since xonotrite crystals can be obtained satisfactorily. Specific examples of silicic acid raw materials include natural minerals such as cristobalite, tridymalite, and quartz, silicon dust or white carbon that is produced as a by-product during the production of iron silicate, metallic silicon, and calcium silicate. The average particle size of this crystalline silica is usually preferably about 1 to 20 μm. On the other hand, various types of coal can be used as the lime raw material, and there are no particular limitations. Quicklime, slaked lime, carbide slag, etc. are usually used. The ratio of lime raw materials and silicate raw materials is usually as follows:
In order to effectively obtain xonotrite crystals, it is preferable to adjust the Ca/Si molar ratio to 0.8 to 1.4, preferably 0.95 to 1.1. An aqueous slurry is formed from the lime raw material and silicic acid raw material as described above, and the proportion of water used at this time is usually about 20 to 80 times the weight of the solid components. In preparing this aqueous slurry, for example, inorganic fibers such as asbestos, rock wool, ceramic fiber, glass fiber, etc. may be added as necessary. Calcium silicate is produced by subjecting the aqueous slurry to a hydrothermal synthesis reaction. In the present invention, as a catalyst,
It is an essential requirement that at least one metal selected from Fe, Ti, V, Co, Cr, Mn, and Ni or a compound thereof be added to the reaction system. Examples of these catalysts include metals or alloys of the above elements; or inorganic acid salts such as sulfates, nitrates, hydrochlorides, and carbonates; and organic acid salts such as oxalates, propionates, acetates, and naphthenates. Acid acid; oxide; hydroxide; cyanide; thiocyanide;
Examples include complex compounds, among which metals, alloys, and oxides are preferred. When using metals, alloys, or oxides as catalysts, their particle size is usually
It is preferable to use it as a powder of 200 mesh or less. The amount of catalyst used varies somewhat depending on the type and form of the metal used, so it is not particularly limited, but it is usually 5 to 100% by weight, preferably 10 to 50% by weight, based on the sum of the lime raw material and silicic acid raw material. %. If the amount of catalyst used is too small, xonotlite crystals cannot be obtained at a reaction temperature of 280° C. or less, and if it is too large, there is no difference in the effect and it is not economical, which is not preferable. The hydrothermal synthesis reaction is usually carried out by heating an aqueous slurry under pressure in an autoclave in a stationary state. The reaction temperature of the present invention is 230-400°C, preferably 240-280°C. This temperature is at the end of 230℃.
When the temperature is 220℃ or higher, xonotrite crystals and tobermorite crystals coexist, and 220℃
If the temperature is below 0.9°C, only tobermorite crystals will be obtained. In this way, in the present invention, 230℃
It is possible to obtain xonotrite crystals in a single phase even at temperatures above, and such a phenomenon cannot be expected at temperatures below 280° C. if the catalyst of the present invention is not used. On the other hand, if the temperature is higher than necessary, there will be no benefit and only economic loss will result; however, if the temperature is between 280 and 400°C, not only better xonotlite crystals can be obtained, but also the reaction time will be longer. It also has the effect of being short. Further, the time for the hydrothermal synthesis reaction varies somewhat depending on the reaction temperature, etc., but is usually about 4 to 48 hours. In the present invention, calcium silicate having xonotrite crystals can be obtained in the hydrothermal synthesis reaction as described above. The xonotlite crystals obtained here are usually formed by known forming methods such as natural sedimentation, mold injection, press dehydration, papermaking, extrusion, roll dehydration, or centrifugal molding, depending on the intended use. A molded body can be obtained. During this molding,
For example, inorganic fibers such as asbestos, carbon fiber, metal fiber, rock wool, and ceramic fiber, natural fibers such as pulp and cotton, or synthetic fibers such as polyamide and polyester can also be added. The above-mentioned molded body is dried by a conventional method to obtain the desired calcium silicate molded body, but if necessary, it can be heat-treated at a temperature of 800°C or higher to transform xonotrite crystals into wollastonite crystals. It can also be changed to Wolast crystals, for example, are needle-shaped crystals of about 0.3μ, have a large specific surface area, and are excellent in heat resistance. The products obtained according to the present invention are used for various purposes, and are particularly suitable as building materials, mechanical sealing materials, heat insulating materials, heat insulating materials, etc., as well as catalyst carriers and synthetic resin fillers. As described above, according to the present invention, even if crystalline silica is used as a silicic acid raw material, xonotrite crystals can be obtained in a single phase in a hydrothermal synthesis reaction at a low temperature of 230° C. or higher. Therefore, compared to using conventional amorphous silica, xonotlite crystals can be obtained at a temperature 60°C lower, resulting in lower energy costs and lower manufacturing costs for the reaction equipment. Therefore, the method of the present invention is of great industrial value. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the description of the following examples. Examples 1 to 3 and Comparative Examples 1 to 3 Crystalline silica (a mixture of quartz, tridimalite, and cristobalite) and Ca(OH) 2 powder were mixed so that the Ca/Si molar ratio was 1.0, and further,
Add 46% by weight of 100 mesh iron powder to this,
After dispersing in water 10 times the weight of the solid component to form an aqueous slurry, a hydrothermal synthesis reaction was carried out in an autoclave at the temperature shown in Table 1 for 24 hours to obtain a crystal slurry. When this crystal was subjected to X-ray diffraction analysis, its crystal form was as shown in Table 1.

