JPH0362726B2 - - Google Patents

Info

Publication number
JPH0362726B2
JPH0362726B2 JP17863085A JP17863085A JPH0362726B2 JP H0362726 B2 JPH0362726 B2 JP H0362726B2 JP 17863085 A JP17863085 A JP 17863085A JP 17863085 A JP17863085 A JP 17863085A JP H0362726 B2 JPH0362726 B2 JP H0362726B2
Authority
JP
Japan
Prior art keywords
polyester
mol
acid
melting point
dicarboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17863085A
Other languages
Japanese (ja)
Other versions
JPS6239620A (en
Inventor
Masaru Okamoto
Shunei Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP17863085A priority Critical patent/JPS6239620A/en
Publication of JPS6239620A publication Critical patent/JPS6239620A/en
Publication of JPH0362726B2 publication Critical patent/JPH0362726B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は400℃以䞋で溶融成圢可胜で、優れた
機械的性質ず光孊異方性を有する成圢品を䞎え埗
る新芏な高匟性率ポリ゚ステルに関するものであ
る。 埓来の技術 近幎プラスチツクの高性胜化に察する芁求がた
すたす高たり、皮々の新芏性胜を有するポリマが
数倚く開発され、垂堎に䟛されおいるが、なかで
も特に分子鎖の平行な配列を特城ずする光孊異方
性の液晶ポリマが優れた機械的性質を有する点で
泚目されおいる。特公昭55−482号公報。 発明が解決しようずする問題点 この液晶ポリマずしおは党芳銙族ポリ゚ステル
が代衚的であり、䟋えば−ヒドロキシ安息銙酞
のホモポリマおよびコポリマが知られおいる。し
かしながらこの−ヒドロキシ安息銙酞ホモポリ
マおよびそのコポリマはその融点があたりにも高
すぎお溶融成圢䞍可胜であ぀たり溶融成圢が困難
であり、−ヒドロキシ安息銙酞に䟋えばテレフ
タル酞ずハむドロキノンを共重合せしめたコポリ
゚ステルずしおその軟化点が玄427〜482℃ず高
く、溶融加工が困難であるばかりか、その機械的
性質ずお十分満足できるものではない。 䞀方このような党芳銙族ポリ゚ステルの融点た
たは軟化点を䜎䞋させお、溶融成圢を改良し、さ
らに機械的性質を向䞊させる手段ずしおは、䟋え
ば特公昭55−482号公報に蚘茉されおいるように
ハむドロキノンの代りにクロルたたはメチルハむ
ドロキノンを䜿甚しおテレフタル酞などのゞカル
ボン酞ず重瞮合反応せしめる方法が挙げられる
が、ゞカルボン酞ずしおテレフタル酞を䜿甚しお
埗られるポリ゚ステルは融点が500℃よりも高い
ずいう欠点がある。そこでテレフタル酞に少量の
4′−ゞプニルゞカルボン酞たたは−
ナフタレンゞカルボン酞たたは−ビスフ
゚ノキシ゚タン−4′−ゞカルボン酞を共重
合するこずが提案されおいるが、この方法ではい
ずれも埗られる繊維の匟性率が䜎く䞍充分であ぀
た。䞀方特開昭53−65421号公報に蚘茉されおい
るようにプニルハむドロキノンずテレフタル酞
からのポリ゚ステルは融点が350℃以䞋ず比范的
䜎く、しかも熱凊理糞の匟性率が500皋床
ず高匟性率になるこずが知られおいる。 発明が解決しようずする問題点 しかるにこれらの方法で埗られる芳銙族ポリ゚
ステルは融点が400℃以䞋ず比范的䜎い反面、そ
の玡出糞の匟性率はいただに䞍充分であり、さら
に䞀局の高匟性率化が望たれおいる。 そこで本発明者等は溶融成圢可胜で優れた機械
的性質ず光孊的異方性を有する成圢品を䞎え埗る
芳銙族ポリ゚ステルの取埗を目的ずしお鋭意怜蚎
した結果、メチルハむドロキノン、クロルハむド
ロキノン、4′−ゞプニルゞカルボン酞、
−ナフタレンゞカルボン酞、−ビス
−プノキシ゚タン−4′−ゞカルボン
酞、−ビス−クロルプノキシ゚タ
ン−4′−ゞカルボン酞から遞ばれた特定組成
のポリ゚ステルが䞊蚘目的に奜たしく合臎した新
芏な高匟性率ポリ゚ステルが埗られるこずを芋出
し本発明に到達した。 問題点を解決するための手段 すなわち、本発明は䞋蚘構造単䜍〔
〕、たたは〔〕ずからな
り、
単䜍が党䜓の30〜90モル、単䜍た
たは〔〕が党䜓の70〜10モルを占
め、液晶開始枩床50℃、ずり速床3000
秒で枬定した溶融粘床が20〜30000であるこず
を特城ずする溶融成圢可胜な高匟性率ポリ゚ステ
ルを提䟛するものである。 匏䞭はメチル基およびたたは塩玠原子、
は氎玠原子およびたたは塩玠原子から遞ばれた
皮以䞊の基を瀺す。 本発明の芳銙族ポリ゚ステルにおいお䞊蚘構造
単䜍はメチルハむドロキノンおよびたた
はクロルハむドロキノンず4′−ゞプニルゞ
カルボン酞から粟補したポリ゚ステルの構造単䜍
を䞊蚘構造単䜍はメチルハむドロキノンお
よびたたはクロルハむドロキノンず−ナ
フタレンゞカルボン酞からなる構造単䜍を、䞊蚘
構造単䜍はメチルハむドロキノンおよび
たたはクロルハむドロキノンず−ビス
−プノキシ゚タン−4′−ゞカルボン酞
−ビス−クロルプノキシ゚タン−
4′−ゞカルボン酞から遞ばれたゞカルボン酞
ずからなるポリ゚ステルの構造単䜍を意味する。 かかる構造からなる本発明の高匟性率ポリ゚ス
テルは、融点400℃以䞋であり、通垞の溶融成圢
により優れた機械的性質ず光孊異方性を有する繊
維、フむルム、各皮成圢品などを成圢するこずが
可胜である。ここで䟋えばポリ゚チレンテレフタ
レヌトの融点は256℃であり、ポリ゚チレン−
4′−ゞプニルカルボキシレヌトの融点は355℃
であるこずから、テレフタル酞に比し高融点のポ
リ゚ステルを䞎える4′−ゞプニルカルボン
酞ずメチルハむドロキノンを必須成分ずする本発
明のポリ゚ステルは極めお高融点になるものず予
想されるが、本発明の共重合ポリ゚ステルは融点
が400℃以䞋ず比范的䜎く溶融流動性が良奜で、
しかも䞊蚘公報蚘茉のポリ゚ステルの実斜䟋に比
し匟性率が著しく高いずいう利点を有しおおり、
かかる新芏効果は埓来の知芋からは党く予想し埗
ぬものに他ならない。 本発明の共重合ポリ゚ステルにおいお䞊蚘構造
単䜍の占める割合は党䜓の30〜90モルで
あり、40〜85モルがより奜たしく、特に45〜85
モルが奜たしい。 すなわち䞊蚘構造単䜍たたは〔
〕の占める割合は党䜓の70〜10モルであ
り、60〜15モルがより奜たしく、特に55〜15モ
ルが奜たしい。 のモル比は100〜95で
あり95〜1090が奜たしい。 䞊蚘構造単䜍の占める割合が党䜓の〜
30モル、たたは〔〕の占める
割合が党䜓の100〜70モルでは埗られる芳銙族
ポリ゚ステルの融点が高すぎたり、耐熱性や機械
的性質が䞍充分であ぀たりしお本発明の目的を達
成するこずができない。 たた、䞊蚘構造単䜍の占める割合が党䜓
の90〜100モル、たたは〔〕の
占める割合が党䜓の10〜モルでは埗られる芳
銙族ポリ゚ステルの流動性が䞍良ずなり本発明の
目的を達成するこずが䞍可胜である。 本発明の芳銙族ポリ゚ステルは埓来のポリ゚ス
テルの重瞮合法に準じお補造でき、補法に぀いお
はずくに制限がないが、代衚的な補法ずしおは䟋
えば次の(1)〜(3)法が挙げられる。 (1) クロルハむドロキノンゞアセテヌト、クロル
ハむドロキノンゞプロピオネヌトなどの芳銙族
