JPH0426330B2 - - Google Patents

Info

Publication number
JPH0426330B2
JPH0426330B2 JP60178631A JP17863185A JPH0426330B2 JP H0426330 B2 JPH0426330 B2 JP H0426330B2 JP 60178631 A JP60178631 A JP 60178631A JP 17863185 A JP17863185 A JP 17863185A JP H0426330 B2 JPH0426330 B2 JP H0426330B2
Authority
JP
Japan
Prior art keywords
polymer
ethane
dicarboxylic acid
bis
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60178631A
Other languages
Japanese (ja)
Other versions
JPS6239625A (en
Inventor
Masaru Okamoto
Shunei Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP17863185A priority Critical patent/JPS6239625A/en
Publication of JPS6239625A publication Critical patent/JPS6239625A/en
Publication of JPH0426330B2 publication Critical patent/JPH0426330B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は溶融成形可能で、優れた機械的性質を
有する新規な芳香族ポリエステル樹脂に関するも
のである。 <従来の技術> 近年プラスチツクの高性能化に対する要求がま
すます高まり、種々の新規性能を有するポリマが
数多く開発され、市場に供されているが、なかで
も特に分子鎖の平行な配列を特徴とする光学異方
性の液晶ポリマが優れた機械的性質を有する点で
注目されている。(特公昭55−482号公報)。 <発明が解決しようとする問題点> しかしながらこれらポリマからの成形品の機械
的物性は流動方向には優れているが、流動方向と
垂直方向のそれは著しく低いという特性を有して
いるため、フイルム、樹脂などの成形品の機械物
性は異方性が大きいという欠点を有していること
がわかつた。 一方、ビスフエノールAとテレフタル酸および
イソフタル酸からなる芳香族ポリエステルは等方
性であり、その機械的特性は異方性は少ないが、
ビスフエノールAおよび構造の対称性が不良な故
に機械的物性が不良であるという欠点を有してい
ることがわかつた。 そこで我々は、対称性の比較的良好な分子構造
を有し、しかも等方性となる芳香族ポリエステル
を得ることができれば、異方性が少なく機械的特
性の良好な成形品を得ることができるものと考
え、各種芳香族ポリエステルの研究を行い、下記
構造の芳香族ポリエステルが特異的に等方性とな
り400℃以下で溶融成形可能となることを見出し
本発明を成すに到つた。 <問題点を解決するための手段> すなわち、本発明は、下記構造単位()で示
される繰り返し単位を主要構成成分とし、対数粘
度(ペンタフルオロフエノール中、60℃、0.1%
濃度で測定)が0.40〜20.0dl/gである溶融成形
可能な芳香族ポリエステル樹脂に関するものであ
る。 (但し式中X、YはX=Y=H、X=Y=Cl、X
=ClかつY=H、X=OCH3かつY=Hの組合せ
から選ばれた一種以上の基を示す) 本発明の芳香族ポリエステル樹脂において上記
構造単位()はtert−ブチルハイドロキノンと
1,2−ビス(フエノキシ)エタン−4,4′−ジ
カルボン酸および/または核置換1,2−ビス
(フエノキシ)エタン−4,4−ジカルボン酸か
ら生成したポリエステルの構造単位を意味する。 本発明の芳香族ポリエステル樹脂は400℃以下
で溶融成形可能であり通常の溶融成形により優れ
た機械的性質を有する繊維、フイルム、樹脂など
の成形品を容易に得ることができる。 ここで例えばtert−ブチルハイドロキノンの代
りにクロルハイドロキノンを使用して得られる芳
香族ポリエステルは成形条件下で光学異方性とな
り、1,2−ビス(フエノキシ)エタン−4,
4′−ジカルボン酸および/または核置換1,2−
ビス(フエノキシ)エタン−4,4′−ジカルボン
酸の代りにテレフタル酸を使用すれば500℃以上
の高融点になり、本発明の目的を達成することが
できない。 一方、フエニルハイドロキノンと1,2−ビス
(フエノキシ)エタン−4,4′−ジカルボン酸か
らなる芳香族ポリエステルは、特定範囲のみで液
晶となることを見出し先に出願を行つているが
(特開昭58−194920号公報)フエニルハイドロキ
ノンの製造コストが高いという問題のあることが
わかつた。 なお本発明における核置換1,2−ビス(フエ
ノキシ)エタン−4,4′−ジカルボン酸として
は、1,2−ビス(2,6−ジクロルフエノキ
シ)エタン−4,4′−ジカルボン酸、1,2−ビ
ス(2−クロルフエノキシ)エタン−4,4′−ジ
カルボン酸、1,2−ビス(2−メトキシフエノ
キシ)エタン−4,4′−ジカルボン酸から選ばれ
た一種または二種以上のジカルボン酸であり、全
て光学的に等方性のポリエステルを与えるが1,
2−ビス(2−クロルフエノキシ)エタン−4,
4′−ジカルボン酸が最も好ましい。 また、他に少割合であれば、テレフタル酸、
4,4−ジフエニルジカルボン酸などのジカルボ
ン酸成分、ハイドロキノン、メチルハイドロキノ
ン、4,4′−ジヒドロキシビフエニル、2,6−
ジヒドロキシナフタレンなどのジオール成分およ
びp−オキシ安息香酸などのオキシカルボン酸を
さらに共重合せしめることも可能である。 また、本発明の芳香族ポリエステルの対数粘度
はペンタフルオロフエノールを溶媒にして測定可
能であり0.40〜20.0dl/gである。対数粘度が
0.40dl/g未満では得られた成形品を強度が低
く、20.0dl/gよりも大きいと溶融成形が困難と
なる。 本発明の芳香族ポリエステル樹脂は従来のポリ
エステルの重縮合法に準じて製造でき、製法につ
いては特に制限がないが、代表的な製法としては
たとえば次の(1)および(2)法が挙げられる。 (1) 上記芳香族ジオールのジエステル化合物と上
記芳香族ジカルボン酸から脱モノカルボン酸重
縮合反応により製造する方法。 (2) 上記芳香族ジカルボン酸のジフエニルエステ
ル化合物と上記芳香族ジオールから脱フエノー
ル重縮合反応により製造する方法。 とりわけ(1)方法が無触媒で重縮合反応が進行す
る点で望ましく、(1)および(2)法において重縮合反
応触媒として酢酸第1スズ、テトラブチルテタネ
ート、酢酸鉛および三酸価アンチモン、酢酸コバ
ルト、酢酸ナトリウム、酢酸カリウムなどの金属
化合物を使用することもできる。 かくしてなる本発明の芳香族ポリエステル樹脂
は400℃以下で溶融成形可能であり、押出成形、
射出成形、圧縮成形、ブロー成形などの通常の溶
融成形に供することができ繊維のみならずフイル
ム、三次元成形品、容器、ホースなどに加工する
ことが可能であり、その他の熱可塑性ポリマと容
易にブレンドすることができる。 なお成形時には本発明の芳香族ポリエステル樹
脂に対し、ガラス繊維、炭素繊維、アスベストな
どの強化剤、充填材、核剤、顔料、酸化防止剤、
安定剤、可塑剤、滑剤離型剤などの添加剤を添加
して、成形品に所望の特性を付与することができ
る。 このようにして得られた成形品は、熱処理によ
つて強度を増加させることができ、弾性率をも多
くの場合増加させることができる。 この熱処理は、成形品を不活性雰囲気(例えば
窒素、アルゴン、ヘリウムまたは水蒸気)中また
は酸素含有雰囲気(例えば空気)中でポリマの融
点以下の温度で熱処理することによつて行うこと
ができる。この熱処理は緊張下であつてもなくて
もよく数分〜数日の間で行うことができる。 本発明の新規なポリエステル樹脂から得られる
成形品は400℃以下で溶融成形可能であり機械的
性質が優れているという特徴を有している。 <実施例> 以下に実施例により本発明をさらに説明する。 実施例1、比較例1、2 重合用試験管にtert−ブチルハイドロキノンジ
アセテート50.0g(0.2モル)および1,2−ビ
ス(2−クロルフエノキシ)エタン−4,4′−ジ
カルボン酸74.4g(0.2モル)を仕込み、次の条
件で脱酢酸重合を行つた。まず窒素雰囲気下に
250〜280℃で2時間反応させた後、0.6mmHgに減
圧し、さらに3時間加熱し、重縮合反応を完結さ
せたところほぼ理論量の酢酸が留出し茶色のポリ
マが得られた。 このポリマの理論構造式は次のとおりであり、
そのポリエステルの元素分析結果は第1表のとお
り論理値とよい一致を示した。
<Industrial Application Field> The present invention relates to a novel aromatic polyester resin that is melt moldable and has excellent mechanical properties. <Conventional technology> In recent years, the demand for higher performance plastics has been increasing, and many polymers with various new performances have been developed and put on the market. Optically anisotropic liquid crystal polymers have attracted attention because of their excellent mechanical properties. (Special Publication No. 55-482). <Problems to be Solved by the Invention> However, although the mechanical properties of molded products made from these polymers are excellent in the flow direction, they are extremely poor in the direction perpendicular to the flow direction. It was found that the mechanical properties of molded products such as resins have a drawback of large anisotropy. On the other hand, aromatic polyester consisting of bisphenol A, terephthalic acid, and isophthalic acid is isotropic, and its mechanical properties are less anisotropic;
It was found that bisphenol A has a drawback of poor mechanical properties due to poor symmetry of the structure. Therefore, if we can obtain an aromatic polyester that has a molecular structure with relatively good symmetry and is isotropic, we can obtain molded products with less anisotropy and good mechanical properties. Considering this, we conducted research on various aromatic polyesters and discovered that aromatic polyesters with the following structure are specifically isotropic and can be melt-molded at temperatures below 400°C, resulting in the present invention. <Means for solving the problems> That is, the present invention uses repeating units represented by the following structural units (
It relates to a melt-moldable aromatic polyester resin having a concentration (measured in terms of concentration) of 0.40 to 20.0 dl/g. (However, in the formula, X and Y are X=Y=H, X=Y=Cl,
