JPS5842129B2 - Method for producing calcium silicate hydrate crystals - Google Patents

Method for producing calcium silicate hydrate crystals

Info

Publication number
JPS5842129B2
JPS5842129B2 JP5105576A JP5105576A JPS5842129B2 JP S5842129 B2 JPS5842129 B2 JP S5842129B2 JP 5105576 A JP5105576 A JP 5105576A JP 5105576 A JP5105576 A JP 5105576A JP S5842129 B2 JPS5842129 B2 JP S5842129B2
Authority
JP
Japan
Prior art keywords
raw material
calcium silicate
silicate hydrate
weight
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5105576A
Other languages
Japanese (ja)
Other versions
JPS52133900A (en
Inventor
信 関原
準二 斎藤
康生 小栗
光夫 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP5105576A priority Critical patent/JPS5842129B2/en
Publication of JPS52133900A publication Critical patent/JPS52133900A/en
Publication of JPS5842129B2 publication Critical patent/JPS5842129B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は珪酸カルシウム水和物結晶の製造方法に関する
ものであり、詳しくは、高炉水滓を原料としてトバモラ
イト系結晶を主体とする珪酸カルシウム水和物結晶を製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing calcium silicate hydrate crystals, and more specifically, a method for producing calcium silicate hydrate crystals mainly consisting of tobermorite crystals using blast furnace slag as a raw material. It is related to.

珪酸カルシウム水和物結晶には、CaO−8in2−H
2Oの組成により各種の結晶形態のものが存在するが、
中でもトバモライト系結晶は、成型体とした場合に断熱
性、耐火性1強度等の点で優れている。
Calcium silicate hydrate crystal contains CaO-8in2-H
There are various crystal forms depending on the composition of 2O,
Among them, tobermorite crystals are excellent in terms of heat insulation, fire resistance, strength, etc. when formed into a molded body.

しかして、トバモライト系結晶の一般的製造方法として
はカルシウム原料と珪酸原料との水スラリーを加圧加熱
処理して水熱合成反応を行わせる方法が知られているが
、従来この方法では例えば。
However, as a general method for producing tobermorite crystals, a method is known in which an aqueous slurry of a calcium raw material and a silicic acid raw material is subjected to pressure and heat treatment to perform a hydrothermal synthesis reaction.

珪藻土、珪酸石英、珪石等のアルミナ含量が5重量%程
度以下の高品位の珪酸原料を使用する必要があるとされ
ていた。
It was considered necessary to use high-grade silicic acid raw materials with an alumina content of about 5% by weight or less, such as diatomaceous earth, silicate quartz, and silica stone.

すなわち、トバモライト系結晶の製造においては1例ア
ば、5重量%程度の少量のアルミナの存在は反応速度を
高める等の効果があって望ましいとされているが、アル
ミナ含量が10重量%以上の珪酸原料を使用すると、ト
バモライト系結晶の優れた物性を損う好ましくないハイ
ドロガーネットが副生ずるからである。
That is, in the production of tobermorite crystals, for example, the presence of a small amount of alumina of about 5% by weight is said to be desirable as it has the effect of increasing the reaction rate, but when the alumina content is 10% by weight or more, This is because when a silicic acid raw material is used, undesirable hydrogarnet is produced as a by-product, which impairs the excellent physical properties of tobermorite crystals.

しかして、銑鉄製造工程より多量に副生ずる高炉水滓は
一般に次の通りの組成であってトバモライト系結晶を製
造するのに適当量のCaOとSiO2とを含み安価な原
料ではあるが、大部分はアルミナを10重量%以上を含
むため上記のような理由で、従来はトバモライト系結晶
の製造原料としては使用することができなかった。
However, blast furnace water slag, which is a large amount of by-product from the pig iron manufacturing process, generally has the following composition, and although it is an inexpensive raw material containing appropriate amounts of CaO and SiO2 for manufacturing tobermorite crystals, most of it is Because it contains 10% by weight or more of alumina, it could not be used as a raw material for producing tobermorite crystals for the reasons mentioned above.

