JPS6335084B2 - - Google Patents

Info

Publication number
JPS6335084B2
JPS6335084B2 JP56191495A JP19149581A JPS6335084B2 JP S6335084 B2 JPS6335084 B2 JP S6335084B2 JP 56191495 A JP56191495 A JP 56191495A JP 19149581 A JP19149581 A JP 19149581A JP S6335084 B2 JPS6335084 B2 JP S6335084B2
Authority
JP
Japan
Prior art keywords
platinum
thin film
protective film
temperature sensor
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56191495A
Other languages
Japanese (ja)
Other versions
JPS5892201A (en
Inventor
Kazuhisa Matsumoto
Kazuo Ogata
Kunihiro Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19149581A priority Critical patent/JPS5892201A/en
Publication of JPS5892201A publication Critical patent/JPS5892201A/en
Publication of JPS6335084B2 publication Critical patent/JPS6335084B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は白金抵抗薄膜を用いた薄膜白金温度セ
ンサに関する。 従来精密な温度センサとしては白金測温抵抗体
があり、また比較的安価で大量生産できる温度セ
ンサとしてはサーミスタがある。 一方、最近のエレクトロニクスの急激な進歩に
より、家電用や自動車用などの精密温度センサを
中心に堅牢で大量生産でき、かつ高精度の温度セ
ンサが求められるようになつてきており、用途に
より安価、小形、高精度、温度範囲が広く直線的
な変化をするもの、振動などに対して強いもの、
熱応答性の良いものが要求されている。 これらの要求のうち温度精度や測定範囲、直線
性などの特性に関して最も優れているものとして
白金測温抵抗体があるが、周知のように白金測温
抵抗体は、 (1) バルクの白金線を材料とするため、50Ω,
100Ωの低抵抗しか作れず、回路設計時、接点
抵抗や信号入力回路の線抵抗が大きな影響を与
えるため、3線式,4線式など測定回路の設計
方法に細心の注意を要する。 (2) 構造上、熱容量が大きいために熱に対する応
答性が悪く、また振動、、衝撃に対して弱いた
め使用、保管、輪送などの際に破損しやすい。 (3) 高価な材料を多量に使用し、また製造工程が
複雑で量産化が困難なため価格が高い。 (4) 小形化が困難である。 などの欠点を有している。 一方、サーミスタでは比較的使用温度範囲が狭
く、抵抗値も曲線的に変化するため、温度の補正
回路を必要とするなどの欠点を有する。 また、白金膜の抵抗値変化を利用した温度セン
サとしては厚膜白金測温素止があるが、厚膜であ
るため白金の使用量が多く、非常に高価格であ
る。また厚膜であるためガラス溶融体が主成分で
あること、不純物が入りやすいことなどから特性
的にもばらつきが大きく高精度のものができてい
ない。 そこで最近白金薄膜の抵抗値変化を利用した薄
膜白金温度センサが注目されている。しかし白金
はバルクの状態では非常に安定な金属であるが、
最も安定な白金とはいえ高温になると種々の金属
と反応しやすくなるため、保護膜の材料選定が重
要になり、現在高温から低温まで測定できる精度
の高いセンサは開発、実用化されていない。 本発明は以上の点に鑑み、広い温度範囲で高精
度かつ高い安定性を有する薄膜白金温度センサを
提供することを目的とする。 この目的の達成するために本発明は絶縁基体上
に白金抵抗薄膜と電極を形成し、この白金抵抗薄
膜上にSiC,SiO2またはTiN単独または、これら
の化合物よりなる保護膜を形成したものである。 また本発明は電極上および前記保護膜の上にさ
らにガラスによる保護膜を形成したものである。 以下、本発明の実施例について図面とともに説
明する。 第1図は本発明の一実施例の薄膜白金温度セン
サの断面図である。図において、1は幅5mm、長
さ20mm、厚さ1mmのアルミナ基板よりなる絶縁基
体、2はこの絶縁基体1上に、白金を約3μm着膜
して形成された白金抵抗薄膜、3はこの白金抵抗
薄膜2と接続されるリード線引き出し用の電極、
4は電極3に接続されるリード線、5は白金抵抗
薄膜2を被覆する約1μm厚のTiNよりなる保護膜
で、真空蒸着、スパツタなどにより形成される。 この温度センサにおけるTiNよりなる保護膜
5は、それ自体高温に耐え、また感温体である白
金抵抗薄膜2への拡散や反応を生じない。また他
の金属の白金抵抗薄膜2への拡散や反応を起こす
のを防ぐ障壁となる。このため温度センサの初期
特性(抵抗値、抵抗温度係数)のばらつきや長期
使用時(特に高温における使用の際)の特性の劣
化が小さいため信頼性が高くなり、白金測温抵抗
体と同等もしくはそれ以上の指示温度精度が得ら
れる。 また、TiNよりなる保護膜5は非常に薄いた
めに熱応答性に優れている。本実施例の場合、熱
応答時間(63%点)は1.2秒であり、一方、保護
膜としてガラスを用いた場合は2.1秒であつた。 第2図に第1の実施例お温度センサの電極3の
部分を、珪酸鉛を主成分とするガラスペーストで
約500μm厚で覆い、920℃で10分間焼成し、溶融
固化させてガラス保護膜6を形成した実施例を示
す。このように電極3の部分をガラスで覆うこと
により電極部分を保護することができる。 第3図は本発明の第3の実施例の断面図であ
る。この実施例の温度センサは第1の実施例の
TiNよりなる保護膜5の上および電極3の上に
ガラスよりなる保護膜7を形成たものである。こ
のガラスよりなる保護膜7は珪酸鉛を主成分とす
るガラスペーストで厚み約50μm(電極3の上は約
500μm)に被覆した後、920℃で10分間焼成して
溶融固化させて形成したものである。 第1表はこの実施例の温度センサと比較のため
にガラスのみを保護膜とした温度センサの抵抗温
度係数(0℃,100℃基準)のばらつき(初期特
性)を示すものである。