=Cl and Y=H, X=OCH 3 and Y=H represents one or more groups selected from the combination) In the aromatic polyester resin of the present invention, the above structural unit () is tert-butylhydroquinone and 1,2 It means a structural unit of polyester produced from -bis(phenoxy)ethane-4,4'-dicarboxylic acid and/or nuclear-substituted 1,2-bis(phenoxy)ethane-4,4-dicarboxylic acid. The aromatic polyester resin of the present invention can be melt-molded at temperatures below 400°C, and molded products such as fibers, films, and resins having excellent mechanical properties can be easily obtained by ordinary melt-molding. Here, for example, the aromatic polyester obtained by using chlorohydroquinone instead of tert-butylhydroquinone becomes optically anisotropic under molding conditions, and 1,2-bis(phenoxy)ethane-4,
4′-dicarboxylic acid and/or nuclear substitution 1,2-
If terephthalic acid is used instead of bis(phenoxy)ethane-4,4'-dicarboxylic acid, the melting point will be higher than 500°C, making it impossible to achieve the object of the present invention. On the other hand, an aromatic polyester consisting of phenylhydroquinone and 1,2-bis(phenoxy)ethane-4,4'-dicarboxylic acid has been filed with a patent application to show that it becomes liquid crystal only in a specific range. It was found that there is a problem in that the production cost of phenylhydroquinone is high. The nuclear substituted 1,2-bis(phenoxy)ethane-4,4'-dicarboxylic acid in the present invention includes 1,2-bis(2,6-dichlorophenoxy)ethane-4,4'-dicarboxylic acid. , 1,2-bis(2-chlorophenoxy)ethane-4,4'-dicarboxylic acid, and 1,2-bis(2-methoxyphenoxy)ethane-4,4'-dicarboxylic acid. dicarboxylic acids, all of which give optically isotropic polyesters, but 1,
2-bis(2-chlorophenoxy)ethane-4,
4'-dicarboxylic acids are most preferred. In addition, if the proportion is small, terephthalic acid,
Dicarboxylic acid components such as 4,4-diphenyldicarboxylic acid, hydroquinone, methylhydroquinone, 4,4'-dihydroxybiphenyl, 2,6-
It is also possible to further copolymerize a diol component such as dihydroxynaphthalene and an oxycarboxylic acid such as p-oxybenzoic acid. Further, the logarithmic viscosity of the aromatic polyester of the present invention can be measured using pentafluorophenol as a solvent, and is 0.40 to 20.0 dl/g. Logarithmic viscosity
If it is less than 0.40 dl/g, the resulting molded product will have low strength, and if it is more than 20.0 dl/g, it will be difficult to melt mold. The aromatic polyester resin of the present invention can be manufactured according to the conventional polyester polycondensation method, and there are no particular restrictions on the manufacturing method, but typical manufacturing methods include the following methods (1) and (2). . (1) A method for producing a diester compound of an aromatic diol and an aromatic dicarboxylic acid by a demonocarboxylic acid polycondensation reaction. (2) A method of producing the diphenyl ester compound of the aromatic dicarboxylic acid and the aromatic diol by dephenol polycondensation reaction. In particular, method (1) is preferable because the polycondensation reaction proceeds without a catalyst, and in methods (1) and (2), stannous acetate, tetrabutyl tetanaate, lead acetate, and antimony trioxide are used as polycondensation reaction catalysts. Metal compounds such as cobalt acetate, sodium acetate, potassium acetate, etc. can also be used. The aromatic polyester resin of the present invention thus formed can be melt-molded at 400°C or lower, and can be melt-molded by extrusion molding,
It can be subjected to ordinary melt molding such as injection molding, compression molding, and blow molding, and can be processed into not only fibers but also films, three-dimensional molded products, containers, hoses, etc., and can be easily combined with other thermoplastic polymers. can be blended into. During molding, reinforcing agents such as glass fiber, carbon fiber, and asbestos, fillers, nucleating agents, pigments, antioxidants,
Additives such as stabilizers, plasticizers, lubricants, mold release agents, etc. can be added to impart desired properties to the molded article. The strength of the thus obtained molded article can be increased by heat treatment, and in many cases the elastic modulus can also be increased. This heat treatment can be carried out by heat treating the molded article in an inert atmosphere (eg nitrogen, argon, helium or water vapor) or in an oxygen-containing atmosphere (eg air) at a temperature below the melting point of the polymer. This heat treatment may or may not be under tension and can be carried out for a period of several minutes to several days. Molded articles obtained from the novel polyester resin of the present invention are characterized by being melt moldable at temperatures below 400°C and having excellent mechanical properties. <Example> The present invention will be further described below with reference to Examples. Example 1, Comparative Examples 1 and 2 50.0 g (0.2 mol) of tert-butylhydroquinone diacetate and 74.4 g (0.2 mol) of 1,2-bis(2-chlorophenoxy)ethane-4,4'-dicarboxylic acid were placed in a test tube for polymerization. mol) was charged, and acetic acid depolymerization was performed under the following conditions. First under a nitrogen atmosphere
After reacting at 250 to 280°C for 2 hours, the pressure was reduced to 0.6 mmHg, and the mixture was further heated for 3 hours to complete the polycondensation reaction, whereupon almost the theoretical amount of acetic acid was distilled out and a brown polymer was obtained. The theoretical structural formula of this polymer is as follows,
The elemental analysis results of the polyester showed good agreement with the theoretical values as shown in Table 1.

