JPS6335172B2 - - Google Patents

Info

Publication number
JPS6335172B2
JPS6335172B2 JP7651482A JP7651482A JPS6335172B2 JP S6335172 B2 JPS6335172 B2 JP S6335172B2 JP 7651482 A JP7651482 A JP 7651482A JP 7651482 A JP7651482 A JP 7651482A JP S6335172 B2 JPS6335172 B2 JP S6335172B2
Authority
JP
Japan
Prior art keywords
unit
acid
polyester
mol
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7651482A
Other languages
Japanese (ja)
Other versions
JPS58194919A (en
Inventor
Shunei Inoe
Masaru Okamoto
Toshimasa Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7651482A priority Critical patent/JPS58194919A/en
Publication of JPS58194919A publication Critical patent/JPS58194919A/en
Publication of JPS6335172B2 publication Critical patent/JPS6335172B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶融成形可能で、すぐれた機械的性質
と光学異方性を有する成形品を与え得る新規な芳
香族ポリエステルに関するものである。 近年プラスチツクの高性能化に対する要求がま
すます高まり、種々の新規性能を有するポリマが
数多く開発され、市場に供されているが、なかで
もとくに分子鎖の平行な配列を特徴とする光学異
方性の液晶ポリマがすぐれた機械的性質を有する
点で注目されている。 この液晶ポリマとしては全芳香族ポリエステル
が広く知られており、例えばp―ヒドロキシ安息
香酸のホモポリマおよびコポリマが市販されてい
る。しかしながらp―ヒドロキシ安息香酸ホモポ
リマはその融点があまりにも高すぎて溶融成形不
可能であり、p―ヒドロオキシ安息香酸に例えば
テレフタル酸とハイドロキノンを共重合せしめた
コポリマとて「モダン・プラスチツクス」1975
年、7月号、第62頁に記載される如く、その軟化
点が約427〜482℃と極めて高く、溶融加工性が困
難であるばかりか、その機械的性質もまた十分満
足できるものではない。 このような全芳香族ポリエステルの融点または
軟化点を低下させて溶融成形性を改良し、さらに
機械的性質を向上させる手段としては、例えば特
公昭55―482号公報に記載されているようにハイ
ドロキノンの代りにクロルまたはメチルハイドロ
キノンを使用して各種のジカルボン酸と重縮合反
応せしめる方法が挙げられるが、ジカルボン酸と
してテレフタル酸を使用して得られるポリエステ
ルは融点が500℃よりも高いという欠点がある。
一方特開昭53−65421号公報に記載されているよ
うにフエニルハイドロキノンとテレフタル酸から
のポリエステルは融点が350℃以下と比較的低く、
しかも熱処理糸の弾性率が500g/d程度と高弾
性率になることが知られている。しかしながらこ
の弾性率とて全芳香族ポリアミドとして広く知ら
れている“Kevlar―49”の1000g/dに比べる
とかなり低く、一層の高弾性率化が望まれてい
る。 そこで本発明者らは溶融成形可能ですぐれた機
械的性質と光学的異方性を有する成形品を与え得
る芳香族ポリエステルの取得を目的として鋭意検
討した結果、フエニルハイドロキノン、テレフタ
ル酸からなるポリエステルのテレフタル酸の一部
または全部を4,4′―ジフエニルジカルボン酸で
置換することにより、上記目的に好ましく合致し
た新規な芳香族ポリエステルが得られることを見
出し本発明に到達した。 すなわち本発明は下記構造単位(A)〜(C)からな
り、単位(A)と単位(B)からなる構造単位[]と単
位(A)と単位(C)からなる構造単位[]からなり、
単位[]が全体の20〜100モル%、単位[]
が全体の0〜80モル%であり、かつペンタフルオ
ロフエノール中0.1g/dlの濃度で60℃で測定し
た対数粘度が0.2〜10dl/gであることを特徴と
する溶融成形可能な芳香族ポリエステルを提供す
るものである。 [式中Rは
The present invention relates to a novel aromatic polyester that is melt moldable and capable of providing molded articles having excellent mechanical properties and optical anisotropy. In recent years, the demand for higher performance plastics has been increasing, and many polymers with various new properties have been developed and put on the market. Among them, polymers with optical anisotropy, which is characterized by parallel arrangement of molecular chains, are particularly popular. Liquid crystal polymers have attracted attention because of their excellent mechanical properties. Fully aromatic polyesters are widely known as such liquid crystal polymers, and for example, homopolymers and copolymers of p-hydroxybenzoic acid are commercially available. However, p-hydroxybenzoic acid homopolymer has a too high melting point and cannot be melt-molded, so copolymers made by copolymerizing p-hydroxybenzoic acid with, for example, terephthalic acid and hydroquinone were developed as "Modern Plastics" in 1975.
As described in the July issue, page 62, its softening point is extremely high at approximately 427-482°C, making it difficult to melt and process, and its mechanical properties are also not fully satisfactory. . As a means of lowering the melting point or softening point of such wholly aromatic polyesters to improve melt moldability and further improve mechanical properties, hydroquinone is used, for example, as described in Japanese Patent Publication No. 55-482. An alternative method is to use chloro or methylhydroquinone in a polycondensation reaction with various dicarboxylic acids, but the polyester obtained by using terephthalic acid as the dicarboxylic acid has the disadvantage that its melting point is higher than 500°C. .
On the other hand, as described in JP-A-53-65421, polyester made from phenylhydroquinone and terephthalic acid has a relatively low melting point of 350°C or less;
Moreover, it is known that the elastic modulus of heat-treated yarn is as high as about 500 g/d. However, this elastic modulus is considerably lower than 1000 g/d of "Kevlar-49", which is widely known as a wholly aromatic polyamide, and an even higher elastic modulus is desired. Therefore, the present inventors conducted intensive studies with the aim of obtaining an aromatic polyester that can be melt-molded and give molded products with excellent mechanical properties and optical anisotropy. The present inventors have discovered that a novel aromatic polyester that satisfies the above objectives can be obtained by substituting part or all of the terephthalic acid with 4,4'-diphenyldicarboxylic acid, thereby achieving the present invention. That is, the present invention consists of the following structural units (A) to (C), a structural unit [] consisting of unit (A) and unit (B), and a structural unit [] consisting of unit (A) and unit (C). ,
Unit [] is 20 to 100 mol% of the whole, unit []
is 0 to 80 mol% of the total weight, and has a logarithmic viscosity of 0.2 to 10 dl/g measured at 60°C at a concentration of 0.1 g/dl in pentafluorophenol. It provides: [In the formula, R is

