JPS6335125A - Distance relay - Google Patents

Distance relay

Info

Publication number
JPS6335125A
JPS6335125A JP17557186A JP17557186A JPS6335125A JP S6335125 A JPS6335125 A JP S6335125A JP 17557186 A JP17557186 A JP 17557186A JP 17557186 A JP17557186 A JP 17557186A JP S6335125 A JPS6335125 A JP S6335125A
Authority
JP
Japan
Prior art keywords
value
current
output
relay
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17557186A
Other languages
Japanese (ja)
Inventor
伊藤 徳男
孝幸 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17557186A priority Critical patent/JPS6335125A/en
Publication of JPS6335125A publication Critical patent/JPS6335125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (発明の技術分野) 本発明は距離継電器で、特に微分方程式を用いて距離測
定を行なう距離継電器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Technical Field of the Invention) The present invention relates to a distance relay, and more particularly to a distance relay that measures distance using differential equations.

(従来の技術) 近年、電力系統のケーブル系統やスタコンが増えるにつ
れ、系統事故時の電流・電圧波形歪が低次化傾向にある
。定常状態のインピーダンスを測定する従来の距離継電
器では、フィルタによる動作速度の遅延と誤差の増大等
が大きな問題となってきた。一方系統事故時の過渡状態
でも成立する微分方程式 をマイクロコンビ″ユータを使用して実現することの(
1)式よりR値およびR値を求めるものであるが、2つ
の未知数を得るためには連立方程式を解く必要がある。
(Prior Art) In recent years, as the number of cable systems and star converters in power systems has increased, current and voltage waveform distortions in the event of a system fault have tended to become lower order. Conventional distance relays that measure steady-state impedance have had major problems such as a delay in operating speed due to filters and an increase in errors. On the other hand, it is possible to realize a differential equation that holds true even in a transient state during a system fault using a microcomputer (
1) Although the R value and the R value are obtained from the equation, it is necessary to solve simultaneous equations in order to obtain the two unknowns.

即ち、異なる時刻tmおよびtnにおいて、vm・1m
電圧および電流の時刻幅 における値 の関係が成立するが、考慮している時間内でL及びR値
が一定であれば、(2)式を連立方程式として解き、(
3)式の如くしおよびR値が夫々求められる。
That is, at different times tm and tn, vm・1m
The relationship between the voltage and current values in the time width holds true, but if the L and R values are constant within the time being considered, equation (2) can be solved as a simultaneous equation, and (
3) The value and R value are determined as shown in the formula.

周知の如く、系統故障時にはLおよびR値は、故障点迄
の系統インピーダンスに応じた値になるため、(3)式
の結果により、故障点の内外部判定を行なうことができ
る。
As is well known, when a system failure occurs, the L and R values become values that correspond to the system impedance up to the failure point, so it is possible to determine whether the failure point is internal or external based on the result of equation (3).

ここで電流の微分値jは・1−ドウエアにて求めること
が可能であるが、ソフトウェアによって電流値から算出
することも可能である。−例として電流微分値を得る近
似式を(4)式に示す。
Here, the differential value j of the current can be determined using 1-ware, but it can also be calculated from the current value using software. - As an example, an approximate equation for obtaining the current differential value is shown in equation (4).

但L、N 、Kk(k=0−N)は定数で、少なくとも
KO(0、に140 (4)式によれば、少なくとも2つの周波数において近
似誤差は零となり、かつ中間の周波数での誤差も小さく
できるので、広い周波数範囲にわたり、近似式を用いて
L及びR値の算出が可能になる。
However, L, N, and Kk (k = 0 - N) are constants, and at least KO (0, 140) According to equation (4), the approximation error is zero at at least two frequencies, and the error at the intermediate frequency is Since the values can be made small, it becomes possible to calculate the L and R values using approximate expressions over a wide frequency range.

なお、(4)式では微分値Jmは1サップリング時間だ
け異なる時刻幅及びtm−1の電流微分値の和として求
められるため、L及びR値の算出式は、下記の如く変形
される。即ち(2)式より ここで とおくと、次の(7)式によりL値、R値が求められる
Note that in equation (4), the differential value Jm is obtained as the sum of the current differential values of time widths and tm-1 that differ by one sampling time, so the equations for calculating the L and R values are modified as follows. That is, if we set the equation (2) here, the L value and the R value can be obtained from the following equation (7).