ゞヒドロキシ化合物のゞ゚ステルず4′−ゞ
プニルカルボン酞を䞻䜓ずする芳銙族ゞカル
ボン酞から脱モノカルボン酞重瞮合反応によ぀
お補造する方法。 (2) クロルハむドロキノンなどの芳銙族ゞヒドロ
キシ化合物ず4′−ゞプニルカルボン酞を
䞻䜓ずする芳銙族ゞカルボン酞のゞプニル゚
ステルから脱プノヌル重瞮合により補造する
方法。 (3) 4′−ゞプニルカルボン酞を䞻䜓ずする
芳銙族ゞカルボン酞に所望量のゞプニルカヌ
ボネヌトを反応させおそれぞれゞプニル゚ス
テルずした埌、クロルハむドロキノンなどの芳
銙族ゞヒドロキシ化合物を加え脱プノヌル重
瞮合反応により補造する方法。 重瞮合反応に䜿甚する觊媒ずしおは酢酞第䞀
錫、テトラブチルチタネヌト、酢酞鉛、酢酞ナト
リりム、酢酞カリりム、䞉酞䟡アンチモンなどの
金属化合物が代衚的であり、ずりわけ脱プノヌ
ル重瞮合の際に有効である。 本発明の芳銙族ポリ゚ステルは、ペンタフルオ
ロプノヌル䞭で察数粘床を枬定するこずが可胜
であるものもあり、その際には0.1重量容量
の濃床で60℃で枬定した倀で0.35以䞊が奜たし
く、特に0.4〜15.0が奜たしい。 たた、本発明の芳銙族ポリ゚ステルの溶融粘床
は20〜30000ポむズが奜たしく、特に50〜10000ポ
むズがより奜たしい。 なお、この溶融粘床は液晶開始枩床50℃
でずり速床3000秒の条件䞋で高化匏フロ
ヌテスタヌによ぀お枬定した倀である。 なお、液晶開始枩床ずはポリマの小片を枚の
カバヌグラスにはさんで偏光顕埮鏡の詊料台に乗
せお昇枩し、ずり応力䞋で乳癜色を発する枩床で
ある。 なお本発明の高匟性率ポリ゚ステルを重瞮合す
る際には、䞊蚘構造単䜍、および
を構成する成分以倖にテレフタル酞、む゜
フタル酞、3′−ゞプニルゞカルボン酞、
4′−ゞプニルゞカルボン酞、2′−ゞフ
゚ニルゞカルボン酞などの芳銙族ゞカルボン酞、
ヘキサヒドロテレフタル酞などの脂環匏ゞカルボ
ン酞、ハむドロキノンなどの他の芳銙族ゞオヌル
および−オキシ安息銙酞などの他の芳銙族オキ
シカルボン酞などを本発明の目的を損なわない皋
床の少割合の範囲でさらに共重合せしめるこずが
できる。 かくしおなる本発明の芳銙族ポリ゚ステルは融
点が400℃以䞋ず䜎く、抌出成圢、射出成圢、圧
瞮成圢、ブロヌ成圢などの通垞の溶融成圢に䟛す
るこずができ、繊維、フむルム、䞉次元成圢品、
容噚、ホヌスなどに加工するこずが可胜である。 なお成圢時には本発明の芳銙族ポリ゚ステルに
察し、ガラス繊維、炭玠繊維、アスベストなどの
匷化剀、充おん剀、栞剀、顔料、酞化防止剀、安
定剀、可塑剀、滑剀、離型剀および難燃剀などの
添加剀や他の熱可塑性暹脂を添加しお、成圢品に
所望の特性を付䞎するこずができる。 このようにしお埗られた成圢品は、熱凊理によ
぀お匷床を増加させるこずができ、匟性率をも倚
くの堎合増加させるこずができる。 この熱凊理は、成圢品を䞍掻性雰囲気䟋えば
窒玠、アルゎンヘリりムたたは氎蒞気䞭たたは
酞玠含有雰囲気䟋えば空気䞭でポリマの融点
以䞋の枩床で熱凊理するこずによ぀お行うこずが
できる。この熱凊理は緊匵䞋であ぀おもなくおも
よく数分〜数日の間で行うこずができる。 本発明の新芏なポリ゚ステル暹脂から埗られる
成圢品は、その平行な分子配列に起因しお良奜な
光孊異方性を有し、機械的性質が極めお優れおい
る。 実斜䟋 以䞋に実斜䟋により本発明をさらに説明する。 実斜䟋、比范䟋、 重合甚詊隓管にクロルハむドロキノンゞアセテ
ヌト11.48×10-2モル、4′−ゞプニ
ルゞカルボン酞8.473.5×10-2モル、
−ナフタレンゞカルボン酞1.620.75×10-2モ
ル、−ビスプノキシ゚タン−
4′−ゞカルボン酞2.270.75×10-2モルを仕
蟌み、次の条件で脱酢酞重合を行぀た。たず窒玠
ガス雰囲気䞋に250〜330℃で時間反応させた
埌、真空床0.7mmHgたで枛圧し、さらに330℃で
1.5時間加熱し、重瞮合反応を行぀たずころ高床
にフむブリル化した灰黒色のポリマが埗られた。 このポリマの理論構造匏は次のずおりであり、
そのポリ゚ステルの元玠分析結果は第衚のずお
り理論倀ずよい䞀臎を瀺した。たた、このポリマ
の熱時性を瀺差走査熱量蚈パヌキン゚ルマヌ
型で枬定したずころガラス転移枩床103℃、融
点299℃であ぀た。 モル比701515
<Industrial Application Field> The present invention relates to a novel high-modulus polyester that can be melt-molded at 400° C. or lower and can provide molded articles having excellent mechanical properties and optical anisotropy. <Conventional technology> In recent years, the demand for higher performance plastics has been increasing, and many polymers with various new performances have been developed and put on the market. Optically anisotropic liquid crystal polymers have attracted attention because of their excellent mechanical properties. (Special Publication No. 55-482). <Problems to be Solved by the Invention> Fully aromatic polyesters are representative of this liquid crystal polymer, and for example, homopolymers and copolymers of p-hydroxybenzoic acid are known. However, these p-hydroxybenzoic acid homopolymers and their copolymers have too high a melting point and cannot be melt-molded or are difficult to melt-mold. As a copolyester, its softening point is as high as about 427 to 482°C, making it difficult to melt-process, and its mechanical properties are not fully satisfactory. On the other hand, as a means of lowering the melting point or softening point of such wholly aromatic polyester to improve melt molding and further improve mechanical properties, for example, as described in Japanese Patent Publication No. 1982-482, One method is to use chloro or methylhydroquinone instead of hydroquinone and cause a polycondensation reaction with a dicarboxylic acid such as terephthalic acid, but it is said that the polyester obtained by using terephthalic acid as the dicarboxylic acid has a melting point higher than 500°C. There are drawbacks. Therefore, a small amount of 4,4'-diphenyldicarboxylic acid or 2,6-dicarboxylic acid is added to terephthalic acid.