【式】【formula】

【式】および[expression] and

【式】から選ばれ た基を示し、単位[]、[]において単位(A)と
単位(B)+(C)は実質的に当モル量である。] 本発明の芳香族ポリエステルにおいて上記構造
単位〔〕はフエニルハイドロキノンと4,4′―
ジフエニルジカルボン酸から生成したポリエステ
ルの構造単位を、上記構造単位〔〕はフエニル
ハイドロキノンと4,4′―ジフエニルジカルボン
酸以外の各種芳香族ジカルボン酸から生成したポ
リエステルの構造単位を意味する。本発明の芳香
族ポリエステルはその融点が400℃以下であり、
通常の溶融成形によりすぐれた機械的性質を有す
る繊維、フイルム、各種成形品などを容易に成形
することが可能である。ここで例えばポリエチレ
ンテレフタレートの融点は256℃、ポリエチレン
―4,4′―ジフエニルジカルボキシレートの融点
は355℃であり、構造単位中のベンゼン核の数が
多くなるにつれ、ポリエステルの融点が上昇する
ことから、4,4′―ジフエニルジカルボン酸とフ
エニルハイドロキノンを必須成分とする本発明の
ポリエステルは極めて高融点になるものと予想さ
れるが、かかる予想に反し本発明の芳香族ポリエ
ステルはその融点が400℃以下と比較的低く、す
ぐれた溶融成形性を有している。 本発明の芳香族ポリエステルにおいて上記構造
単位〔〕の占める割合は全体の20〜100モル%
であり、50〜95モル%、特に60〜90モル%が好ま
しい。上記構造単位〔〕の占める割合が全体の
20モル%未満では得られる芳香族ポリエステルの
融点が低く耐熱性や剛性が不十分となつて本発明
の目的を達成することができない。 上記構造単位〔〕の芳香族ジカルボン酸成分
とはテレフタル酸、4,4′―ジフエニルエーテル
ジカルボン酸および1,2―ビス(フエノキシ)
エタン―4,4′―ジカルボン酸から選ばれた少な
くとも1種であり、これらは2種以上組合せて使
用することもできるが、なかでも4,4′―ジフエ
ニルエーテルジカルボン酸の使用が最も好まし
い。 本発明の芳香族ポリエステルは従来のポリエス
テルの重縮合法に準じて製造でき、製法について
はとくに制限がないが、代表的な製法としては例
えば次の(1)〜(3)法が挙げられる。 (1) フエニルハイドロキノンジアセテート、フエ
ニルハイドロキノンジプロピオネートなどのフ
エニルハイドロキノンジエステルと4,4′―ジ
フエニルジカルボン酸を主体とするジカルボン
酸から脱モノカルボン酸重縮合反応によつて製
造する方法。 (2) フエニルハイドロキノンと4,4′―ジフエニ
ルジカルボン酸を主体とするジカルボン酸のジ
フエニルエステルから脱フエノール重縮合によ
り製造する方法。 (3) 4,4′―ジフエニルジカルボン酸を主体とす
るジカルボン酸に所望量のジフエニルカーボネ
ートを反応させてそれぞれジフエニルエステル
とした後、フエニルハイドロキノンを加え脱フ
エノール重縮合反応により製造する方法。 重縮合反応に使用する触媒としては酢酸第1
錫、テトラブチルチタネート、酢酸鉛、三酸化ア
ンチモンなどの金属化合物が代表的であり、とり
わけ脱フエノール重縮合の際に有効である。 なお本発明の芳香族ポリエステルを重縮合する
際には、上記構造単位〔〕および〔〕を構成
する成分以外にイソフタル酸、3,3′―ジフエニ
ルジカルボン酸、3,4′―ジフエニルジカルボン
酸、2,2′―ジフエニルジカルボン酸などの芳香
族ジカルボン酸、ヘキサヒドロテレフタル酸など
の脂環式ジカルボン酸、ハイドロキノン、クロル
ハイドロキノン、メチルハイドロキノンなどの芳
香族ジオールおよびp―オキシ安息香酸などの他
の芳香族オキシカルボン酸などを本発明の目的を
損なわない程度の少割合の範囲でさらに共重合せ
しめることができる。 なお、本発明の芳香族ポリエステルの対数粘度
はペンタフルオロフエノール中0.1g/dlの濃度
で60℃で測定した値で0.2〜10dl/gであり、0.4
〜5dl/gが好ましい。 かくしてなる本発明の芳香族ポリエステルは融
点が400℃以下と低く、押出成形、射出成形、圧
縮成形、ブロー成形などの通常の溶融成形に供す
ることができ、繊維、フイルム、三次元成形品、
容器、ホースなどに加工することが可能である。 なお成形時には本発明の芳香族ポリエステルに
対し、ガラス繊維、炭素繊維、アスベストなどの
強化剤、充てん剤、核剤、顔料、酸化防止剤、安
定剤、可塑剤、滑剤、離型剤などの添加剤や他の
熱可塑性樹脂を添加して、成形品に所望の特性を
付与することができる。 本発明の新規な芳香族ポリエステルから得られ
る成形品は、その平行な分子配列に起因して良好
な光学異方性を有し、機械的性質が極めてすぐれ
ている。 以下に実施例により本発明をさらに説明する。 実施例 1 重合用試験管にフエニルハイドロキノンジアセ
テート13.5g(5×10-2モル)および4,4′―ジ
フエニルジカルボン酸12.1g(5×10-2モル)を
仕込み、次の条件で脱酢酸重縮合反応を行なつ
た。まず窒素ガスふん囲気下に280℃で1時間反
応させた後、350℃まで2時間で昇温すると同時
に0.6mmHgに減圧し、さらに0.2時間加熱し、重縮
合を完結させたところ、理論量の98%の酢酸5.9
gが留出し茶色のポリマが得られた。 このポリマの理論構造式は次のとおりであり、
そのポリエステルの元素分析結果は第1表のとお
り理論値とよい一致を示した。
Indicates a group selected from [Formula], and in the units [] and [], the units (A) and the units (B)+(C) are substantially equimolar. ] In the aromatic polyester of the present invention, the above structural unit [] is phenylhydroquinone and 4,4′-
The above-mentioned structural unit [] means a structural unit of a polyester produced from phenylhydroquinone and various aromatic dicarboxylic acids other than 4,4'-diphenyldicarboxylic acid. The aromatic polyester of the present invention has a melting point of 400°C or less,