【表】 但し、酸素含量(%)は(100%−C%−H%
−Cl%)ら算出した。 このポリエステルを偏光顕微鏡の試料台にのせ
昇温して融点および光学異方性の確認を行つた結
果、融点は244℃であり、光学的に等方性である
ことがわかつた。 このポリマを示差走査熱量計(パーキンエルマ
ー型)で測定したところガラス転移温度141℃
であり、融点247℃、降温結晶化温度204℃、融解
熱6.8cal/gであつた。このポリマの対数粘度は
ペンタフルオロフエノール中、60℃、0.1%濃度
で3.0dl/gであつた。このポリマを住友−ネス
タール射出成形機・プロマツト40/25(住友重機
械工業株製)に供し、シリンダー温度280℃、金
型温度30℃の条件で1/32″×1/2″幅×5″長のテス
トピースを成形した。なお比較のためポリブチレ
ンテレフタレートおよびガラス繊維30%含有ポリ
ブチレンテレフタレートを成形をおこなつた。 このテストピースを東洋ボールドウイン(株)社製
テンシロンUTM−100を用いて曲げ試験(スパ
ン間距離50mm、ひずみ速度1mm/分)を行つたと
ころ第2表のように等方性ポリマでは通常得られ
ない驚くべき高い弾性率を示した。また曲げ試験
片の破断面を走査型電顕で観察したところほとん
どフイブリルが観察されず異方性の少ない成形品
であることがわかつた。
[Table] However, the oxygen content (%) is (100%-C%-H%
-Cl%). The melting point and optical anisotropy of this polyester were confirmed by placing it on a sample stage of a polarizing microscope and increasing the temperature. As a result, the melting point was 244°C, indicating that it was optically isotropic. When this polymer was measured with a differential scanning calorimeter (Perkin-Elmer type), the glass transition temperature was 141°C.
It had a melting point of 247°C, a cooling crystallization temperature of 204°C, and a heat of fusion of 6.8 cal/g. The logarithmic viscosity of this polymer was 3.0 dl/g in pentafluorophenol at 60°C and 0.1% concentration. This polymer was subjected to a Sumitomo-Nestal injection molding machine Promat 40/25 (manufactured by Sumitomo Heavy Industries, Ltd.) under the conditions of a cylinder temperature of 280°C and a mold temperature of 30°C, 1/32″ x 1/2″ width x 5 For comparison, polybutylene terephthalate and polybutylene terephthalate containing 30% glass fiber were molded.This test piece was molded using Tensilon UTM-100 manufactured by Toyo Baldwin Co., Ltd. When a bending test (distance between spans 50 mm, strain rate 1 mm/min) was performed, as shown in Table 2, a surprisingly high modulus of elasticity, which is not normally obtained with isotropic polymers, was shown. When observed with a scanning electron microscope, it was found that almost no fibrils were observed, indicating that the molded product had little anisotropy.

