JPS6335074A - Picture processing method - Google Patents

Picture processing method

Info

Publication number
JPS6335074A
JPS6335074A JP61177517A JP17751786A JPS6335074A JP S6335074 A JPS6335074 A JP S6335074A JP 61177517 A JP61177517 A JP 61177517A JP 17751786 A JP17751786 A JP 17751786A JP S6335074 A JPS6335074 A JP S6335074A
Authority
JP
Japan
Prior art keywords
density
register
value
output
binarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61177517A
Other languages
Japanese (ja)
Other versions
JPH0513421B2 (en
Inventor
Munetoshi Unuma
宗利 鵜沼
Ryozo Takeuchi
良三 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61177517A priority Critical patent/JPS6335074A/en
Publication of JPS6335074A publication Critical patent/JPS6335074A/en
Publication of JPH0513421B2 publication Critical patent/JPH0513421B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the scale of circuit and to obtain density expression equal to an original image by determining values to be allotted to each picture element to make the total value equal to density difference information for each value of density difference information. CONSTITUTION:An RAM 19 is looked by the density of a decisive picture element P and values of error a', c', D' to be allotted to picture elements A, C, D and binarization output are obtained. The value of binarization outpnt is outputted as it is. Output c' is added to a register 12 and goes to a buffer memory 16. Output D' is added to a register 11 and goes to the register 12, and output a' is added to a register 13 and goes to a register 14. New density data 23 enters the register 11, and density data before one line enters the register 13 from the memory 16. By repeating this, the errors due to binarization coding is eliminated and pseudo half tone expression can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は画像処理に係り、特に白黒2値で中間調画像を
表現するのに好適な画像処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to image processing, and particularly to an image processing method suitable for expressing a halftone image in black and white binary.

〔従来の技術〕[Conventional technology]

従来、白黒2値で中間翼を表現する擬似中間翼としてデ
イザ法の他にニスアイデー1975年ダイジェスト第3
6項から第37項(SID 75 Digest、pp
Conventionally, in addition to the dither method, Niss I Day 1975 Digest No.
Items 6 to 37 (SID 75 Digest, pp.
.

36−37.1975)で論じられている誤差拡散法が
ある。
There is an error diffusion method discussed in 36-37.1975).

この方法は第2図において、決定画素Pの濃度をP+P
点の回りの画素、A、B、C,Dの濃度−をそれぞれa
ng b((HCn、 dn、 P点における2値化の
ためのしきい値をTとすると、決定画素Pにおける2値
化誤差Eを(1)〜(5)式のように経験的に求めた重
み、I、J、に、Lで、P点の回りの画素any l)
n+ Qn* dnに振り分けて行き、マクロ的に見た
平均濃度を原画の濃度と等しくする方法であり、デイサ
法に比べ、画像の微細な構造が表現出来、また、マクロ
的に見た平均濃度が原画像と等しく出来る特長がある。
In Fig. 2, this method calculates the density of the determined pixel P by P+P.
The density of pixels A, B, C, and D around the point is a
ng b((HCn, dn, If the threshold value for binarization at point P is T, then the binarization error E at the determined pixel P is empirically determined as in equations (1) to (5). With weights I, J, and L, any pixels around point P
n+ Qn* dn, and the average density seen from a macro perspective is made equal to the density of the original image.Compared to the DISA method, the fine structure of the image can be expressed, and the average density seen from a macro perspective is It has the advantage that it can be made to be the same as the original image.

(ただしN+++axは最大濃度、N ll1inは最
小濃度)an”x=an+EXI         ・
・・(2)1)、+1= bn+E X J     
    −(3)CIl”l= Cn + E X K
         ・・・(4)Dn+z= Dn’ 
+ E X L         ・・・(5)ただし
、I+J+に+L=1 重みの一例として、 しかし、この方式を論理回路で実現しようとすると、(
1)〜(5)式より1乗算器、除算器が必要なため1回
路規模が大きくなってしまい、また整数演算をした場合
、丸め誤差のため例えば例として2値化誤差をE=5と
するとEXI=5X7/1にれは整数演算では2、EX
J=5X1/1にれは、0、EXK=5X5/16S:
れは1、EXL=5X3/1にれはOlよって整数演算
をすると、EXI+EXJ+EXK+EXLの値は3と
なり2値化誤差の値E=5と等しくならない。そのため
平均濃度が原画濃度と等しくならず、原画像に比べ濃度
が変化して表現されてしまう欠点があった。
(However, N+++ax is the maximum concentration, Nll1in is the minimum concentration) an"x=an+EXI ・
...(2)1), +1=bn+E X J
−(3) CIl”l= Cn + E X K
...(4) Dn+z=Dn'
+ E
From equations 1) to (5), one multiplier and one divider are required, which increases the size of one circuit, and when integer operations are performed, due to rounding errors, for example, if the binarization error is E = 5, EXI=5X7/1 is 2 in integer operation, EX
J=5X1/1 is 0, EXK=5X5/16S:
This is 1, and EXL=5X3/1, and this is O1. When performing integer arithmetic, the value of EXI+EXJ+EXK+EXL becomes 3, which is not equal to the binarization error value E=5. Therefore, the average density is not equal to the original image density, and there is a drawback that the density is expressed as being changed compared to the original image.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上誤従来技術は1乗算器、除算器のための回路規模の増
大、及び、除算による丸め誤差による。
The conventional technique is due to an increase in circuit scale for one multiplier and a divider, and rounding errors due to division.