It is possible to easily mold fibers, films, various molded products, etc. with excellent mechanical properties by ordinary melt molding. For example, the melting point of polyethylene terephthalate is 256°C, and the melting point of polyethylene-4,4'-diphenyl dicarboxylate is 355°C. As the number of benzene nuclei in the structural unit increases, the melting point of polyester increases. Therefore, it is expected that the polyester of the present invention containing 4,4'-diphenyldicarboxylic acid and phenylhydroquinone as essential components will have an extremely high melting point, but contrary to this prediction, the aromatic polyester of the present invention has a very high melting point. It has a relatively low melting point of 400°C or less, and has excellent melt moldability. In the aromatic polyester of the present invention, the proportion of the above structural unit [] is 20 to 100 mol% of the total
and preferably 50 to 95 mol%, particularly 60 to 90 mol%. The proportion of the above structural unit [ ] in the total
If it is less than 20 mol%, the aromatic polyester obtained will have a low melting point and insufficient heat resistance and rigidity, making it impossible to achieve the object of the present invention. The aromatic dicarboxylic acid components of the above structural unit [] are terephthalic acid, 4,4'-diphenyl ether dicarboxylic acid, and 1,2-bis(phenoxy).
At least one selected from ethane-4,4'-dicarboxylic acids, and two or more of these can be used in combination, but 4,4'-diphenyl ether dicarboxylic acid is most preferably used. . The aromatic polyester of the present invention can be produced according to a conventional polyester polycondensation method, and there are no particular restrictions on the production method, but typical production methods include, for example, the following methods (1) to (3). (1) Produced by demonocarboxylic acid polycondensation reaction from phenylhydroquinone diesters such as phenylhydroquinone diacetate and phenylhydroquinone dipropionate and dicarboxylic acids mainly composed of 4,4'-diphenyldicarboxylic acid. Method. (2) A method for producing phenylhydroquinone and diphenyl esters of dicarboxylic acids, mainly 4,4'-diphenyldicarboxylic acid, by dephenol polycondensation. (3) Dicarboxylic acids mainly composed of 4,4'-diphenyldicarboxylic acid are reacted with a desired amount of diphenyl carbonate to form diphenyl esters, and then phenylhydroquinone is added and produced by dephenol polycondensation reaction. Method. Acetic acid No. 1 is used as a catalyst for polycondensation reaction.