It has been proposed to copolymerize naphthalene dicarboxylic acid or 1,2-bis(phenoxy)ethane-4,4'-dicarboxylic acid, but in both cases the resulting fibers have a low elastic modulus and are insufficient. Ta. On the other hand, as described in JP-A No. 53-65421, polyester made from phenylhydroquinone and terephthalic acid has a relatively low melting point of 350°C or less, and has a high elastic modulus of about 500 g/d of heat-treated yarn. It is known that the rate of <Problems to be Solved by the Invention> However, although the aromatic polyester obtained by these methods has a relatively low melting point of 400°C or less, the elastic modulus of the spun yarn is still insufficient, and even higher Modulus of elasticity is desired. Therefore, the present inventors conducted intensive studies with the aim of obtaining aromatic polyesters that can be melt-molded and provide molded products with excellent mechanical properties and optical anisotropy. ′-diphenyldicarboxylic acid,
selected from 2,6-naphthalene dicarboxylic acid, 1,2-bis(2-phenoxy)ethane-4,4'-dicarboxylic acid, and 1,2-bis(2-chlorophenoxy)ethane-4,4'-dicarboxylic acid. The inventors have discovered that a polyester having a specific composition can provide a novel high-modulus polyester that satisfies the above-mentioned objectives, and has thus arrived at the present invention. <Means for solving the problems> That is, the present invention provides the following structural unit [()+
()] or [()+()+()],
The unit () accounts for 30 to 90 mol% of the total, the unit () or [() + ()] accounts for 70 to 10 mol% of the total, (liquid crystal starting temperature + 50 ° C), shear rate 3000 (1/
The present invention provides a melt-moldable high-modulus polyester characterized by a melt viscosity measured in seconds) of 20 to 30,000. (In the formula, X is a methyl group and/or a chlorine atom, Y
represents one or more groups selected from hydrogen atoms and/or chlorine atoms. ) In the aromatic polyester of the present invention, the structural unit () is a structural unit of a polyester purified from methylhydroquinone and/or chlorohydroquinone and 4,4'-diphenyldicarboxylic acid; The above structural unit () is a structural unit consisting of chlorohydroquinone and 2,6-naphthalene dicarboxylic acid, and the above structural unit () is methylhydroquinone and/or
or chlorhydroquinone and 1,2-bis(2
-Phenoxy)ethane-4,4'-dicarboxylic acid 1,2-bis(2-chlorophenoxy)ethane-
A polyester structural unit consisting of a dicarboxylic acid selected from 4,4'-dicarboxylic acids. The high elastic modulus polyester of the present invention having such a structure has a melting point of 400°C or less, and can be molded into fibers, films, various molded products, etc. with excellent mechanical properties and optical anisotropy by ordinary melt molding. It is possible. For example, the melting point of polyethylene terephthalate is 256°C, and polyethylene-4,
The melting point of 4'-diphenylcarboxylate is 355℃
Therefore, it is expected that the polyester of the present invention, which has 4,4'-diphenylcarboxylic acid and methylhydroquinone as essential components and provides a polyester with a higher melting point than terephthalic acid, will have an extremely high melting point. The copolyester of the present invention has a relatively low melting point of 400°C or less, and has good melt fluidity.