第2図は上記演算を行なう従来の距離継電器の・・−ド
ウエア構成図である。第2図において1は保穫対象であ
る送電線、2は変成器、3は変流器、4お工び5は入力
変換器、6はアナログ/デイフタル変換回路(VD変換
回路)、7は演算処理部である。この場合、系統電圧は
変成器2を介して導入され、入力変換器4にて適当な電
圧レベルに変換した後、前置フィルタを経て出力Vを得
る。
FIG. 2 is a diagram showing the hardware configuration of a conventional distance relay that performs the above calculation. In Figure 2, 1 is the power transmission line to be protected, 2 is the transformer, 3 is the current transformer, 4 is the converter, 5 is the input converter, 6 is the analog/differential conversion circuit (VD conversion circuit), and 7 is the This is an arithmetic processing section. In this case, the system voltage is introduced via a transformer 2, converted to an appropriate voltage level by an input converter 4, and then passed through a prefilter to obtain an output V.

同じく系統電流は変流器3を介して導入され、入力変換
器5を経て出力lを得る。そして両出力はり変換回路6
によって一定間隔で同時にサンプリングされ、順次ディ
ジタル量に変換されて、マイクロコンピュータよりなる
演算処理部7に人力される。
Similarly, the system current is introduced via a current transformer 3 and passes through an input converter 5 to obtain an output l. And both output beam conversion circuit 6
The signals are simultaneously sampled at regular intervals, sequentially converted into digital quantities, and manually input to the arithmetic processing section 7 consisting of a microcomputer.

第3図は上記演算処理部7における処理内容を示す機能
ブロック図である。第3図において、8は電流の微分演
算手段で例えば前記(4)式の如く入力電流データより
、電流微分量Jを算出する。9は電流演算手段、10は
電圧演算手段で夫々(6)式に示した演算を行ない、電
流ijI、゛電圧量Vを得る。11は(7)式に示した
しおよびR値算出式の分母値演算手段で、分母値Um=
ImJn−工nJrT+  を得る。12は(7)式の
L値算出式のうちの分子値演算手段で、分子値tm=I
mvn−Invm  を得、同様に13はR値算出式の
うちの分子値演算手段で、分子値rm=VmJn−Vn
Jm を得る。14はL値演算手段で、前記分母値U及
びL値の分子値tより除算を行ないL値を算出する。1
5はR値演算手段で、同じく前記分母値U及びR値の分
子値rより除算を行ないR値を算出する。これらの算出
されたしおよびR値は、リレー動作判定部16に導入し
て距離リレーの特性に応じた動作判定を行ない、その結
果を出力する。
FIG. 3 is a functional block diagram showing the processing contents in the arithmetic processing section 7. As shown in FIG. In FIG. 3, reference numeral 8 denotes a current differential calculation means that calculates the current differential amount J from the input current data, for example, as shown in equation (4) above. Reference numeral 9 denotes a current calculation means, and reference numeral 10 denotes a voltage calculation means, which respectively perform the calculations shown in equation (6) to obtain the current ijI and the voltage amount V. 11 is a denominator value calculation means of the R value calculation formula shown in equation (7), and the denominator value Um=
ImJn-JnJrT+ is obtained. 12 is a numerator value calculation means in the L value calculation formula of equation (7), and the numerator value tm=I
Similarly, 13 is the numerator value calculation means in the R value calculation formula, and the numerator value rm=VmJn-Vn
Get Jm. Reference numeral 14 denotes an L value calculation means that calculates the L value by dividing the denominator value U and the numerator value t of the L value. 1
Reference numeral 5 denotes an R value calculation means, which similarly calculates the R value by dividing the denominator value U and the numerator value r of the R value. These calculated values and R values are introduced into the relay operation determining section 16 to perform operation determination according to the characteristics of the distance relay, and output the results.

(発明が解決しようとする問題点) 上記方法は、系統事故時の過渡状態においても成立する
微分方程式を基本としているので、原理的には電流、電
圧の周波数には影響されない。しかし電流機分値の算出
に近似式を用いる場合には、近似の椙度に影響されうる
が、第4式を用いることにより、近似が成立する周波数
範囲内では、し。
(Problems to be Solved by the Invention) The above method is based on a differential equation that holds true even in a transient state during a system fault, so it is not affected by the frequency of current or voltage in principle. However, when an approximation formula is used to calculate the current component value, it may be affected by the degree of approximation, but by using the fourth formula, within the frequency range where the approximation holds true.

Rの値を高精度に算出することが可能であり、距耐継電
器の周波数特性の改善に寄与することができる。この距
離継電器において分母値Umは、n=m−1とすると Um= xmrm−1−Im−、Jm−・・(8)−K
。R となる。ここで、ωT〈π であれば、Koは正の一定
値となるが、高調波成分が含まれるとUm均Oとなるこ
とがあゆ、(7)式より求めたり、Rの値は入力変成器
の誤差や量子化誤差を増大させてしまう結果になる。
It is possible to calculate the value of R with high precision, and it can contribute to improving the frequency characteristics of the distance relay. In this distance relay, the denominator value Um is, when n = m-1, Um = xmrm-1-Im-, Jm-...(8)-K
. It becomes R. Here, if ωT〈π, then Ko will be a constant positive value, but if harmonic components are included, Um will be equal to O. Therefore, the value of R can be calculated from equation (7), or This results in increased instrument errors and quantization errors.

