JPH01238373A - Picture signal processor - Google Patents

Picture signal processor

Info

Publication number
JPH01238373A
JPH01238373A JP63066585A JP6658588A JPH01238373A JP H01238373 A JPH01238373 A JP H01238373A JP 63066585 A JP63066585 A JP 63066585A JP 6658588 A JP6658588 A JP 6658588A JP H01238373 A JPH01238373 A JP H01238373A
Authority
JP
Japan
Prior art keywords
error
level
pixel
input
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63066585A
Other languages
Japanese (ja)
Inventor
Toshiharu Kurosawa
俊晴 黒沢
Hiroyoshi Tsuchiya
博義 土屋
Yuji Maruyama
祐二 丸山
Katsuo Nakazato
中里 克雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63066585A priority Critical patent/JPH01238373A/en
Priority to US07/324,780 priority patent/US4924322A/en
Priority to EP89302732A priority patent/EP0333520B1/en
Priority to DE8989302732T priority patent/DE68902662T2/en
Publication of JPH01238373A publication Critical patent/JPH01238373A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the gradation and resolution characteristics of the title device and to make the picture element processing speed faster by binarizing the input correction level to a noticeable picture element considering an accumulated error corresponding to the noticeable picture element and accumulated errors of the surroundings and finding a new binarized error from the difference between the sum of the noticeable picture element and the accumulated errors and a binarized result. CONSTITUTION:The 1st input correcting means 5 adds an input level Lxy and error correction level exy to each other and outputs an input correction level I1xy. The corrected input level I1xy is binarized by means of a binarizing means 8 by using the fixed threshold T=R/2 of a signal terminal 7. Then a new binarized error is found by subtracting the binarized result of the correction level I1xy from the correction level I2xy to which an accumulated error Sxy is added. When the factor Ka to be used for multiplying an accumulated error Sxy and another factor Kb to be used for multiplying the total sum of accumulated errors SA, SB, and SD of surrounding picture elements areas are respectively made smaller within ranges of 0<Ka<1 and 0<Kb<1, the picture signal component of a noticeable picture element becomes relatively larger and an output picture with an emphasized contour is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、階調画像を含む画像情報を2値再生する機能
を備えた画像信号処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an image signal processing device having a function of binary-reproducing image information including gradation images.

従来の技術 近年事務処理の機械化や画像通信の急速な普及に伴って
、従来の白黒2値原稿の他に、階調画像や印刷画像の高
品質での画像再現に対する要望が高まって来ている。特
に、階調画像の2値画像による擬似階調再現は、表示装
置や記録装置との適合性が良く、多くの提案がなされて
いる。
Conventional technology In recent years, with the mechanization of office processing and the rapid spread of image communications, there has been an increasing demand for high-quality image reproduction of gradation images and printed images, in addition to conventional black-and-white binary originals. . In particular, pseudo gradation reproduction using a binary image of a gradation image is highly compatible with display devices and recording devices, and many proposals have been made.

これらの擬似階調再現の1つの手段として、デイザ法が
最もよく知られている。この方法は、予め定められた一
定面積において、その面積内に再現するドツトの数によ
って階調を再現しようとするもので、デイザマトリクス
に用意した閾値と入力画情報を1画素毎に比較しなから
2値化処理を行っている。この方法は階調特性と分解能
特性がディザマ) IJクスの大きさに直接依存し、互
いに両立できない関係にある。また印刷画像などに用い
た場合、再現画像におけるモアレ模様の発生は避けがた
い。
The dither method is the most well-known method for reproducing these pseudo gradations. This method attempts to reproduce gradation based on the number of dots reproduced within a predetermined area, and compares a threshold value prepared in a dither matrix with input image information for each pixel. Therefore, binarization processing is performed. In this method, the gradation characteristics and resolution characteristics directly depend on the size of the IJ square, and are incompatible with each other. Furthermore, when used for printed images, it is difficult to avoid the occurrence of moiré patterns in the reproduced image.