【表】 実施例4〜10及び比較例4〜10 実施例1の方法において、触媒として鉄分の代
りに、第2表に示す金属又は合金を50重量%用い
て、しかも、第2表に示す温度にて、同様な方法
で反応を行い、結晶スラリーを得た。この結晶に
つき、X線回折分析としたところ、その結晶型は
第2表に示す通りであつた。
[Table] Examples 4 to 10 and Comparative Examples 4 to 10 In the method of Example 1, 50% by weight of the metal or alloy shown in Table 2 was used instead of iron as a catalyst, and The reaction was carried out in the same manner at the same temperature to obtain a crystal slurry. When this crystal was subjected to X-ray diffraction analysis, its crystal form was as shown in Table 2.

【表】【table】

【表】 比較例 11〜13 実施例1の方法におて、触媒を使用することな
く、第3表に示す温度にて、同様な方法で反応を
行い、結晶スラリーを得た。この結晶につきX線
回折分析をしたところ、その結晶型は第3表に示
す通りであつた。
[Table] Comparative Examples 11 to 13 A reaction was carried out in the same manner as in Example 1, without using a catalyst, at the temperatures shown in Table 3 to obtain a crystal slurry. When this crystal was subjected to X-ray diffraction analysis, its crystal form was as shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 石灰原料と珪酸原料よりなる水性スラリーを
水熱反応させてゾノトライト系珪酸カルシウムを
製造する方法において、触媒として、Fe、Ti、
V、Co、Cr、Mn及びNiから選ばれた少なくと
も1種の金属又はその化合物を、石灰原料と珪酸
原料の和に対して5〜100重量%添加し、230〜
400℃の温度で反応させることを特徴とするゾノ
トライト系珪酸カルシウムの製造方法。 2 触媒が、Fe、Ti、V、Co、Cr、Mn、及び
Niから選ばれた少なくとも1種の金属、合金又
は酸化物である特許請求の範囲第1項記載のゾノ
トライト系珪酸カルシウムの製造方法。 3 石灰原料と珪酸原料の使用割合が、Ca/Si
モル比として、0.8〜1.4である特許請求の範囲第
1項又は第2項記載のゾノトライト系珪酸カルシ
ウムの製造方法。 4 水熱合成反応の温度が、240〜280℃である特
許請求の範囲第1項乃至第3記載のいずれかに記
載のゾノトライト系珪酸カルシウムの製造方法。
[Claims] 1. In a method for producing xonotrite-based calcium silicate by hydrothermally reacting an aqueous slurry consisting of a lime raw material and a silicate raw material, Fe, Ti,
At least one metal selected from V, Co, Cr, Mn, and Ni or a compound thereof is added in an amount of 5 to 100% by weight based on the sum of the lime raw material and the silicic acid raw material.
A method for producing xonotrite calcium silicate, which is characterized by carrying out the reaction at a temperature of 400°C. 2 The catalyst is Fe, Ti, V, Co, Cr, Mn, and
The method for producing xonotrite-based calcium silicate according to claim 1, wherein the xonotrite calcium silicate is at least one metal, alloy, or oxide selected from Ni. 3 The usage ratio of lime raw material and silicate raw material is Ca/Si
The method for producing xonotrite-based calcium silicate according to claim 1 or 2, wherein the molar ratio is 0.8 to 1.4. 4. The method for producing xonotrite-based calcium silicate according to any one of claims 1 to 3, wherein the temperature of the hydrothermal synthesis reaction is 240 to 280°C.
JP5770582A 1982-04-07 1982-04-07 Preparation of calcium silicate Granted JPS58176117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5770582A JPS58176117A (en) 1982-04-07 1982-04-07 Preparation of calcium silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5770582A JPS58176117A (en) 1982-04-07 1982-04-07 Preparation of calcium silicate