The present invention relates to a thin film platinum temperature sensor using a platinum resistive thin film. Conventionally, there is a platinum resistance temperature sensor as a precise temperature sensor, and a thermistor is a temperature sensor that can be mass-produced at relatively low cost. On the other hand, due to recent rapid advances in electronics, there is a growing need for robust, mass-produced, and highly accurate temperature sensors, mainly for precision temperature sensors for home appliances and automobiles. Small size, high precision, wide temperature range and linear changes, strong against vibration, etc.
A material with good thermal response is required. Among these requirements, platinum resistance thermometers are the most superior in terms of characteristics such as temperature accuracy, measurement range, and linearity.As is well known, platinum resistance thermometers are: (1) bulk platinum wire; Since the material is 50Ω,
Only a low resistance of 100Ω can be created, and contact resistance and the wire resistance of the signal input circuit have a large effect on circuit design, so careful attention must be paid to how to design the measurement circuit, such as a 3-wire or 4-wire system. (2) Due to its structure, it has a large heat capacity, so it has poor response to heat, and is vulnerable to vibrations and shocks, so it is easily damaged during use, storage, transportation, etc. (3) It is expensive because it uses a large amount of expensive materials and the manufacturing process is complicated, making mass production difficult. (4) It is difficult to downsize. It has drawbacks such as: On the other hand, a thermistor has a relatively narrow operating temperature range and its resistance value changes in a curved manner, so it has drawbacks such as requiring a temperature correction circuit. Further, as a temperature sensor that utilizes the change in resistance of a platinum film, there is a thick film platinum temperature sensor, but because it is a thick film, a large amount of platinum is used and the price is very high. Furthermore, because the film is thick, the main component is molten glass, and impurities tend to enter, resulting in wide variations in characteristics and making it difficult to manufacture high-precision products. Therefore, thin film platinum temperature sensors that utilize changes in the resistance value of platinum thin films have recently attracted attention. However, although platinum is a very stable metal in its bulk state,
Even though platinum is the most stable metal, it easily reacts with various metals at high temperatures, so the selection of materials for the protective film is important, and currently no highly accurate sensors that can measure from high to low temperatures have been developed or put into practical use. In view of the above points, it is an object of the present invention to provide a thin film platinum temperature sensor that has high accuracy and high stability over a wide temperature range. In order to achieve this object, the present invention forms a platinum resistive thin film and an electrode on an insulating substrate, and a protective film made of SiC, SiO 2 or TiN alone or a compound of these is formed on the platinum resistive thin film. be. Further, in the present invention, a protective film made of glass is further formed on the electrode and the above-mentioned protective film. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a thin film platinum temperature sensor according to an embodiment of the present invention. In the figure, 1 is an insulating base made of an alumina substrate with a width of 5 mm, a length of 20 mm, and a thickness of 1 mm, 2 is a platinum resistive thin film formed by depositing platinum to a thickness of about 3 μm on this insulating base 1, and 3 is a platinum resistive thin film formed on this insulating base 1. an electrode for drawing out lead wires connected to the platinum resistance thin film 2;
4 is a lead wire connected to the electrode 3, and 5 is a protective film made of TiN having a thickness of about 1 μm and covering the platinum resistive thin film 2, and is formed by vacuum evaporation, sputtering, or the like. The protective film 5 made of TiN in this temperature sensor can withstand high temperatures by itself, and does not cause diffusion or reaction to the platinum resistive thin film 2, which is a temperature sensor. It also acts as a barrier to prevent other metals from diffusing into the platinum resistor thin film 2 or causing reactions. As a result, the temperature sensor's initial characteristics (resistance value, temperature coefficient of resistance) are less likely to vary, and its characteristics deteriorate less during long-term use (especially when used at high temperatures), making it highly reliable and comparable to or better than platinum resistance thermometers. Greater accuracy of the indicated temperature can be obtained. Furthermore, since the protective film 5 made of TiN is very thin, it has excellent thermal responsiveness. In the case of this example, the thermal response time (63% point) was 1.2 seconds, while it was 2.1 seconds when glass was used as the protective film. Figure 2 shows the first embodiment.The electrode 3 part of the temperature sensor is covered with a glass paste containing lead silicate as a main component to a thickness of about 500 μm, and then baked at 920°C for 10 minutes to melt and solidify it, forming a glass protective film. An example in which 6 was formed is shown below. By covering the electrode 3 portion with glass in this way, the electrode portion can be protected. FIG. 3 is a sectional view of a third embodiment of the invention. The temperature sensor of this embodiment is similar to that of the first embodiment.
A protective film 7 made of glass is formed on a protective film 5 made of TiN and on the electrode 3. The protective film 7 made of glass is made of glass paste whose main component is lead silicate and has a thickness of about 50 μm (the area above the electrode 3 is about 50 μm thick).
500 μm) and then baked at 920°C for 10 minutes to melt and solidify. Table 1 shows variations (initial characteristics) in the temperature coefficient of resistance (0°C, 100°C reference) of the temperature sensor of this embodiment and the temperature sensor with only glass as a protective film for comparison.