Moreover, it has the advantage of having a significantly higher elastic modulus than the polyester examples described in the above publication,
Such novel effects are completely unexpected based on conventional knowledge. In the copolymerized polyester of the present invention, the proportion of the above structural units () is 30 to 90 mol% of the total, more preferably 40 to 85 mol%, particularly 45 to 85 mol%.
Mol% is preferred. That is, the above structural unit () or [() +
()] accounts for 70 to 10 mol% of the total, more preferably 60 to 15 mol%, particularly preferably 55 to 15 mol%. The molar ratio of ()/() is 100/0 to 5/95, preferably 95/5 to 10/90. The proportion of the above structural units () in the total is 0~
If the ratio of 30 mol%, () or [() + ()] is 100 to 70 mol% of the total, the resulting aromatic polyester may have too high a melting point or have insufficient heat resistance or mechanical properties. Therefore, the object of the present invention cannot be achieved. In addition, when the proportion of the above structural units () is 90 to 100 mol% of the total, and the proportion of () or [() + ()] is 10 to 0 mol% of the total, the resulting aromatic polyester has poor fluidity. As a result, it is impossible to achieve the object of the present invention. The aromatic polyester of the present invention can be produced according to a conventional polyester polycondensation method, and there are no particular restrictions on the production method, but typical production methods include, for example, the following methods (1) to (3). (1) By demonocarboxylic acid polycondensation reaction of diesters of aromatic dihydroxy compounds such as chlorohydroquinone diacetate and chlorhydroquinone dipropionate and aromatic dicarboxylic acids mainly composed of 4,4'-diphenylcarboxylic acid. How to manufacture. (2) A method for producing by dephenol polycondensation from an aromatic dihydroxy compound such as chlorohydroquinone and a diphenyl ester of an aromatic dicarboxylic acid mainly composed of 4,4'-diphenylcarboxylic acid. (3) Aromatic dicarboxylic acids, mainly 4,4'-diphenylcarboxylic acid, are reacted with a desired amount of diphenyl carbonate to form diphenyl esters, and then an aromatic dihydroxy compound such as chlorohydroquinone is added to decompose them. A method for producing by phenol polycondensation reaction. Typical catalysts used in polycondensation reactions are metal compounds such as stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide, and are particularly effective in dephenol polycondensation. It is. For some of the aromatic polyesters of the present invention, it is possible to measure the logarithmic viscosity in pentafluorophenol, where the viscosity is 0.1 (weight/volume).
% concentration measured at 60° C. is preferably 0.35 or more, particularly preferably 0.4 to 15.0. Further, the melt viscosity of the aromatic polyester of the present invention is preferably 20 to 30,000 poise, particularly preferably 50 to 10,000 poise. In addition, this melt viscosity is (liquid crystal start temperature + 50℃)