Publications (2)

Publication Number Publication Date
JPS58176117A JPS58176117A (en) 1983-10-15
JPS6335568B2 true JPS6335568B2 (en) 1988-07-15

Family

ID=13063350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5770582A Granted JPS58176117A (en) 1982-04-07 1982-04-07 Preparation of calcium silicate

Country Status (1)

Country Link
JP (1) JPS58176117A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2669650B2 (en) * 1988-07-07 1997-10-29 豊田工機株式会社 Driving force transmission device
EP1277826A1 (en) * 2001-07-18 2003-01-22 ATOFINA Research Hydrogenation and dehydrogenation processes and catalysts therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001882A (en) * 1957-12-30 1961-09-26 Owens Corning Fiberglass Corp Thermal insulating material and method of making same
JPS5179119A (en) * 1974-12-30 1976-07-09 Nihon Cement SUINETSU HANNOYOTEN KAZAI
JPS5243494A (en) * 1975-10-03 1977-04-05 Riken Keiki Kk Multiple point gas detecting and alarming system
JPS5345200A (en) * 1976-10-06 1978-04-22 Sopia Giken Kk Device for hitting tag pin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001882A (en) * 1957-12-30 1961-09-26 Owens Corning Fiberglass Corp Thermal insulating material and method of making same
JPS5179119A (en) * 1974-12-30 1976-07-09 Nihon Cement SUINETSU HANNOYOTEN KAZAI
JPS5243494A (en) * 1975-10-03 1977-04-05 Riken Keiki Kk Multiple point gas detecting and alarming system
JPS5345200A (en) * 1976-10-06 1978-04-22 Sopia Giken Kk Device for hitting tag pin

Also Published As

Publication number Publication date
JPS58176117A (en) 1983-10-15

Similar Documents

Publication Publication Date Title
JP6022555B2 (en) Synthetic formulations and methods of making and using them
US3501324A (en) Manufacturing aqueous slurry of hydrous calcium silicate and products thereof
CA1084235A (en) PROCESS AND AN APPARATUS FOR PRODUCING SILICON CARBIDE CONSISTING MAINLY OF .beta.-TYPE CRYSTAL
DE2751660C2 (en)
CA2810086A1 (en) Process for producing cement binder compositions containing magnesium
CN107162010B (en) The hydrated calcium silicate for synthesizing the method for hydrated calcium silicate and being synthesized by this method
WO1987001370A1 (en) Silica molding and process for its production
JPS6335568B2 (en)
KR20170058890A (en) Method of manufacturing kalium type artificial zeolite from coal fly ash
JPS6158436B2 (en)
JPH0627022B2 (en) Method for producing calcium silicate-based compact
JPS631243B2 (en)
JP2021075439A (en) Method for producing tobermorite-containing housing material, tobermorite, and tobermorite-containing housing material
JP3712495B2 (en) Process for producing hardened calcium silicate hydrate
KR100401986B1 (en) Manufacturing Method of Hard Calcium Carbonate Using Subsidiary Particle Dust in Stainless Steel Refining Process
JPS5842129B2 (en) Method for producing calcium silicate hydrate crystals
JPS62113745A (en) Manufacture of calcium silicate formed body
JPH0158147B2 (en)
JPH021527B2 (en)
JPS6025384B2 (en) Manufacturing method of high-density magnesia sintered body
JPH0437006B2 (en)
JPS5864267A (en) Sialon continuous manufacture
EP2539315A1 (en) Process for preparing urea
JPS6341850B2 (en)
JPH0220564B2 (en)