高炉水滓の組成 CaO:35〜50重量% SiO2:30〜40 〃 Al2O3: 5〜20 〃 MgO: 5〜10// 本発明者等は上記実情に鑑み、アルミナ含量の高い高炉
水滓を原料として使用し得る珪酸カルシウム水和物結晶
の製造方法につき鋭意検討した結果、水熱合成反応をあ
る種の化合物の存在下に行うならば、アルミナ含量が1
0重量%以上の高炉水滓を使用してもハイドロガーネッ
トを副生ずることなくトバモライト系結晶を主体とする
珪酸カルシウム水和物結晶が得られることを知見し本発
明の完成に散った。
Composition of blast furnace water slag CaO: 35-50% by weight SiO2: 30-40 〃 Al2O3: 5-20 〃 MgO: 5-10 As a result of intensive studies on the production method of calcium silicate hydrate crystals that can be used as
It was discovered that calcium silicate hydrate crystals mainly consisting of tobermorite crystals could be obtained without producing hydrogarnet as a by-product even if 0% by weight or more of blast furnace water slag was used, and this led to the completion of the present invention.

すなわち1本発明の要旨は、高炉水滓の水スラリーを加
圧加熱処理して珪酸カルシウム水和物結晶を製造する方
法において、アルミナ含量が10重量%以上の高炉水滓
を原料とし、これを、スラリー中の原料固形分に対し少
なくとも5重量%(アルカリ金属水酸化物換算)のアル
カリ金属の水溶性無機化合物とともに加圧加熱処理する
ことを特徴とする珪酸カルシウム水和物結晶の製造方法
に存する。
That is, the gist of the present invention is to provide a method for producing calcium silicate hydrate crystals by pressurizing and heating a water slurry of blast furnace water slag, in which blast furnace water slag having an alumina content of 10% by weight or more is used as a raw material. , a method for producing calcium silicate hydrate crystals, characterized by carrying out pressure and heat treatment together with a water-soluble inorganic compound of an alkali metal of at least 5% by weight (calculated as alkali metal hydroxide) based on the raw material solid content in the slurry. Exists.

本発明の詳細な説明するに1本発明では、鉄鉱石より銑
鉄を製造する工程で副生ずるアルミナ含量が10重量%
以上の高炉水滓を原料として使用する。
Detailed explanation of the present invention: 1. In the present invention, the alumina content, which is a by-product in the process of producing pig iron from iron ore, is 10% by weight.
The above blast furnace water slag is used as a raw material.

高炉水滓は粉末状のものを通常5−30重量部程度の水
に懸濁してスラリーとして水熱合成反応に供せられるが
、ブレーン比表面積が1500cdl&以上に粉砕され
た高炉水滓を用いると反応速度が高められて好ましい。
Blast furnace water slag is usually in powder form suspended in about 5-30 parts by weight of water and subjected to hydrothermal synthesis reaction as a slurry. This is preferable because the reaction rate is increased.

また、高炉水滓の種類によってはCaO/5i02のモ
ル比がトバモライト系結晶の生成領域(CaO/SiO
2モル比が0.5〜1,5.好ましくは0.7〜1.0
)を外れる場合があるが、このような場合は、従来公知
の石灰原料及び/又は珪酸原料を用いて原料スラリー中
のCa O/ S t 02のモル比を上記領域内に調
整すればよい。
In addition, depending on the type of blast furnace water slag, the molar ratio of CaO/5i02 may change to the formation region of tobermorite crystals (CaO/SiO2).
2 molar ratio is 0.5 to 1.5. Preferably 0.7-1.0
), but in such cases, the molar ratio of Ca O / S t 02 in the raw material slurry may be adjusted within the above range using a conventionally known lime raw material and/or silicic acid raw material.

本発明では、CaO/5i02モル比が上記のトバモラ
イト系結晶生成領域にあり且つアルミナ含量が10重量
%以上の高炉水滓を原料とし、これを特定量のアルカリ
金属の水溶性無機化合物とともに水熱合成反応に供する
ことを必須の要件とする。
In the present invention, blast furnace water slag having a CaO/5i02 molar ratio in the above-mentioned tobermorite crystal formation region and an alumina content of 10% by weight or more is used as a raw material, and this is hydrothermally heated together with a specific amount of a water-soluble inorganic compound of an alkali metal. It is an essential requirement that it be subjected to a synthetic reaction.