【表】 実施例 2 実施例1と同じくtert−ブチルハイドロキノン
ジアセテート12.5g(5×10-2モル)および1,
2−ビス(2,6−ジクロロフエノキシ)エタン
−4,4′−ジカルボン酸22.0g(5×10-2モル)
を仕込み窒素雰囲気下に250〜280で2時間反応さ
せた後1.0mmHgに減圧し、さらに3.5時間加熱し、
重縮合反応を完結させたところほぼ論理量の酢酸
が留出し茶かつ色のポリマが得られた。 このポリマの理論構造式は次のとおりであり、
そのポリエステルの元素分析値は第3表のとおり
理論値とよい一致を示した。
[Table] Example 2 Same as Example 1, 12.5 g (5×10 -2 mol) of tert-butylhydroquinone diacetate and 1,
2-bis(2,6-dichlorophenoxy)ethane-4,4'-dicarboxylic acid 22.0g (5 x 10 -2 mol)
After reacting for 2 hours at 250 to 280 in a nitrogen atmosphere, the pressure was reduced to 1.0 mmHg, and the mixture was further heated for 3.5 hours.
When the polycondensation reaction was completed, almost a theoretical amount of acetic acid was distilled out and a brown colored polymer was obtained. The theoretical structural formula of this polymer is as follows,
The elemental analysis values of the polyester showed good agreement with the theoretical values as shown in Table 3.