【表】 第2表は同様に本実施例の温度センサとガラス
のみを保護膜とした温度センサ(比較例)つい
て、+500℃,2000時間の高温放置した場合の0℃
における抵抗値変化率と抵抗温度係数の変化を示
したものである。
[Table] Table 2 also shows the temperature sensor of this example and the temperature sensor with only glass as a protective film (comparative example) at 0°C when left at a high temperature of +500°C for 2000 hours.
The figure shows the change in resistance value change rate and resistance temperature coefficient at .

【表】 TiNなしにガラスのみを保護膜とした場合は、
ガラスの焼成時やセンサを高温で使用する際に、
ガラスに含まれる鉛などの金属が白金薄膜に拡散
しその特性を劣化させる。しかしTiNとガラス
の2層構造とした場合は、TiNが拡散障壁とな
り、金属の白金薄膜への拡散を防ぐことができ
る。 なお、前記第1〜第3の実施例においては、保
護膜5としてTiNを用いたものについて説明し
たが、SiCやSiO2を用いても良い。またこれら
TiN,SiC,SiO2を単独で用いる場合に限らず、
これらの2種以上の化合物を用いても良い。また
ガラス保護膜6,7としては硼珪酸系、珪酸亜鉛
系なども使用可能である。 第3表は保護膜としてSiC,SiO2を単独で、ま
たは混合して用いた場合の実施例と、保護膜とし
てガラスを用いた場合の比較例とについて、熱応
答時間と抵抗温度係数を比較して示したものであ
る。
[Table] When using only glass as a protective film without TiN,
When firing glass or using sensors at high temperatures,
Metals such as lead contained in glass diffuse into the platinum thin film and deteriorate its properties. However, in the case of a two-layer structure of TiN and glass, TiN acts as a diffusion barrier and can prevent metal from diffusing into the platinum thin film. In the first to third embodiments, TiN was used as the protective film 5, but SiC or SiO 2 may also be used. Also these
Not only when using TiN, SiC, SiO 2 alone,
Two or more of these compounds may be used. Further, as the glass protective films 6 and 7, borosilicate-based materials, zinc silicate-based materials, etc. can also be used. Table 3 compares the thermal response time and temperature coefficient of resistance for examples in which SiC and SiO 2 are used alone or in combination as the protective film, and comparative examples in which glass is used as the protective film. This is what was shown.

【表】 以上のように本発明の温度センサは構成したの
で以下のような優れた効果が得られる。 (1) 保護膜と白金薄膜との拡散や反応を起こさな
いばかりでなり、他の金属と白金薄膜との拡散
や反応を起こすのを防ぐ障壁となるため、セン
サの初期特性(抵抗値,抵抗温度係数)のばら
つきや、長期使用時(特に高温における使用の
際)の特性の劣化が小さいため信頼性が高くな
り、白金測温抵抗体と同等もしくはそれ以上の
指示温度精度が得られる。 (2) 温度―電気抵抗が直線変化するため補正が不
要となり、回路が単純化できる。 (3) 絶縁基体上に白金薄膜を着膜するため、振動
や衝撃に強い。 (4) 量産化しやすく安価なものができる。
[Table] Since the temperature sensor of the present invention is configured as described above, the following excellent effects can be obtained. (1) The initial characteristics of the sensor (resistance value, Because there is little variation in temperature coefficient) and little deterioration of characteristics during long-term use (especially when used at high temperatures), reliability is high, and temperature indication accuracy equal to or higher than that of platinum resistance thermometers can be obtained. (2) Since the temperature-electrical resistance changes linearly, no correction is necessary, and the circuit can be simplified. (3) A thin platinum film is deposited on the insulating substrate, making it resistant to vibration and impact. (4) It can be mass-produced easily and inexpensively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における一実施例の温度センサ
の断面図、第2図および第3図は同じく他の実施
例の断面図である。 1……絶縁基体、2……白金抵抗薄膜、3……
電極、5……保護膜、6,7……ガラス保護膜。
FIG. 1 is a sectional view of a temperature sensor according to one embodiment of the present invention, and FIGS. 2 and 3 are sectional views of other embodiments. 1... Insulating substrate, 2... Platinum resistive thin film, 3...
Electrode, 5... protective film, 6, 7... glass protective film.

Claims (1)

【特許請求の範囲】 1 絶縁基体上に白金抵抗薄膜と電極を形成し、
この白金抵抗薄膜上にSiC,SiO2またはTiN単独
またはこれらの化合物よりなる保護膜を形成した
薄膜白金温度センサ。 2 絶縁基体上に白金抵抗薄膜と電極を形成し、
この白金抵抗薄膜上にSiC,SiO2またはTiN単独
またはこれらの化合物よりなる第1の保護膜を形
成し、前記電極上と前記第1の保護膜上にガラス
よりなる第2の保護膜を形成した薄膜白金温度セ
ンサ。
[Claims] 1. Forming a platinum resistive thin film and an electrode on an insulating substrate,
This thin film platinum temperature sensor has a protective film made of SiC, SiO 2 or TiN alone or a compound of these formed on this platinum resistance thin film. 2 Forming a platinum resistive thin film and electrodes on an insulating substrate,
A first protective film made of SiC, SiO 2 or TiN alone or a compound thereof is formed on the platinum resistive thin film, and a second protective film made of glass is formed on the electrode and the first protective film. thin film platinum temperature sensor.
JP19149581A 1981-11-27 1981-11-27 Thin film platinum temperature sensor Granted JPS5892201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19149581A JPS5892201A (en) 1981-11-27 1981-11-27 Thin film platinum temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19149581A JPS5892201A (en) 1981-11-27 1981-11-27 Thin film platinum temperature sensor