Metal compounds such as tin, tetrabutyl titanate, lead acetate, and antimony trioxide are representative, and are particularly effective in dephenol polycondensation. In addition, when polycondensing the aromatic polyester of the present invention, isophthalic acid, 3,3'-diphenyl dicarboxylic acid, 3,4'-diphenyl dicarboxylic acid, etc. acids, aromatic dicarboxylic acids such as 2,2'-diphenyldicarboxylic acid, alicyclic dicarboxylic acids such as hexahydroterephthalic acid, aromatic diols such as hydroquinone, chlorohydroquinone, methylhydroquinone, and p-oxybenzoic acid. Other aromatic oxycarboxylic acids can be further copolymerized within a small proportion that does not impair the purpose of the present invention. Note that the logarithmic viscosity of the aromatic polyester of the present invention is 0.2 to 10 dl/g as measured at 60°C at a concentration of 0.1 g/dl in pentafluorophenol, and is 0.4
~5 dl/g is preferred. The aromatic polyester of the present invention thus obtained has a low melting point of 400°C or less, and can be subjected to ordinary melt molding such as extrusion molding, injection molding, compression molding, and blow molding, and can be used to make fibers, films, three-dimensional molded products,
It can be processed into containers, hoses, etc. During molding, reinforcing agents such as glass fiber, carbon fiber, and asbestos, fillers, nucleating agents, pigments, antioxidants, stabilizers, plasticizers, lubricants, mold release agents, etc. may be added to the aromatic polyester of the present invention. Agents and other thermoplastic resins can be added to impart desired properties to the molded article. The molded article obtained from the novel aromatic polyester of the present invention has good optical anisotropy due to its parallel molecular alignment, and has extremely excellent mechanical properties. The present invention will be further explained below with reference to Examples. Example 1 13.5 g (5 x 10 -2 mol) of phenylhydroquinone diacetate and 12.1 g (5 x 10 -2 mol) of 4,4'-diphenyldicarboxylic acid were placed in a polymerization test tube, and the polymerization was carried out under the following conditions. A deacetic acid polycondensation reaction was carried out. First, the reaction was carried out at 280°C for 1 hour under a nitrogen gas atmosphere, then the temperature was raised to 350°C in 2 hours, the pressure was reduced to 0.6 mmHg, and the polycondensation was completed by further heating for 0.2 hours. 98% acetic acid 5.9
g was distilled out and a brown polymer was obtained. The theoretical structural formula of this polymer is as follows,
The elemental analysis results of the polyester showed good agreement with the theoretical values as shown in Table 1.