【表】 但し、酸素含量(%)は(100%−C%−H%
−Cl%)から算出した。 このポリエステルを偏光顕微鏡の試料台にのせ
昇温して光学異方性の確認を行つた結果、光学的
に等方性であることがわかつた。 このポリマを示差走査熱量計(パーキンエルマ
ー型)で測定したところガラス転移温度133℃
であつたが、融解ピークは検出することができな
かつた。一方、このポリマの対数粘度はペンタフ
ルオロフエノール中、60℃、0.1%濃度で2.9dl/
gであつた。 実施例 3 実施例1と同じくtert−ブチルハイドロキノン
ジアセテート12.5g(5×10-2モル)および1,
2−ビス(2−メトキシフエノキシ)エタン−
4,4′−ジカルボン酸18.1g(5×10-2モル)を
仕込み窒素雰囲気化に250〜280で2時間反応させ
た後0.9mmHgに減圧し、さらに3.5時間加熱し、重
縮合反応を完結させたところほぼ理論量の酢酸が
留出し茶色のポリマが得られた。 このポリマの理論構造式は次のとおりであり、
そのポリエステルの元素分析値は第4表のとおり
理論値とよい一致を示した。
[Table] However, the oxygen content (%) is (100%-C%-H%
−Cl%). This polyester was placed on a sample stage of a polarizing microscope and heated to confirm its optical anisotropy. As a result, it was found to be optically isotropic. When this polymer was measured with a differential scanning calorimeter (PerkinElmer type), the glass transition temperature was 133℃.
However, no melting peak could be detected. On the other hand, the logarithmic viscosity of this polymer in pentafluorophenol at 60°C and 0.1% concentration is 2.9 dl/
It was hot at g. Example 3 Same as Example 1, 12.5 g (5×10 −2 mol) of tert-butylhydroquinone diacetate and 1,
2-bis(2-methoxyphenoxy)ethane-
18.1 g (5 x 10 -2 mol) of 4,4'-dicarboxylic acid was charged and reacted in a nitrogen atmosphere at 250 to 280 ℃ for 2 hours, then the pressure was reduced to 0.9 mmHg and heated for an additional 3.5 hours to complete the polycondensation reaction. When this was carried out, almost the theoretical amount of acetic acid was distilled out and a brown polymer was obtained. The theoretical structural formula of this polymer is as follows,
The elemental analysis values of the polyester showed good agreement with the theoretical values as shown in Table 4.