上記階調特性と高分解能が両立し、かつモアレ模様の発
生抑制効果の大きい方法として、誤差拡散法(文献二ア
ール・フロイド アンド エル・スティンバーブ 1ア
ン アダプティブ アルゴリズム 7オー スペシャル
 グレー スケール”ニスアイデイ−75ダイジェスト
36〜37ページ)が提案されている。
As a method that achieves both the above gradation characteristics and high resolution, and has a large effect of suppressing the occurrence of moiré patterns, the error diffusion method (Reference: R. Freud and L. Steinbarb 1.1.1.1 Special Gray Scale "Niside-75" Digest pages 36-37) are proposed.

第4図は上記誤差拡散法を実現するための装置の要部ブ
ロック図である。原画像における注目画素の座標を(x
、  y)とするとき、1は誤差記憶手段、2は誤差配
分係数マ) IJクスの示す注目画素の周辺の未処理画
素領域、3は座標(X、  y)における集積誤差Sx
yの記憶位置、4は座標(x。
FIG. 4 is a block diagram of essential parts of an apparatus for realizing the above error diffusion method. The coordinates of the pixel of interest in the original image are (x
, y), 1 is the error storage means, 2 is the error distribution coefficient (ma), the unprocessed pixel area around the pixel of interest indicated by the IJx, and 3 is the integrated error Sx at the coordinates (X, y).
The storage location of y, 4 is the coordinate (x.

y)における入力レベルIxyの入力端子、5はI’x
y (= Ixy + Sxy )の入力補正手段、6
は出力レベル0またはRの2値化レベルPxyの出力端
子、7は一定閾値R/2を印加する信号端子、8は入力
信号I’xy≧R/2の時Pxy = Rを、yco他
os合はPxy = 0を出力する2値化手段、9はE
xy(= I’xy −Pxy )の注目画素に対する
2値化誤差を求める差分演算手段である。
y), the input terminal of the input level Ixy, 5 is I'x
y (= Ixy + Sxy) input correction means, 6
is an output terminal of output level 0 or R binary level Pxy, 7 is a signal terminal for applying a constant threshold value R/2, 8 is an input signal Pxy = R when input signal I'xy≧R/2, yco and other os Binarization means outputs Pxy = 0 if 9 is E
This is a difference calculation means for calculating the binarization error for the pixel of interest of xy (=I'xy - Pxy).

さて、注目画素に対する集積誤差Sxyは第(玖(2)
式で表わされる。
Now, the integration error Sxy for the pixel of interest is the (ku (2)
It is expressed by the formula.

5xy=DKij−Ex−j+2.y−i−H−−−<
1>(但し、i、jは誤差配分係数マトリクス内の座標
を示す。) この誤差配分係数Kijは誤差Exyの注目画素の周辺
画素への配分の重み付けをするもので前記文献では (但し、*は注目画素の位置) を例示している。
5xy=DKij-Ex-j+2. y-i-H---<
1> (However, i and j indicate the coordinates in the error distribution coefficient matrix.) This error distribution coefficient Kij weights the distribution of the error Exy to the surrounding pixels of the pixel of interest, and in the above literature (however, * is the position of the pixel of interest).

第4図の構成では、上記の演算は注目画素に対する2値
化誤差Exyに、未処理の周辺画素領域2内の各画素A
−Dに対応する配分係数を乗算し、誤差記憶手段1内の
値に加算し再び該当位置へ記憶させる誤差配分演算手段
10によって実現している。ただし、誤差記憶手段1の
画素位置Bの集積誤差は予め0にクリアされている。
In the configuration shown in FIG. 4, the above calculation adds the binarization error Exy to the pixel of interest to each pixel A in the unprocessed surrounding pixel area 2.
This is realized by the error distribution calculation means 10 which multiplies -D by the corresponding distribution coefficient, adds it to the value in the error storage means 1, and stores it again at the corresponding position. However, the integrated error at pixel position B in the error storage means 1 is cleared to 0 in advance.