【表】 但し酸素含量(%)は(100%―C%―H%)
から算出した。 またこのポリエステルを偏光顕微鏡の試料台に
のせ、昇温して融点および光学異方性の確認を行
なつた結果、融点は368℃であり、良好な光学異
方性を示した。 このポリエステルの対数粘度をペンタフルオロ
フエノール中で測定したところ3.4であつた。一
方、赤外吸収スペクトルは1735,1600,1475cm-1
に特性吸収を有し、固体 13C NMR(JEOL
FX100スペクトロメータ)を測定したところフエ
ニルハイドロキノンに起因する136.7ppm,
145.3ppm,148.8ppmのピークと4,4′―ジフエ
ニルジカルボン酸に起因する129.3ppm,
164.6ppmのピークのあることがわかつた。 実施例 2〜7 重合用試験管にフエニルハイドロキノンジアセ
テート5×10-2モル(100モル%)と4,4′―ジ
フエニルジカルボン酸及びテレフタル酸、4,
4′―ジフエニルエーテルジカルボン酸、1,2―
ビス(フエノキシ)エタン4,4―ジカルボン酸
から選ばれたジカルボン酸(全ジカルボン酸とし
て5×10-2モル=100モル%)とを第2表の割合
で仕込み、実施例1と同様の方法で重縮合せし
め、対数粘度1.7〜3.1のポリマを得た。これらの
ポリエステルを偏光顕微鏡の試料台にのせ昇温し
て融点および光学異方性の確認を行なつたとこ
ろ、全て光学異方性を示した。 第2表に得られた各ポリエステルの融点を示
す。また、これらポリエステルはいずれも理論構
造式からの炭素、水素、酸素含量と元素分析結果
とがよい一致を示した。
[Table] However, the oxygen content (%) is (100%-C%-H%)
Calculated from. Furthermore, this polyester was placed on a sample stage of a polarizing microscope and heated to confirm the melting point and optical anisotropy. As a result, the melting point was 368°C, indicating good optical anisotropy. The logarithmic viscosity of this polyester was measured in pentafluorophenol and was found to be 3.4. On the other hand, the infrared absorption spectrum is 1735, 1600, 1475 cm -1
solid-state 13C NMR (JEOL
FX100 spectrometer) measured 136.7ppm, which was caused by phenylhydroquinone.
145.3ppm, 148.8ppm peaks and 129.3ppm caused by 4,4′-diphenyl dicarboxylic acid,
It was found that there was a peak at 164.6ppm. Examples 2 to 7 In a test tube for polymerization, 5 x 10 -2 mol (100 mol%) of phenylhydroquinone diacetate, 4,4'-diphenyldicarboxylic acid and terephthalic acid, 4,
4′-diphenyl ether dicarboxylic acid, 1,2-
Bis(phenoxy)ethane A dicarboxylic acid selected from 4,4-dicarboxylic acid (5 x 10 -2 mol = 100 mol % as total dicarboxylic acids) was added in the proportion shown in Table 2, and the same method as in Example 1 was carried out. Polycondensation was performed to obtain a polymer with a logarithmic viscosity of 1.7 to 3.1. When these polyesters were placed on a sample stage of a polarizing microscope and heated to confirm their melting points and optical anisotropy, all of them showed optical anisotropy. Table 2 shows the melting points of each polyester obtained. Further, for all of these polyesters, the carbon, hydrogen, and oxygen contents from the theoretical structural formula and the elemental analysis results showed good agreement.