【表】 但し、酸素含量(%)は(100%−C%−H%
−Cl%)から算出した。 このポリエステルを偏光顕微鏡の記料台にのせ
昇温して光学異方性の確認を行つた結果、光学的
に等方性であることがわかつた。 このポリマを示差走査熱量計(パーキンエルマ
ー型)で測定したところガラス転移温度121℃、
融点170℃、降温結晶化温度153℃、融解熱
3.3cal/gであつた。一方、このポリマの対数粘
度はペンタフルオロフエノール中、60℃、0.1%
濃度で2.63dl/gであつた。 実施例 4 重合用試験管にtert−ブチルハイドロキノンジ
アセテート12.5g(5×10-2モル)および1,2
−ビス(フエノキシ)エタン−4,4′−ジカルボ
ン酸15.1g(5×10-2モル)を仕込み、次の条件
で脱酢酸重合を行つた。 まず窒素雰囲気下に250℃で1時間反応させた
後、310℃まで1.5時間で昇温すると同時に0.9mm
Hgに減圧し、さらに1.5時間加熱し、重縮合反応
を完結させたところほぼ理論量の酢酸が留出し茶
色のポリマが得られた。 このポリマの理論構造式は次のとおりであり、
そのポリエステルの元素分析結果は第5表のとお
り理論値とよい一致を示した。
[Table] However, the oxygen content (%) is (100%-C%-H%
−Cl%). This polyester was placed on the stage of a polarizing microscope and heated to confirm its optical anisotropy. As a result, it was found to be optically isotropic. When this polymer was measured with a differential scanning calorimeter (PerkinElmer type), the glass transition temperature was 121℃.
Melting point 170℃, cooling crystallization temperature 153℃, heat of fusion
It was 3.3 cal/g. On the other hand, the logarithmic viscosity of this polymer is 0.1% at 60°C in pentafluorophenol.
The concentration was 2.63 dl/g. Example 4 In a test tube for polymerization, 12.5 g (5 x 10 -2 mol) of tert-butyl hydroquinone diacetate and 1,2
-bis(phenoxy)ethane-4,4'-dicarboxylic acid (15.1 g (5 x 10 -2 mol)) was charged, and acetic acid depolymerization was carried out under the following conditions. First, the reaction was carried out at 250℃ for 1 hour in a nitrogen atmosphere, and then the temperature was raised to 310℃ in 1.5 hours, and at the same time 0.9mm
The pressure was reduced to Hg and the mixture was further heated for 1.5 hours to complete the polycondensation reaction, whereupon almost the theoretical amount of acetic acid was distilled out and a brown polymer was obtained. The theoretical structural formula of this polymer is as follows,
The elemental analysis results of the polyester showed good agreement with the theoretical values as shown in Table 5.