発明が解決しようとする課題 さて上記の誤差拡散法は、組織的デイザ法に比して階調
特性や分解能の点ですぐれておシ、又印刷物画像の再現
時においてもモアレ模様の出現は極めて少ない特長を持
っている。しかしながら、ランダムデイザ法の一種であ
る濃度集積再配分法コリレーティプ デンスティー ア
サイメントオブ アドジエセント ビクセル キャピッ
クス法(Correlative Density A
signment of Adjacent Pixc
els・・・・・・CAPI%法)と比較するとまだ十
分な階調・解像度特性は悪く、テクスチャも発生する。
Problems to be Solved by the Invention The above-mentioned error diffusion method is superior to the systematic dither method in terms of gradation characteristics and resolution, and is extremely resistant to the appearance of moiré patterns when reproducing printed images. It has few features. However, the Correlative Density A redistribution method, which is a type of random dither method,
signment of Adjacent Pixc
els...CAPI% method), the gradation and resolution characteristics are still poor and texture is generated.

なめらかな階調特性を得る方法として、注目画素の周辺
画素領域を大きく取って誤差をできるだけ平均的に小さ
くすることが知られているが、この場合は解像度が劣化
する。又加算演算も多くかな多処理速度も遅くなるとい
う課題を有している。
As a method of obtaining smooth gradation characteristics, it is known that the pixel area surrounding the pixel of interest is enlarged to reduce the average error as much as possible, but in this case, the resolution deteriorates. Another problem is that the number of addition operations is large and the multi-processing speed is slow.

本発明は上記誤差拡散法の課題を注目画素位置の集積誤
差とその周辺の誤差をも考慮して、緻密でなめらかな階
調特性と高分解能にすぐれ、かつ印刷画像の再生物にも
モアレ模様の発生が極めて少なく、しかも誤差配分係数
はすべて1律で良く高速な画素処理が可能となる画像信
号処理装置を提供するものである。
The present invention solves the problem of the error diffusion method by taking into account the accumulation error at the pixel position of interest and the errors in its surroundings, and achieves fine and smooth gradation characteristics and high resolution, and also reproduces printed images with moiré patterns. The object of the present invention is to provide an image signal processing device in which the occurrence of error distribution coefficients is extremely small, all error distribution coefficients are uniform, and high-speed pixel processing is possible.

課題を解決するだめの手段 本発明は画素単位でサンプリングした多階調の画信号レ
ベルを2値化する際に、注目画素の2値化誤差をその周
辺の画素位置に対応させて記憶する誤差記憶手段と、前
記誤差記憶手段内の注目画素位置に対応した集積誤差と
その周辺の誤差とを加算演算し誤差補正レベルを出力す
る補正誤差演算手段と、前記誤差補正レベルと注目画素
の入力レベルとを加算し第1の入力補正レベルを出力す
る第1の入力補正手段と、前記第1の入力補正レベルを
予め定められた閾値と比較し注目画素の2値化レベルを
決定する2値化手段と、前記法用画素の入力レベルと前
記集積誤差とを加算し第2の入力補正レベルを出力する
入力補正手段と、前記第2の入力補正レベルと2値化レ
ベルとの差分により2値化誤差を求める差分演算手段と
、前記差分演算手段からの2値化誤差と誤差配分係数か
ら注目画素周辺の未処理画素に対応する誤差配分値を算
出し、前記誤差配分値を前記誤差記憶手段内の対応する
画素位置の集積誤差とを加算し再び記憶させる誤差配分
更新手段とを設けたものである。
Means for Solving the Problems The present invention provides an error method that stores the binarization error of a pixel of interest in correspondence with its surrounding pixel positions when binarizing a multi-gradation image signal level sampled in pixel units. a storage means; a correction error calculation means for adding an integrated error corresponding to the pixel position of interest in the error storage means and errors in its surroundings and outputting an error correction level; and the error correction level and the input level of the pixel of interest. and a binarization unit that compares the first input correction level with a predetermined threshold value to determine a binarization level of the pixel of interest. input correction means for adding the input level of the method pixel and the integration error and outputting a second input correction level; a difference calculating means for calculating a conversion error, and calculating an error allocation value corresponding to unprocessed pixels around the pixel of interest from the binarization error and error allocation coefficient from the difference calculating means, and storing the error allocation value in the error storage means. Error distribution updating means is provided for adding the accumulated error of the corresponding pixel position within the total number of pixels and storing the result again.