【表】 これらポリマのうち実験No.5のポリエステルを
高化式フローテスターに供し次の条件で紡糸して
34デニールの紡出糸を得た。 紡糸温度 ;380℃ 口金径 ;0.2mmφ 紡糸ドラフト ;20 巻取速度 ;50m/分 この紡出糸は未熱処理で弾性率500g/d以上
を有していた。
[Table] Among these polymers, the polyester of Experiment No. 5 was subjected to a Koka type flow tester and spun under the following conditions.
A spun yarn of 34 denier was obtained. Spinning temperature: 380°C Spinneret diameter: 0.2 mmφ Spinning draft: 20 Winding speed: 50 m/min This spun yarn had an elastic modulus of 500 g/d or more without heat treatment.

Claims (1)

【特許請求の範囲】 1 下記構造単位(A)〜(C)からなり、単位(A)と単位
(B)からなる構造単位[]と単位(A)と単位(C)から
なる構造単位[]からなり、単位[]が全体
の20〜100モル%、単位[]が全体の0〜80モ
ル%であり、かつペンタフルオロフエノール中
0.1g/dlの濃度で60℃で測定した対数粘度が0.2
〜10dl/gであることを特徴とする溶融成形可能
な芳香族ポリエステル。 [式中Rは【式】 【式】および 【式】から選ばれ た基を示し、単位[]、[]において単位(A)と
単位(B)+(C)は実質的に当モル量である]。
[Claims] 1 Consisting of the following structural units (A) to (C), unit (A) and unit
Consisting of a structural unit [ ] consisting of (B) and a structural unit [ ] consisting of unit (A) and unit (C), unit [ ] is 20 to 100 mol% of the total, and unit [ ] is 0 to 80 mol % of the total. % and in pentafluorophenol
Logarithmic viscosity measured at 60°C at a concentration of 0.1 g/dl is 0.2
A melt-formable aromatic polyester characterized in that it has a polyester of ~10 dl/g. [In the formula, R represents a group selected from [Formula] [Formula] and [Formula], and in units [] and [], unit (A) and unit (B) + (C) are substantially equimolar amounts. ].
JP7651482A 1982-05-10 1982-05-10 Aromatic polyester Granted JPS58194919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7651482A JPS58194919A (en) 1982-05-10 1982-05-10 Aromatic polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7651482A JPS58194919A (en) 1982-05-10 1982-05-10 Aromatic polyester

Publications (2)

Publication Number Publication Date
JPS58194919A JPS58194919A (en) 1983-11-14
JPS6335172B2 true JPS6335172B2 (en) 1988-07-13

Family

ID=13607375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7651482A Granted JPS58194919A (en) 1982-05-10 1982-05-10 Aromatic polyester

Country Status (1)

Country Link
JP (1) JPS58194919A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372724A (en) * 1986-09-16 1988-04-02 Agency Of Ind Science & Technol Production of high-rigidity polyester

Also Published As

Publication number Publication date
JPS58194919A (en) 1983-11-14

Similar Documents

Publication Publication Date Title
JPS62292832A (en) Heat-resistant aromatic polyester
JPS61106621A (en) Aromatic polyester
KR101766903B1 (en) Low melting point polyester fiber and manufacturing method thereof
JPS6335172B2 (en)
JPH048448B2 (en)
JPH0319861B2 (en)
US4605727A (en) High modulus polyester
JPH0353323B2 (en)
JPH045044B2 (en)
JPH0319859B2 (en)
JPH09143255A (en) Polyester block copolymer
JPH045045B2 (en)
JP2570708B2 (en) Heat-resistant aromatic polyester with good fluidity
JPH0475249B2 (en)
JPH0362726B2 (en)
JPS6330523A (en) Copolyester
JPH0319858B2 (en)
JPS60192724A (en) Elasticity polyester of high modulus
JPH0216929B2 (en)
JPS60192725A (en) Aromatic copolyester
JPH049814B2 (en)
JPS6333773B2 (en)
JP3056601B2 (en) Copolyester and its fiber
JPH045046B2 (en)
JPH0525248B2 (en)