マクロ的に見た平均濃度へ変化等の問題があった。There were problems such as changes in the average concentration seen from a macroscopic perspective.

本発明の目的は1乗算器、除算器を不用にすることによ
り、回路規模の減少と、丸め誤差をなくすことである。
An object of the present invention is to reduce the circuit scale and eliminate rounding errors by eliminating the need for single multipliers and dividers.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、従来技術はように1色々発生する2値化誤
差の値に対して、式(5)のように全て同じ重みで(1
)〜(4)のような演算をして振り分けるのではなく、
第3図のように誤差の値ごとに誤差の振り分け方法を決
めておくことにより達成される。
The above purpose is to apply (1
)~(4) instead of calculating and sorting,
This is achieved by determining the error distribution method for each error value as shown in FIG.

〔作用〕[Effect]

従来の方式では、乗算、除算を行い、誤差の振り分け方
法を決めていたが、第1図のように、記憶素子の中に、
誤差の値に応じた誤差の振り分ける数値を決めておけば
、その値と画素濃度との和だけでよいので加算器のみで
回路を構成出来また、振り分ける数値の合計を誤差の値
と等しくしてけば丸め誤差もなくなる。また、誤差の値
によって振り分け方法も自由に変えられるためにさらに
美しい表現方法及び回路の単純化も可能である。
In the conventional method, multiplication and division were performed to determine how to allocate errors, but as shown in Figure 1, there is a
If you decide on a numerical value to allocate the error according to the error value, you only need to add that value and the pixel density, so you can configure the circuit with only an adder. This also eliminates rounding errors. Furthermore, since the distribution method can be freely changed depending on the error value, it is possible to use a more beautiful expression method and simplify the circuit.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図により説明する。23
は4 bitの濃度データ11,12,13゜14、は
画素の濃度が入っているレジスタであり中の符号A、C
,D、Pは第ム図の符号と一致する。16は一ラインの
画像データを記憶しているラインメモリ、15は、加算
器(最大値は15゜最小値はO)、19は、誤差の振分
け方法を記憶しているRAMであり従来例では、第 図
のBにも振分けていたが簡単化のためそれをはぶいた1
7はRAMのアドレスであり、14の濃度の値でアドレ
スを指定するようにする。この表ではさらに簡単にする
ため第 図のように誤差の値で指定するのではなく、濃
度の値で振り分けられるようにした、なお、この実施例
の表では、2値化のしきい値を8としている。22,2
1.20は、画素A、C,Dに振り分ける誤差の値、1
8は。
An embodiment of the present invention will be described below with reference to FIG. 23
is the 4-bit density data 11, 12, 13°14 is the register containing the density of the pixel, and the codes inside are A and C.
, D, and P match the symbols in Figure M. 16 is a line memory that stores one line of image data, 15 is an adder (maximum value is 15°, minimum value is O), and 19 is a RAM that stores error distribution method. , it was also assigned to B in Figure 1, but was omitted for the sake of simplicity.1
7 is the address of the RAM, and the address is specified by the density value of 14. In order to make this table even simpler, instead of specifying the error value as shown in Figure 1, it is possible to sort by density value. It is set at 8. 22,2
1.20 is the error value distributed to pixels A, C, and D, 1
8 is.

2値化出力の値、24は2値化出力である。The value 24 of the binarized output is the binarized output.

まず決定画素Pの濃度で19のRA Mを引き。First, subtract 19 RA M from the density of the determined pixel P.

画素A、C,Dに振り分ける誤差の値 1 、 C/。Error value distributed to pixels A, C, and D: 1, C/.

D′及び、2値化出力を得る。2値化出力値はそのまま
出力する。D′は12と加算されバッファーメモリ16
に行く、D′は11と加算され12へ、a′は13と加
算され14へ行く、また新しい濃度データ23は、11
へ1ライン前の濃度データは16から13へそれぞれ入
ってくる。これをくりかえすことにより、2値化による
誤差をなくした擬似中間調表現が出来る。
D' and a binarized output are obtained. The binarized output value is output as is. D' is added to 12 and the buffer memory 16
D' is added to 11 and goes to 12, a' is added to 13 and goes to 14, and new density data 23 is added to 11.
The density data for the previous line is input from 16 to 13, respectively. By repeating this process, pseudo-halftone expression can be achieved that eliminates the error caused by binarization.