アルカリ金属の水溶性無機化合物としては1例えばナト
リウム、カリウム等の水酸化物、珪酸塩。
Examples of water-soluble inorganic compounds of alkali metals include hydroxides and silicates of sodium and potassium.

硫酸塩硝酸塩、塩化物等が適当であり、具体的には例え
ば水酸化ナトリウム、水酸化カリウム、水ガラス等が挙
げられる。
Sulfates, nitrates, chlorides and the like are suitable, and specific examples include sodium hydroxide, potassium hydroxide, water glass and the like.

アルカリ金属の水溶性無機化合物の添加量は。What is the amount of water-soluble inorganic compounds of alkali metals added?

これがあまり少ないとハイドロガーネットの副生を抑制
することができないので、スラリー中の原料固形分に対
してアルカリ金属の水酸化物換算で少なくとも5重量%
とする必要があり1通常は。
If this amount is too small, the by-product of hydrogarnet cannot be suppressed, so it is at least 5% by weight in terms of alkali metal hydroxide based on the solid content of the raw material in the slurry.
It should be 1 usually.

5〜30重量%程度使用するのがよい。It is preferable to use about 5 to 30% by weight.

水熱合成反応は、常法に従って、オートクレーブ等の耐
圧性密閉容器を使用し、4〜l・60 kg/ff1G
の圧力下、0.5〜8時間攪拌処理することによって行
われる。
The hydrothermal synthesis reaction is carried out according to a conventional method using a pressure-resistant closed container such as an autoclave, and the reaction rate is 4 to 60 kg/ff1G.
The stirring treatment is carried out under a pressure of 0.5 to 8 hours.

反応終了後は解圧し枦別鋒離することによりトバモライ
ト系結晶を主体とする珪酸カルシウム水和物結晶を得る
ことができる。
After the reaction is completed, calcium silicate hydrate crystals mainly composed of tobermorite crystals can be obtained by depressurizing and separating the mixture.

以上詳述したように1本発明によれば、銑鉄製造工程よ
り多量に副生ずる安価な高炉水滓を原料として使用し得
るので珪藻土等の高品位の珪酸原料を使用せざるを得な
かった従来法にくらべ極めて有利である。
As detailed above, according to the present invention, cheap blast furnace water slag, which is produced in large amounts as a by-product in the pig iron manufacturing process, can be used as a raw material, which is different from the conventional method where high-grade silicic acid raw materials such as diatomaceous earth had to be used. It is extremely advantageous compared to the law.

また、従来、高炉水滓はセメント、肥料等に配合する程
度で僅かにしか利用されておらず大部分は工業用地の海
岸埋立用として処理されてきたが。
Furthermore, conventionally, blast furnace water slag has only been used to a limited extent by mixing it with cement, fertilizer, etc., and most of it has been disposed of as coastal reclamation at industrial sites.

環境規制に伴い新たな利用方法の開発が切望されている
現状にあり1本発明は高炉水滓の新たな利用方法を提供
するものであって、かかる点においてもその工業的価値
は極めて大である。
With the current situation where there is a strong need for the development of new usage methods in line with environmental regulations, the present invention provides a new usage method for blast furnace water slag, and in this respect, its industrial value is extremely large. be.

次に1本発明を実施例によって更に詳細に説明する。Next, the present invention will be explained in more detail by way of examples.

実施例及び比較例において「部」とあるのは重量部を意
味する。
In Examples and Comparative Examples, "parts" means parts by weight.

また、用いた原料の組成を第1表に示し、得られた結晶
のX線回折結果を第2〜3表に示す。
Further, the composition of the raw materials used is shown in Table 1, and the results of X-ray diffraction of the obtained crystals are shown in Tables 2 and 3.