This is a value measured using a Koka type flow tester at a shear rate of 3000 (1/sec). Note that the liquid crystal start temperature is the temperature at which a small piece of polymer is placed between two cover glasses and heated on a sample stage of a polarizing microscope, and a milky white color is produced under shear stress. When polycondensing the high modulus polyester of the present invention, in addition to the components constituting the structural units (), (), and (), terephthalic acid, isophthalic acid, 3,3'-diphenyldicarboxylic acid,
Aromatic dicarboxylic acids such as 3,4'-diphenyldicarboxylic acid and 2,2'-diphenyldicarboxylic acid,
Alicyclic dicarboxylic acids such as hexahydroterephthalic acid, other aromatic diols such as hydroquinone, and other aromatic oxycarboxylic acids such as p-oxybenzoic acid, etc., in small proportions that do not impair the purpose of the present invention. can be further copolymerized. The aromatic polyester of the present invention thus obtained has a low melting point of 400°C or less, and can be subjected to ordinary melt molding such as extrusion molding, injection molding, compression molding, and blow molding, and can be used to make fibers, films, three-dimensional molded products,
It can be processed into containers, hoses, etc. In addition, during molding, reinforcing agents such as glass fiber, carbon fiber, and asbestos, fillers, nucleating agents, pigments, antioxidants, stabilizers, plasticizers, lubricants, mold release agents, and flame retardants are added to the aromatic polyester of the present invention. Additives such as and other thermoplastic resins can be added to impart desired properties to the molded article. The strength of the thus obtained molded article can be increased by heat treatment, and in many cases the elastic modulus can also be increased. This heat treatment can be carried out by heat treating the molded article in an inert atmosphere (eg nitrogen, argon helium or water vapor) or in an oxygen-containing atmosphere (eg air) at a temperature below the melting point of the polymer. This heat treatment may or may not be under tension and can be carried out for a period of several minutes to several days. The molded article obtained from the novel polyester resin of the present invention has good optical anisotropy due to its parallel molecular arrangement and has extremely excellent mechanical properties. <Example> The present invention will be further described below with reference to Examples. Example 1, Comparative Examples 1 and 2 In a polymerization test tube, 11.48 g (5 x 10 -2 mol) of chlorhydroquinone diacetate, 8.47 g (3.5 x 10 -2 mol) of 4,4'-diphenyldicarboxylic acid, 2 ,6
- 1.62 g (0.75 x 10 -2 mol) of naphthalene dicarboxylic acid, 1,2-bis(phenoxy)ethane-4,
2.27 g (0.75 x 10 -2 mol) of 4'-dicarboxylic acid was charged, and acetic acid depolymerization was carried out under the following conditions. First, the reaction was carried out at 250 to 330℃ for 3 hours in a nitrogen gas atmosphere, then the pressure was reduced to 0.7mmHg, and the temperature was further increased to 330℃.
After heating for 1.5 hours to perform a polycondensation reaction, a highly fibrillated gray-black polymer was obtained. The theoretical structural formula of this polymer is as follows,
The elemental analysis results of the polyester showed good agreement with the theoretical values as shown in Table 1. Further, the thermal stability of this polymer was measured using a differential scanning calorimeter (Perkin Elmer type) and found that the glass transition temperature was 103°C and the melting point was 299°C. (l/m/n molar ratio = 70/15/15)