【表】 但し、酸素含量(%)は(100%−C%−H%
−Cl%)から算出した。 この、このポリエステルを偏光顕微鏡の試料台
にのせ昇温して融点および光学異方性の確認を行
つた結果、融点は240℃で光学異方性を示し、316
℃で等方性になるという特異な挙動を示すことが
わかつた。 またポリマを示差走査熱量計(パーキンエルマ
−型)で測定したところガラス転移温度146℃、
融点233℃と305℃であり、対数粘度はペンタフル
オロフエノール中、60℃、0.1%濃度で3.4dl/g
であつた。このポリエステルを高化式フローテス
ターに供し330℃、口金孔径0.3mmφで紡糸を行
い、22m/分で巻きとり0.06mmφの紡出糸を得
た。 この紡出糸の東洋ボールドウイン(株)社レオバイ
ブロンDDV−−EAを用いて周波数110Hz、昇
温温度2℃/分、チヤツク間距離40mmで弾性率を
測定したところ28GPaであり、この紡出糸の破断
面を走査型電顕で観察したところフイブリル形態
がほとんど見られず異方性の少ないポリマである
ことがわかつた。 <本発明の効果> 本発明の芳香族ポリエステル樹脂は、400℃以
下で溶融成形可能であり、異方性が少なく機械的
特性の良好な成形品を得ることができ、エンジニ
アリングプラスチツク及びその他用途に使用する
ことができる。
[Table] However, the oxygen content (%) is (100%-C%-H%
−Cl%). This polyester was placed on the sample stage of a polarizing microscope and heated to confirm its melting point and optical anisotropy. As a result, the melting point was 240℃ and it showed optical anisotropy, 316
It was found that it exhibits a peculiar behavior of becoming isotropic at ℃. Furthermore, when the polymer was measured with a differential scanning calorimeter (Perkin-Elmer type), the glass transition temperature was 146°C.
The melting points are 233℃ and 305℃, and the logarithmic viscosity is 3.4 dl/g in pentafluorophenol at 60℃ and 0.1% concentration.
It was hot. This polyester was subjected to a Koka-type flow tester and spun at 330°C with a nozzle hole diameter of 0.3 mmφ, and wound at 22 m/min to obtain a spun yarn with a diameter of 0.06 mmφ. The elastic modulus of this spun yarn was measured at a frequency of 110 Hz, a heating temperature of 2°C/min, and a distance between chucks of 40 mm using Toyo Baldwin Co., Ltd.'s Rheovibron DDV--EA, and it was 28 GPa. When the fractured surface of the polymer was observed using a scanning electron microscope, it was found that almost no fibrillar morphology was observed, indicating that the polymer had little anisotropy. <Effects of the present invention> The aromatic polyester resin of the present invention can be melt-molded at temperatures below 400°C, and molded products with low anisotropy and good mechanical properties can be obtained, making it suitable for engineering plastics and other uses. can be used.