なお%X線回折の測定条件は次の通りである。Note that the measurement conditions for %X-ray diffraction are as follows.

特性X線 CuKa スリット l’ −0,3朋−10 フィルター:Niフィルター 加電圧30Kv 加電流”15mA 時定数、1秒 実施例 l 水1200部に5部の水酸化ナトリウムを溶解させた水
溶液に高炉水滓81.6部と珪石18.4部とを添加し
て原料スラリーを調製した。
Characteristic X-ray CuKa slit l' -0,3-10 Filter: Ni filter Applied voltage 30 Kv Applied current 15 mA Time constant, 1 second Example l Blast furnace A raw material slurry was prepared by adding 81.6 parts of water slag and 18.4 parts of silica stone.

このスラリーをオートクレーブ中にて圧力8kg/cr
lG、温度175℃の条件下攪拌しながら8時間水熱合
成反応を行った。
This slurry was placed in an autoclave at a pressure of 8 kg/cr.
A hydrothermal synthesis reaction was carried out for 8 hours with stirring at 1G and 175°C.

反応終了後、解圧、濾過し得られた結晶につきX線回折
を行い、その結果を第2表に示す。
After the reaction was completed, the pressure was decompressed and the crystals obtained were subjected to X-ray diffraction, and the results are shown in Table 2.

実施例2〜6及び比較例1〜5 実施例1の方法に従って第2表及び第3表に示す条件で
水熱合成反応を行った。
Examples 2 to 6 and Comparative Examples 1 to 5 Hydrothermal synthesis reactions were carried out according to the method of Example 1 under the conditions shown in Tables 2 and 3.

得られた結晶のX線回折結果を各表に示す。The X-ray diffraction results of the obtained crystals are shown in each table.

第2表及び第3表の結果から明らかなように。As is clear from the results in Tables 2 and 3.

アルミナ含量が17.0重量%の高炉水滓を原料として
も1本発明に従って、原料スラリー中の原料固形分に対
して5重量%以上の水酸化ナトリウムもしくは、これに
相当する量の水ガラスを添加して反応を行うならば、ト
バモライト系結晶を主体とする珪酸カルシウム水和物結
晶を得ることができる。
Using blast furnace water slag with an alumina content of 17.0% by weight as a raw material, according to the present invention, at least 5% by weight of sodium hydroxide or an equivalent amount of water glass is added to the raw material solid content in the raw material slurry. If the reaction is carried out by adding it, a calcium silicate hydrate crystal mainly composed of tobermorite crystals can be obtained.

なお、参考資料として実施例及び比較例で得られた各結
晶の電子顕微鏡写真(倍率9000 )を示す。
In addition, as reference materials, electron micrographs (magnification: 9000) of each crystal obtained in Examples and Comparative Examples are shown.

参考資料1)とあるのは実施例4の方法で得られたトバ
モライト系結晶の写真であり、参考資料(2)とあるの
は比較例4の方法で得られたハイドロガーネットを主体
とする結晶の写真である。
Reference material 1) is a photograph of a tobermorite-based crystal obtained by the method of Example 4, and reference material (2) is a photograph of a crystal mainly composed of hydrogarnet obtained by the method of Comparative Example 4. This is a photo.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は、X線回折結果を示すグラフであり。 Aは実施例で得られた結晶、Bは比較例1で得られた結
晶についてのグラフである。 グラフ中T。(すトバモライト(C5S6H5)結晶の
ピークを。 HGはハイドロガーネット(C3ASH6)結晶のピー
クを、CCI″lCaCO3結晶のピークを示す。
The attached drawing is a graph showing the results of X-ray diffraction. A is a graph for the crystal obtained in Example, and B is a graph for the crystal obtained in Comparative Example 1. T in the graph. (The peak of stobamorite (C5S6H5) crystal. HG indicates the peak of hydrogarnet (C3ASH6) crystal, and the peak of CCI''lCaCO3 crystal.