【衚】 䜆し、酞玠含量は100−−
−Clから算出した。 このポリ゚ステルを偏光顕埮鏡の詊料台にのせ
昇枩しお融点および光孊異方性の確認を行぀た結
果、液晶開始枩床は246℃であり、良奜な光孊異
方性を瀺した。 このポリ゚ステルを高化匏フロヌテスタヌに䟛
し玡糞枩床330℃、口金孔埄0.3mmφで玡糞を行い
0.06mmφの玡出糞を埗た。なお296℃で枬定した
溶融粘床は、ずり速床3000秒で1700ポむ
ズであ぀た。 この玡出糞を東掋ボヌルドりむン株瀟レオ
バむブロンDDV−−EAを甚いお呚波数110Hz、
昇枩枩床℃分、チダツク間距離40mmで匟性率
を枬定したずころ101GPaず極めお高匟性率であ
぀た。 実斜䟋  重合甚詊隓管にメチルハむドロキノンゞアセテ
ヌト10.45×10-2モル、4′−ゞプニ
ルゞカルボン酞10.294.25×10-2モル、
−ナフタレンゞカルボン酞0.810.375×10-2
モル、−ビスプノキシ゚タン−
4′−ゞカルボン酞1.130.375×10-2モルを仕
蟌み、次の条件で脱酢酞重合を行぀た。たず窒玠
ガス雰囲気䞋に250〜340℃で時間反応させた
埌、真空床0.6mmHgたで枛圧し、さらに340℃で
1.0時間加熱し、重瞮合反応を行぀たずころ高床
にフむブリル化した茶色のポリマが埗られた。 このポリマの理論構造匏は次のずおりであり、
そのポリ゚ステルの元玠分析倀は第衚のずおり
理論倀ずよい䞀臎を瀺した。たた、このポリマの
熱時性を瀺差走査熱量蚈パヌキン゚ルマヌ
型で枬定したずころ融点269℃であ぀た。 モル比8.50.750.75
[Table] However, the oxygen content (%) is (100%-C%-H%
−Cl%). The melting point and optical anisotropy were confirmed by placing this polyester on the sample stage of a polarizing microscope and confirming the melting point and optical anisotropy.As a result, the liquid crystal initiation temperature was 246°C, indicating good optical anisotropy. This polyester was subjected to a Koka type flow tester and spun at a spinning temperature of 330℃ and a spinneret hole diameter of 0.3mmφ.
A spun yarn with a diameter of 0.06 mm was obtained. The melt viscosity measured at 296°C was 1700 poise at a shear rate of 3000 (1/sec). This spun yarn was processed at a frequency of 110Hz using Toyo Baldwin Co., Ltd.'s Leo Vibron DDV--EA.
When the elastic modulus was measured at a heating temperature of 2°C/min and a chuck distance of 40 mm, it was 101 GPa, which was an extremely high elastic modulus. Example 2 In a polymerization test tube, 10.45 g (5 x 10 -2 mol) of methylhydroquinone diacetate, 10.29 g (4.25 x 10 -2 mol) of 4,4'-diphenyldicarboxylic acid, 2,
6-naphthalene dicarboxylic acid 0.81g (0.375×10 -2
mole), 1,2-bis(phenoxy)ethane-4,
1.13 g (0.375 x 10 -2 mol) of 4'-dicarboxylic acid was charged, and acetic acid depolymerization was carried out under the following conditions. First, the reaction was carried out at 250 to 340℃ for 3 hours in a nitrogen gas atmosphere, then the pressure was reduced to 0.6mmHg, and the temperature was further increased to 340℃.
After heating for 1.0 hour to perform a polycondensation reaction, a highly fibrillated brown polymer was obtained. The theoretical structural formula of this polymer is as follows,
The elemental analysis values of the polyester showed good agreement with the theoretical values as shown in Table 2. Further, the thermal stability of this polymer was measured using a differential scanning calorimeter (Perkin-Elmer type), and the melting point was 269°C. (l/m/n molar ratio = 8.5/0.75/0.75)