特に、補正誤差演算手段は注目画素に対応した集積誤差
とその周辺の誤差の総和のそれぞれに係数1/2n又は
1−−L<但し、nは正の整数)を乗算n して加算演算し誤差補正レベルを求めることにより、上
記目的を達成するものである。
In particular, the correction error calculation means multiplies the integrated error corresponding to the pixel of interest and the sum of surrounding errors by a coefficient 1/2n or 1--L (where n is a positive integer) and performs an addition operation. The above objective is achieved by determining the error correction level.

作用 本発明は上記構成により、注目画素に注目画素位置に対
応する集積誤差とその周辺の集積誤差をも考慮した入力
補正レベルを2値化し、新たな2値化誤差を注目画素と
集積誤差との和と前記2値化結果との差分て求め、しか
も誤差配分係数を1律百とすることによって、階調特性
と解像度特性を改善し、しかも高速画素処理を可能とし
たものである。又、前記補正誤差演算手段によって演算
係数を適当に選択することで、輪郭強調効果を制御でき
る。
Effect of the Invention With the above configuration, the present invention binarizes the input correction level that takes into account the integration error corresponding to the pixel position of interest and the integration errors around it, and converts the new binarization error into the integration error between the pixel of interest and the integration error. By calculating the difference between the sum of and the binarization result and setting the error distribution coefficient to 100, the gradation characteristics and resolution characteristics are improved, and high-speed pixel processing is made possible. Furthermore, the contour enhancement effect can be controlled by appropriately selecting the calculation coefficients by the correction error calculation means.

実施例 第1図は本発明の一実施例における画像信号処理装置の
要部ブロック構成を示したものである。
Embodiment FIG. 1 shows the main block configuration of an image signal processing apparatus in an embodiment of the present invention.

第1図において、原画像における注目画素の座標を(x
、  y)とするとき、1は誤差を記憶する誤差記憶手
段、2は誤差配分係数マトリックスの示す注目画素にお
ける周辺の未処理画素領域、3は座標(x、  y)に
おける集積誤差Sxyの記憶位置、4は座標(x、  
y)における入力レベルIxyの入力端子、5は入力レ
ベルIxyと後述する補正誤差演算手段12からの出力
である補正誤差レベルExyを入力して入力補正レベル
hxyを出力する第1の入力補正手段、6は出力レベル
OまたはRの2値化レベルPxyの出力端子、7は一定
閾値T=R/2を印加する信号端子、8は入力補正レベ
ルL xyと一定閾値T=R/2を比較してlxy≧T
のときPxy = Rをその他の場合はpxy=oを出
力する2値化手段、101は入力レベルIxyと集積誤
差Sxyを入力して入力補正レベルI2 xyを出力す
る第2の入力補正手段、9は前記補正レベルl2Xyと
2値化出力レベルPxyとの差分である2値化誤差Ex
yを出力する差分演算手段、11は注目画素の周辺の未
処理画素に対応する誤差配分係数と2値化誤差を乗算し
て周辺画素領域2の集積誤差を加算し新たな集積誤差を
再び誤差記憶手段1内の画素位置A−Dに記憶させる誤
差配分更新手段、12は注目画素位置3に対応する集積
誤差Sxyと周辺画素領域2内の集積誤差とを入力して
誤差補正レベルexyを出力する補正誤差演算手段であ
る。
In Figure 1, the coordinates of the pixel of interest in the original image are (x
, y), 1 is the error storage means for storing the error, 2 is the unprocessed pixel area around the pixel of interest indicated by the error distribution coefficient matrix, and 3 is the storage position of the integrated error Sxy at the coordinates (x, y). , 4 is the coordinate (x,
y), 5 is an input terminal for input level Ixy, and 5 is a first input correction means that inputs input level Ixy and a correction error level Exy which is an output from correction error calculation means 12 described later, and outputs an input correction level hxy; 6 is an output terminal for the binarization level Pxy of output level O or R, 7 is a signal terminal for applying a constant threshold value T=R/2, and 8 is a signal terminal for comparing the input correction level L xy with the constant threshold value T=R/2. te lxy≧T
Binarization means outputs Pxy=R when Pxy=R, and pxy=o in other cases; 101 is a second input correction means that inputs the input level Ixy and the integration error Sxy and outputs the input correction level I2xy; 9 is the binarization error Ex, which is the difference between the correction level l2Xy and the binarization output level Pxy.
A difference calculating means 11 outputs y, and 11 multiplies the error distribution coefficient corresponding to unprocessed pixels surrounding the pixel of interest by the binarization error, adds the integrated error of the surrounding pixel area 2, and calculates the new integrated error as an error again. Error allocation updating means 12 stores the accumulated error Sxy corresponding to the pixel position 3 of interest and the accumulated error in the surrounding pixel area 2 in the pixel positions A-D in the storage means 1, and outputs an error correction level exy. This is a correction error calculation means.