Claims (1)

【特許請求の範囲】 1 高炉水滓の水スラリーを加圧加熱処理して珪酸カル
シウム水和物結晶を製造する方法において。 アルミナ含量が10重量%以上の高炉水滓を原料とし、
これを、スラリー中の原料固形分に対し少なくとも5重
量%(アルカリ金属水酸化物換算)のアルカリ金属の水
溶性無機化合物とともに加圧加熱処理することを特徴と
する珪酸カルシウム水和物結晶の製造方法。
[Claims] 1. A method for producing calcium silicate hydrate crystals by pressurizing and heating a water slurry of blast furnace water slag. Using blast furnace slag as raw material with an alumina content of 10% by weight or more,
The production of calcium silicate hydrate crystals is characterized in that this is subjected to pressure and heat treatment together with a water-soluble inorganic compound of an alkali metal of at least 5% by weight (calculated as alkali metal hydroxide) based on the raw material solid content in the slurry. Method.
JP5105576A 1976-05-04 1976-05-04 Method for producing calcium silicate hydrate crystals Expired JPS5842129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5105576A JPS5842129B2 (en) 1976-05-04 1976-05-04 Method for producing calcium silicate hydrate crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5105576A JPS5842129B2 (en) 1976-05-04 1976-05-04 Method for producing calcium silicate hydrate crystals

Publications (2)

Publication Number Publication Date
JPS52133900A JPS52133900A (en) 1977-11-09
JPS5842129B2 true JPS5842129B2 (en) 1983-09-17

Family

ID=12876108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5105576A Expired JPS5842129B2 (en) 1976-05-04 1976-05-04 Method for producing calcium silicate hydrate crystals

Country Status (1)

Country Link
JP (1) JPS5842129B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071289U (en) * 1983-10-24 1985-05-20 株式会社タカラ doll hat
JPH0742011A (en) * 1993-07-27 1995-02-10 Toshio Uenishi Article wearing of head

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553361A (en) * 1978-06-22 1980-01-11 Kubota Ltd Tobermolite synthesizing method
JP2631304B2 (en) * 1988-05-26 1997-07-16 日本インシュレーション株式会社 Method for manufacturing calcium silicate compact
US5624489A (en) * 1995-01-23 1997-04-29 National Research Council Of Canada Conversion-preventing additive for high alumina cement products

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071289U (en) * 1983-10-24 1985-05-20 株式会社タカラ doll hat
JPH0742011A (en) * 1993-07-27 1995-02-10 Toshio Uenishi Article wearing of head

Also Published As

Publication number Publication date
JPS52133900A (en) 1977-11-09

Similar Documents

Publication Publication Date Title
EP3262008B1 (en) Particulate compositions for the formation of geopolymers, their use and methods for forming geopolymers therewith
JPS61111911A (en) Synthetic calcium silicate, preparation and use
CA2810086A1 (en) Process for producing cement binder compositions containing magnesium
JP5683066B2 (en) Cement-based solidified material using dry sludge powder and method for producing the same
US2143670A (en) Synthesis of base exchange materials
JPS5842129B2 (en) Method for producing calcium silicate hydrate crystals
JP2659508B2 (en) Method for producing additive-containing magnesium hydroxide and method for producing additive-containing magnesium oxide using the same
CN113667061B (en) Water-absorbent resin and preparation method and application thereof
US6716408B1 (en) Procedure for preparing silica from calcium silicate
US4500350A (en) Disintegration of chromites
US1373854A (en) Refractory brick
US2777823A (en) Iron catalyst for catalytic carbon monoxide hydrogenation
JPH0627022B2 (en) Method for producing calcium silicate-based compact
US2343151A (en) Method of processing dolomite
GB1578098A (en) Hydraulic activated slag binder
US1747551A (en) Building cement or plaster
JP3468541B2 (en) Method for producing fibrous tricalcium silicate hydrate
JPS6144835B2 (en)
JPS59205409A (en) Desulfurizing reagent used in iron making
US2537014A (en) process of making magnesia
JPH01298051A (en) Production of calcium silicate molded form
US2209899A (en) Manufacture of pigments
SU1631049A1 (en) Binder
JPS58176117A (en) Preparation of calcium silicate
US1839982A (en) Refractory product and method of making same