本発明は上記問題点を解決するためになされたものであ
り、安定でかつ信頼性のある距離継電器を提供すること
を目的としている。
The present invention was made in order to solve the above problems, and an object of the present invention is to provide a stable and reliable distance relay.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するための構成を、実施例に対応する第
1図を用いて説明すると、第1の手段11の出力が所定
レベル以下にあることを検出する第6の手段17を設け
、この第6の手段17の出力により、リレー出力を無効
とする:う構成した。
(Means for solving the problem) The configuration for achieving the above object will be explained using FIG. 1 corresponding to the embodiment. It is detected that the output of the first means 11 is below a predetermined level A sixth means 17 is provided to disable the relay output by the output of the sixth means 17.

(作用) したがって高調波成分によってUm: 0  となると
、第6の手段17の出力によってリレー出力が無効とな
り、量子化誤差等を増大させることがない。
(Function) Therefore, when Um: 0 occurs due to harmonic components, the relay output becomes invalid due to the output of the sixth means 17, and quantization errors etc. do not increase.

(実施例) 以下図面を参照して実施例を説明する。第1図により本
発明の実施例について説明する。なお、・・−ドウエア
構成については第2図と同様ゆえ、ここでは説明を省略
する。
(Example) An example will be described below with reference to the drawings. An embodiment of the present invention will be explained with reference to FIG. The hardware configuration is the same as that shown in FIG. 2, so the explanation will be omitted here.

第1図において、分母値演算手段11の出力UはL値、
R値演算手段に入力されるとともにUmレベル検出手段
17に導入される。このレベル検出手段の出力はNOT
回路18を介してリレー動作判定部16の出力とのAN
Dが回路19により構成される。0mレベルの検出は(
8)式よりUm = Im’m−t  lm−1Jrr
l= Ko Io < K   −(9)Kは正の一定
値 とすれば良く、極めて容易な手段により対応が可能と力
る。
In FIG. 1, the output U of the denominator value calculation means 11 is an L value,
The signal is input to the R value calculating means and is also introduced to the Um level detecting means 17. The output of this level detection means is NOT
AN with the output of the relay operation determination section 16 via the circuit 18
D is constituted by the circuit 19. Detection of 0m level (
8) From the formula, Um = Im'm-t lm-1Jrr
l=KoIo<K-(9)K may be a constant positive value, and this can be handled by extremely simple means.

上記実施例ではUmレベル検出手段の出力をリレー動作
判定部の出力を阻止することで説明したが、距離継電器
の最終出力が阻止できれば良いわけであるため、リレー
動作判定部または、L値演算手段、R値演算手段の応動
を阻止するようにしても良い。
In the above embodiment, the output of the Um level detection means was explained by blocking the output of the relay operation determination section, but since it is sufficient that the final output of the distance relay can be blocked, the relay operation determination section or the L value calculation means , the response of the R value calculation means may be prevented.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば、微分方程式を用い
た距離継電器において、主変流器や主変成器および入力
変換器等・・−ドに起因する誤差や、アナログ/ディジ
タル変換時に生じる量子化誤差等を過大に増幅させない
こと、およびラインPT適用時の単相または2相の再開
路無電圧確認時間中における距離継電器の不必要な応動
を、電流値に基づく演算結果で阻止するので至近端の実
事故時に誤まって距離継電器の応動を阻止することもな
く、極め゛C有効な機能を提供できる。
As explained above, according to the present invention, in a distance relay using a differential equation, errors caused by the main current transformer, main transformer, input converter, etc., and quantum errors occurring during analog/digital conversion can be avoided. This prevents unnecessary response of the distance relay during the single-phase or two-phase restart no-voltage confirmation time when line PT is applied, as it prevents excessive amplification of conversion errors, etc., and prevents unnecessary response of the distance relay using the calculation results based on the current value. It is possible to provide an extremely effective function without accidentally blocking the response of the distance relay in the event of an actual near-end accident.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による距離継電器の一実施例を示す機能
ブロック図、第2図は一般的なディノタル継電器のブロ
ック図、第3図は従来の距離継電器の機能ブロック図で
ある。 1・・・送電線       2・・・変成器3・・・
変流器       4,5・・・人力変換器6・・・
A/D変換回路    7・・・演算処理部8・・・微
分演算手段   9・・・電流演算手段10・・・電圧
演算手段  11・・・分母値演算手段12.13・・
・分子値演算手段 14・・・L値演算手段  15・・・R値演算手段1
6・・・リレー動作判定部 17・・・レベル検出手段 18・・・NOT回路19
・・・AND回路 代理人 弁理士   則  近  憲  信用    
  三  俣  弘  文 第2図
FIG. 1 is a functional block diagram showing an embodiment of a distance relay according to the present invention, FIG. 2 is a block diagram of a general Dinotal relay, and FIG. 3 is a functional block diagram of a conventional distance relay. 1...Power transmission line 2...Transformer 3...
Current transformer 4, 5... Human power converter 6...
A/D conversion circuit 7... Arithmetic processing unit 8... Differential calculation means 9... Current calculation means 10... Voltage calculation means 11... Denominator value calculation means 12.13...
-Numerator value calculation means 14...L value calculation means 15...R value calculation means 1
6...Relay operation determination section 17...Level detection means 18...NOT circuit 19
...AND circuit agent Patent attorney Nori Chika Trust
Hiroshi Mitsumata Figure 2