【衚】 䜆し、酞玠含量は100−−
−Clから算出した。 このポリ゚ステルを偏光顕埮鏡の詊料台にのせ
昇枩しお光孊異方性の確認を行぀た結果、液晶開
始枩床は262℃であり、良奜な光孊異方性を瀺し
た。 このポリ゚ステルを高化匏フロヌテスタヌに䟛
し玡糞枩床を350℃、口金孔埄0.3mmφで玡糞を行
い0.08mmφの玡出糞を埗た。なお312℃で枬定し
た溶融粘床は、ずり速床3000秒で1700ポ
むズであ぀た。 この玡出糞を東掋ボヌルドりむン株瀟レオ
バむブロンDDV−−EAを甚いお呚波数110Hz、
昇枩枩床℃分、チダツク間距離40mmで匟性率
を枬定したずころ30℃で116GPaず極めお高匟性
率であ぀た。 比范䟋  重合甚詊隓管にメチルハむドロキノンゞアセテ
ヌト10.45×10-2モル、−ナフタレ
ンゞカルボン酞7.563.5×10-2モル、
−ビスプノキシ゚タン−4′−ゞカルボ
ン酞4.531.5×10-2モルを仕蟌み実斜䟋ず
同様に重瞮合を行い融点316℃の光孊異方性ポリ
゚ステルを埗た。このポリ゚ステルを甚いお350
℃で実斜䟋ず同様に玡糞を行぀たが均䞀な玡出
糞が埗られなか぀た。 比范䟋  重合甚詊隓管にメチルハむドロキノンゞアセテ
ヌト10.45×10-2モル、−ナフタレ
ンゞカルボン酞7.563.5×10-2モル、テレフ
タル酞2.491.5×10-2モルを仕蟌み実斜䟋
の条件にしたが぀お反応枩床を250〜260℃に䞊昇
させ重瞮合を行い融点343℃の光孊異方性ポリ゚
ステルを埗た。このポリ゚ステルを甚いお、玡糞
枩床390℃で玡糞を行぀たが均䞀な玡出糞が埗ら
れなか぀た。 実斜䟋〜、比范䟋〜 重合甚詊隓管にクロルハむドロキノンゞアセテ
ヌト、メチルハむドロキノンゞアセテヌト
からなるゞアセテヌト×10-2モルず、
4′−ゞプニルゞカルボン酞、−ナ
フタレンゞカルボン酞、−ビスフ
゚ノキシ゚タン−4′−ゞカルボン酞、
−ビス−クロルプノキシ゚タン−
4′−ゞカルボン酞からなるゞカルボン
酞を仕蟌み、実斜䟋、ず同様に重合せしめ
た。実斜䟋〜の玡糞を行い実斜䟋、ず同
様にバむブロンで匟性率を枬定したずころ匟性率
は第衚のように流動性が良奜であり、いずれも
50GPa以䞊ず高匟性率にな぀た。これに察しお比
范䟋の、、は均䞀な玡出糞が埗られず比范
䟋、は融点が400℃以䞊であり、玡糞可胜で
あ぀た。
[Table] However, the oxygen content (%) is (100%-C%-H%
−Cl%). The optical anisotropy was confirmed by placing this polyester on the sample stage of a polarizing microscope and raising the temperature. As a result, the liquid crystal initiation temperature was 262°C, indicating good optical anisotropy. This polyester was subjected to a Koka type flow tester and spun at a spinning temperature of 350° C. and a spindle hole diameter of 0.3 mmφ to obtain a spun yarn of 0.08 mmφ. The melt viscosity measured at 312°C was 1700 poise at a shear rate of 3000 (1/sec). This spun yarn was processed at a frequency of 110Hz using Toyo Baldwin Co., Ltd.'s Leo Vibron DDV--EA.
When the elastic modulus was measured at a heating temperature of 2°C/min and a chuck distance of 40 mm, the elastic modulus was extremely high at 30°C, 116 GPa. Comparative Example 1 In a polymerization test tube, 10.45 g (5 x 10 -2 mol) of methylhydroquinone diacetate, 7.56 g (3.5 x 10 -2 mol) of 2,6-naphthalene dicarboxylic acid, 1,2
-Bis(phenoxy)ethane-4,4'-dicarboxylic acid (4.53 g, 1.5 x 10 -2 mol) was charged and polycondensation was carried out in the same manner as in Example 2 to obtain an optically anisotropic polyester having a melting point of 316°C. 350 using this polyester
Although spinning was carried out in the same manner as in Example 2 at .degree. C., a uniform spun yarn could not be obtained. Comparative Example 2 In a polymerization test tube, 10.45 g (5 x 10 -2 mol) of methylhydroquinone diacetate, 7.56 g (3.5 x 10 -2 mol) of 2,6-naphthalene dicarboxylic acid, and 2.49 g (1.5 x 10 -2 mol) of terephthalic acid were added . Example 2
Polycondensation was carried out by raising the reaction temperature to 250 to 260°C under the following conditions to obtain an optically anisotropic polyester with a melting point of 343°C. Using this polyester, spinning was carried out at a spinning temperature of 390°C, but a uniform spun yarn could not be obtained. Examples 3 to 8, Comparative Examples 3 to 7 In a test tube for polymerization, 5 x 10 -2 moles of diacetate consisting of chlorohydroquinone diacetate () and methylhydroquinone diacetate (), and 4,
4'-diphenyldicarboxylic acid (), 2,6-naphthalene dicarboxylic acid (), 1,2-bis(phenoxy)ethane-4,4'-dicarboxylic acid (),
1,2-bis(2-chlorophenoxy)ethane-
A dicarboxylic acid consisting of 4,4'-dicarboxylic acid (2) was charged and polymerized in the same manner as in Examples 1 and 2. Examples 3 to 8 were spun, and the elastic modulus was measured using a vibron in the same manner as in Examples 1 and 2. As shown in Table 3, the elastic modulus showed good fluidity.
It has a high elastic modulus of over 50 GPa. On the other hand, in Comparative Examples 3, 4, and 7, uniform spun yarns were not obtained, and in Comparative Examples 5 and 6, the melting point was 400° C. or higher, and they were able to be spun.