Publications (2)

Publication Number Publication Date
JPS5892201A JPS5892201A (en) 1983-06-01
JPS6335084B2 true JPS6335084B2 (en) 1988-07-13

Family

ID=16275587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19149581A Granted JPS5892201A (en) 1981-11-27 1981-11-27 Thin film platinum temperature sensor

Country Status (1)

Country Link
JP (1) JPS5892201A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140513A (en) * 1984-08-01 1986-02-26 Hitachi Ltd Membrane type air flow amount apparatus
JPS61148732A (en) * 1984-12-21 1986-07-07 エヌオーケー株式会社 Thermosensitive element
JPS61181104A (en) * 1985-02-06 1986-08-13 シャープ株式会社 Platinum temperature measuring resistor
US4791398A (en) * 1986-02-13 1988-12-13 Rosemount Inc. Thin film platinum resistance thermometer with high temperature diffusion barrier
DE4328791C2 (en) * 1993-08-26 1997-07-17 Siemens Matsushita Components Hybrid thermistor temperature sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104063A (en) * 1976-02-27 1977-09-01 Hitachi Ltd Production of surface protection film in electronic parts
JPS52116076A (en) * 1976-03-26 1977-09-29 Hitachi Ltd Preparation of film for protecting surface of electronic parts
JPS5355992A (en) * 1976-10-29 1978-05-20 Nec Corp Semiconductor device
JPS54107759A (en) * 1978-02-10 1979-08-23 Matsushita Electric Ind Co Ltd Temperature-humidity sensor
JPS56134702A (en) * 1980-02-29 1981-10-21 Leeds & Northrup Co Thin film resistance thermometer having prescribed resistance temperature coefficient and method of producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104063A (en) * 1976-02-27 1977-09-01 Hitachi Ltd Production of surface protection film in electronic parts
JPS52116076A (en) * 1976-03-26 1977-09-29 Hitachi Ltd Preparation of film for protecting surface of electronic parts
JPS5355992A (en) * 1976-10-29 1978-05-20 Nec Corp Semiconductor device
JPS54107759A (en) * 1978-02-10 1979-08-23 Matsushita Electric Ind Co Ltd Temperature-humidity sensor
JPS56134702A (en) * 1980-02-29 1981-10-21 Leeds & Northrup Co Thin film resistance thermometer having prescribed resistance temperature coefficient and method of producing same

Also Published As

Publication number Publication date
JPS5892201A (en) 1983-06-01

Similar Documents

Publication Publication Date Title
US5831512A (en) Resistance thermometer
US4307373A (en) Solid state sensor element
JP3349036B2 (en) Temperature measuring resistor, method for producing the same, and infrared detecting element using the temperature measuring resistor
US8106740B2 (en) Resistance thermometer
GB1501959A (en) Resistors for resistance thermometers
US4424507A (en) Thin film thermistor
US4276535A (en) Thermistor
US4447799A (en) High temperature thermistor and method of assembling the same
JPS6335084B2 (en)
US2216375A (en) Resistance thermometer
JPS62189701A (en) Sintered silicon carbide thermistor
JPS6041441B2 (en) thin film thermistor
JPS6239306Y2 (en)
JPS6252926B2 (en)
JPS63263702A (en) Manufacture of platinum thin film temperature sensor
SU887945A1 (en) Temperature-sensitive resistor
JPS61161701A (en) Thermistor
JPH03255918A (en) Thermally sensitive type gas flow rate detecting device
JPH03214031A (en) Temperature sensor comprising platinum thin film
JPS6011441B2 (en) moisture sensing element
JPH0129247B2 (en)
JPS622685B2 (en)
JPH02177503A (en) Thin film temperature sensor
JPH0344402B2 (en)
JPH0573321B2 (en)