Claims (1)

【特許請求の範囲】 1 下記構造単位()で示される繰り返し単位
を主要構成成分とし、対数粘度(ペンタフルオロ
フエノール中、60℃、0.1%濃度で測定)が0.40
〜20.0dl/gである溶融成形可能な芳香族ポリエ
ステル樹脂。 (但し式中X、YはX=Y=H、X=Y=Cl、X
=ClかつY=H、X=OCH3かつY=Hの組合せ
から選ばれた一種以上の基を示す)。
[Claims] 1 The main constituent is a repeating unit represented by the following structural unit (), and the logarithmic viscosity (measured in pentafluorophenol at 60°C at a concentration of 0.1%) is 0.40.
Melt moldable aromatic polyester resin with ~20.0 dl/g. (However, in the formula, X and Y are X=Y=H, X=Y=Cl,
=Cl and Y=H, X=OCH 3 and Y=H).
JP17863185A 1985-08-15 1985-08-15 Aromatic polyester resin Granted JPS6239625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17863185A JPS6239625A (en) 1985-08-15 1985-08-15 Aromatic polyester resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17863185A JPS6239625A (en) 1985-08-15 1985-08-15 Aromatic polyester resin

Publications (2)

Publication Number Publication Date
JPS6239625A JPS6239625A (en) 1987-02-20
JPH0426330B2 true JPH0426330B2 (en) 1992-05-07

Family

ID=16051835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17863185A Granted JPS6239625A (en) 1985-08-15 1985-08-15 Aromatic polyester resin

Country Status (1)

Country Link
JP (1) JPS6239625A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465795A (en) * 1977-11-04 1979-05-26 Asahi Chem Ind Co Ltd Preparation of aromatic polyester
JPS5913531A (en) * 1982-07-15 1984-01-24 Toshiba Seiki Kk Transfer device for press
JPS5941331A (en) * 1982-09-01 1984-03-07 Agency Of Ind Science & Technol Halogen-containing aromatic polyester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465795A (en) * 1977-11-04 1979-05-26 Asahi Chem Ind Co Ltd Preparation of aromatic polyester
JPS5913531A (en) * 1982-07-15 1984-01-24 Toshiba Seiki Kk Transfer device for press
JPS5941331A (en) * 1982-09-01 1984-03-07 Agency Of Ind Science & Technol Halogen-containing aromatic polyester

Also Published As

Publication number Publication date
JPS6239625A (en) 1987-02-20

Similar Documents

Publication Publication Date Title
JP2515744B2 (en) Heat resistant aromatic polyester
US4663422A (en) Aromatic polyesters and their shaped articles
JPH048448B2 (en)
JPS5887125A (en) Polymerization of liquid crystal polyester
JPH0319861B2 (en)
JPH0426330B2 (en)
US4605727A (en) High modulus polyester
JPH0362726B2 (en)
JPH03126718A (en) Aromatic polyester
JP2570708B2 (en) Heat-resistant aromatic polyester with good fluidity
JPH045045B2 (en)
JPS6220523A (en) Aromatic copolyester
JPH0353323B2 (en)
JPH0525248B2 (en)
JPH045046B2 (en)
JPH01297425A (en) High-elastic modulus copolyester
JPH0216929B2 (en)
JPH0354222A (en) Modified, optically anisotropic polyester
JPH048447B2 (en)
JPH0488014A (en) Melt moldable aromatic polyester resin
JPS6239622A (en) Melt moldable polyester
JPH0319859B2 (en)
JPH0637549B2 (en) Aromatic polymer with good impact resistance
JPH01272629A (en) Copolymerized polyester
JPS6239626A (en) Chlorine-containing aromatic polyester

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term