【衚】 本発明の効果 本発明の芳銙族ポリ゚ステルは、溶融成圢可胜
であり高匟性率の成圢品を埗るこずができるの
で、゚ンゞニアリングプラスチツクなどの皮々の
甚途に䜿甚するこずができる。
[Table] <Effects of the present invention> The aromatic polyester of the present invention can be melt-molded and molded products with a high modulus of elasticity can be obtained, so it can be used for various purposes such as engineering plastics.

Claims (1)

【特蚱請求の範囲】  䞋蚘構造単䜍、たたは
ずからなり、単䜍が党䜓の
30〜90モル、単䜍たたは
が党䜓の70〜10モルを占め、液晶開始枩床
50℃、ずり速床3000秒で枬定した溶融粘
床が20〜30000であるこずを特城ずする溶融成圢
可胜な高匟性ポリ゚ステル。 匏䞭はメチル基およびたたは塩玠原子、
は氎玠原子およびたたは塩玠原子から遞ばれた
皮以䞊の基を瀺す。
[Claims] 1 The following structural unit [()+()] or [()
+()+()], and the unit () is the total
30-90 mol%, unit () or [()+()]
accounts for 70 to 10 mol% of the total, (liquid crystal starting temperature +
50°C) and a shear rate of 3000 (1/sec), the melt viscosity is 20 to 30000. (In the formula, X is a methyl group and/or a chlorine atom, Y
represents one or more groups selected from hydrogen atoms and/or chlorine atoms. )
JP17863085A 1985-08-15 1985-08-15 High-elastic modulus polyester Granted JPS6239620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17863085A JPS6239620A (en) 1985-08-15 1985-08-15 High-elastic modulus polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17863085A JPS6239620A (en) 1985-08-15 1985-08-15 High-elastic modulus polyester

Publications (2)

Publication Number Publication Date
JPS6239620A JPS6239620A (en) 1987-02-20
JPH0362726B2 true JPH0362726B2 (en) 1991-09-26

Family

ID=16051816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17863085A Granted JPS6239620A (en) 1985-08-15 1985-08-15 High-elastic modulus polyester

Country Status (1)

Country Link
JP (1) JPS6239620A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103232B2 (en) * 1988-04-11 1995-11-08 工業技術院長 High modulus polyester molded products
JP2526383B2 (en) * 1988-06-16 1996-08-21 工業技術院長 High modulus polyarylate molded product

Also Published As

Publication number Publication date
JPS6239620A (en) 1987-02-20

Similar Documents

Publication Publication Date Title
JP2515744B2 (en) Heat resistant aromatic polyester
US4663422A (en) Aromatic polyesters and their shaped articles
JPH0362726B2 (en)
JPH048448B2 (en)
JPH0319861B2 (en)
US4605727A (en) High modulus polyester
JPS6220523A (en) Aromatic copolyester
JPH0353323B2 (en)
JPH045045B2 (en)
JPH0525248B2 (en)
JPH03126718A (en) Aromatic polyester
JP2570708B2 (en) Heat-resistant aromatic polyester with good fluidity
JPH0426330B2 (en)
JPH045046B2 (en)
JPH048447B2 (en)
JPH049814B2 (en)
JPH0319859B2 (en)
JPH0354222A (en) Modified, optically anisotropic polyester
JPH07173272A (en) Production of liquid crystalline polyester
JPS6239626A (en) Chlorine-containing aromatic polyester
JPH01272629A (en) Copolymerized polyester
JPH01297425A (en) High-elastic modulus copolyester
JPS60188420A (en) Halogen-containing aromatic polyester
JPS60192725A (en) Aromatic copolyester
JPS62260826A (en) Chlorine-containing aromatic polyester

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term