本実施例によれば、従来例の乗算器、除算器が不要にな
り1回路規模が減少出来なおかつ、誤差の値によってそ
れを振り分ける重みも自由に変えられるため、さらに美
しい中間調表現が可能になる効果がある。
According to this embodiment, the multiplier and divider of the conventional example are not required, and the scale of one circuit can be reduced. Furthermore, the weight for distributing errors can be freely changed depending on the error value, making it possible to express even more beautiful halftones. There is a certain effect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、加算器のみで回路を構成出来また。丸
め誤差の影響もなくすことができるので回路規模の減少
及び原画像と等しい濃度表現の効果がある。
According to the present invention, a circuit can be configured with only adders. Since the influence of rounding errors can also be eliminated, there is an effect of reducing the circuit scale and expressing density equal to that of the original image.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路構成図、第2図は画素
の説置図、第3図の誤差の振り分け方法の一例を示す図
である。 11.12,13.14・・・画素濃度用のレジスタ、
16・・・1ライン用ラインメモリ、15・・・加算器
、19・・・誤差振り分け用RAM。
FIG. 1 is a circuit configuration diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of pixels, and FIG. 3 is a diagram showing an example of an error distribution method. 11.12, 13.14...Register for pixel density,
16... Line memory for one line, 15... Adder, 19... RAM for error distribution.

Claims (1)

【特許請求の範囲】[Claims] 1、原画濃度と2値化決定後の濃度差情報を周囲の画素
に振り分け平均濃度を原画濃度と等しくなるようにした
擬似中間調表現方法において、濃度差情報の値ごとに、
その値を合計値が濃度差情報と等しくなるように各画素
に振り分ける数値を決めておくことを特徴とする画像処
理方法。
1. In a pseudo halftone expression method that distributes the original image density and the density difference information after binarization determination to surrounding pixels so that the average density is equal to the original image density, for each value of the density difference information,
An image processing method characterized by determining numerical values for distributing the values to each pixel so that the total value is equal to density difference information.
JP61177517A 1986-07-30 1986-07-30 Picture processing method Granted JPS6335074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61177517A JPS6335074A (en) 1986-07-30 1986-07-30 Picture processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61177517A JPS6335074A (en) 1986-07-30 1986-07-30 Picture processing method

Publications (2)

Publication Number Publication Date
JPS6335074A true JPS6335074A (en) 1988-02-15
JPH0513421B2 JPH0513421B2 (en) 1993-02-22

Family

ID=16032295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61177517A Granted JPS6335074A (en) 1986-07-30 1986-07-30 Picture processing method

Country Status (1)

Country Link
JP (1) JPS6335074A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100463A (en) * 1988-10-06 1990-04-12 Fuji Xerox Co Ltd Half-tone image forming device
US5621542A (en) * 1994-01-20 1997-04-15 Canon Kabushiki Kaisha Image processing apparatus and method with weighting of error data generated in quantization
US7315395B2 (en) 2002-03-15 2008-01-01 Canon Kabushiki Kaisha Image processing apparatus, image processing method, program for implementing the method, and storage medium
US7339698B1 (en) 1998-07-02 2008-03-04 Canon Kabushiki Kaisha Image processing method and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100463A (en) * 1988-10-06 1990-04-12 Fuji Xerox Co Ltd Half-tone image forming device
US5621542A (en) * 1994-01-20 1997-04-15 Canon Kabushiki Kaisha Image processing apparatus and method with weighting of error data generated in quantization
US7339698B1 (en) 1998-07-02 2008-03-04 Canon Kabushiki Kaisha Image processing method and apparatus
US7315395B2 (en) 2002-03-15 2008-01-01 Canon Kabushiki Kaisha Image processing apparatus, image processing method, program for implementing the method, and storage medium

Also Published As

Publication number Publication date
JPH0513421B2 (en) 1993-02-22

Similar Documents

Publication Publication Date Title
US5034990A (en) Edge enhancement error diffusion thresholding for document images
JPS62216476A (en) Picture processor
EP0506946B1 (en) High speed digital error diffusion process for continuous tone image-to-binary image conversion
KR970049858A (en) Image processing method and apparatus
JP2005065227A (en) Image processing method, program, storage medium, and apparatus
ATE75571T1 (en) SYSTEM FOR GENERATION OF DIVERTER IMAGES FROM CONTINUOUS TONE IMAGE DATA.
JPS6335074A (en) Picture processing method
EP0160363A2 (en) Binarizing system of picture image signals
CN100355268C (en) Image processing apparatus, image forming apparatus, image processing method, program, and recording medium
JP2848569B2 (en) Image data binarization method and image processing apparatus
KR910008947A (en) Digital filter for digital image data filter
JP2570890B2 (en) Image processing device
JPH0257365A (en) Image processing system
JPH04217172A (en) Picture processor
JPH08115417A (en) Histogram conversion method
JPH01238373A (en) Picture signal processor
JPS63288568A (en) Image processor
JPS63288370A (en) Method and device for processing image
JPS60191562A (en) Picture processing unit
JPS63155954A (en) Picture signal processor
JPH02181878A (en) Image processor
JPS61118071A (en) Picture processing device
JPH09247446A (en) Signal processor and method therefor
JPS63181569A (en) Picture processing method
JPH03140061A (en) Picture processor