Claims (1)

【特許請求の範囲】[Claims] 電力系統の電圧信号および電流信号を入力し、電圧量り
、電流値i、および電流微分量jを得て、前記各電気量
と電力系統のインダクタンスL、抵抗Rとの間に成立す
る関係式v=R_i+L_jを用い、異なる時刻t_m
およびt_nにおける前記電圧量v_m、v_n、電流
量i_m、i_n、電流微分量j_m、j_nから電気
量i_mj_n−i_nj_mを得る第1の手段と、i
_mv_n−i_nv_mを得る第2の手段およびj_
mv_n−j_nv_mを得る第3の手段をそれぞれ備
え、これらの各手段からの電気量を使用してインダクタ
ンスL_mを算出する第4の手段と抵抗R_mを算出す
る第5の手段とにより距離測定を行なう距離継電器にお
いて、前記第1の手段の出力が所定レベル以下にあるこ
とを検出する第6の手段を設け、この第6の手段の出力
によりリレー出力を無効とすることを特徴とする距離継
電器。
Input the voltage signal and current signal of the power system, obtain the voltage measurement, current value i, and current differential amount j, and calculate the relational expression v that holds between each of the above electrical quantities and the inductance L and resistance R of the power system. =R_i+L_j and at different times t_m
and a first means for obtaining an electrical quantity i_mj_n−i_nj_m from the voltage quantities v_m, v_n, current quantities i_m, i_n, and current differential quantities j_m, j_n at t_n;
A second means of obtaining _mv_n−i_nv_m and j_
A third means for obtaining mv_n−j_nv_m is provided, and the distance is measured by a fourth means for calculating the inductance L_m and a fifth means for calculating the resistance R_m using the quantity of electricity from each of these means. A distance relay comprising: a sixth means for detecting that the output of the first means is below a predetermined level; and the output of the sixth means disables the relay output.
JP17557186A 1986-07-28 1986-07-28 Distance relay Pending JPS6335125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17557186A JPS6335125A (en) 1986-07-28 1986-07-28 Distance relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17557186A JPS6335125A (en) 1986-07-28 1986-07-28 Distance relay

Publications (1)

Publication Number Publication Date
JPS6335125A true JPS6335125A (en) 1988-02-15

Family

ID=15998407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17557186A Pending JPS6335125A (en) 1986-07-28 1986-07-28 Distance relay

Country Status (1)

Country Link
JP (1) JPS6335125A (en)

Similar Documents

Publication Publication Date Title
US20060125486A1 (en) System and method of locating ground fault in electrical power distribution system
US8145443B2 (en) Fourier transform-based phasor estimation method and apparatus capable of eliminating influence of exponentially decaying DC offsets
EP0139123B1 (en) Protective relay system
JPS61292067A (en) Method for measuring electric energy
JPH0812222B2 (en) Digital fault locator
JP2000074978A (en) Fault point locator at parallel two-line transmission line
EP0214483B1 (en) Method for measuring distance in digital distance relays
JPS6335125A (en) Distance relay
JP3283986B2 (en) Impedance measuring device
JPS5849830B2 (en) Fault point location method for power transmission lines
JPH11160372A (en) Measuring method for harmonics characteristic
JPH0528054B2 (en)
RU2028634C1 (en) Method of and device for insulation resistance measurement in alternating-current lines incorporating static converters
JPS60229623A (en) Digital protective relaying device
JPS6387123A (en) Distance relay
Soliman et al. Linear Kalman filtering algorithm applied to measurements of power system voltage magnitude and frequency: A constant-frequency model
JPS5988657A (en) Method and device for determining quality index of electric energy in three-phase power supply net
JP2903636B2 (en) Distance relay
JP2000310655A (en) Current-measuring device using rogowsky coil
JP2588414B2 (en) Power system accident judgment method
JPH063402A (en) Fault locator
JPH01272075A (en) Deterioration detecting device for lightning arrestor
JPS62264586A (en) Method of detecting deterioration of arrestor for sheath protection
JPS6352623A (en) Checker
JPH08126186A (en) Protection of digital ratio differential relay