さて、第1図の動作について詳細に述べる。Now, the operation shown in FIG. 1 will be described in detail.

第1の入力補正手段5によって出力される入力補正レベ
ルhxyは12の補正誤差演算手段によって注目画素位
置に対応する集積誤差Sxyに係数Kaを乗算した結果
と、更に注目画素位置3の周辺画素領域のA、  B、
  C,Dに対応するそれぞれの集積誤差S^*  3
a、 Sc、  Soをそれぞれ加算しその加算結果に
係数Kbを乗算する。これらの乗算結果を誤差補正レベ
ルexyとして出力し、第1の入力補正手段5によって
入力レベル■xyト前記誤差補正レベルexyとを加算
し入力補正レベルlxyを出力する。この補正された入
力レベルhxyを信号端子7の一定閾値T=R/2によ
り2値化手段8で2値化する。その際2値化出力Pxy
はh xy≧R/2の時R,hxy<R/2のとき0と
して出力する。このときに発生する2値化誤差Exyは
注目画素3に対応する位置の集積誤差Sxyと入力レベ
ルIxyとを第2の入力補正手段9によって加算して得
られる入力補正レベルl2xYから、前記2値化出力P
xyを差分する差分演算手段10によって得られる。こ
の2値化誤差は更に誤差配分更新手段11によってこの
周辺画素領域の各位置に対応する記憶装置に記憶されて
いるそれ迄の画素処理過程における集積誤差S% 、 
 S/c、 St。
The input correction level hxy output by the first input correction means 5 is the result of multiplying the integrated error Sxy corresponding to the pixel position of interest by a coefficient Ka by the twelve correction error calculation means, and the peripheral pixel area of the pixel position of interest 3. A, B,
Each integration error S^* 3 corresponding to C and D
a, Sc, and So are added, and the addition result is multiplied by a coefficient Kb. These multiplication results are output as an error correction level exy, and the first input correction means 5 adds the input level xy to the error correction level exy to output an input correction level lxy. This corrected input level hxy is binarized by the binarizing means 8 using a constant threshold value T=R/2 of the signal terminal 7. At that time, the binary output Pxy
outputs R when hxy≧R/2, and outputs 0 when hxy<R/2. The binarization error Exy generated at this time is calculated from the input correction level l2xY obtained by adding the integrated error Sxy at the position corresponding to the pixel of interest 3 and the input level Ixy by the second input correction means 9. conversion output P
It is obtained by the difference calculation means 10 that differentiates xy. This binarization error is further converted into an integrated error S% in the pixel processing process up to that point, which is stored in the storage device corresponding to each position of this peripheral pixel region by the error distribution updating means 11.
S/c, St.

を読み出し、新たな集積誤差S^〜RDを演算する。is read out and a new integrated error S^~RD is calculated.

そして新たな集積誤差を誤差記憶手段1内の画素位置A
−Dに対応する記憶装置に記憶させる更新処理をする。
Then, the new integrated error is stored at pixel position A in the error storage means 1.
-Perform update processing to store in the storage device corresponding to D.

以上の1画素処理過程を式で表わすと、IIXY = 
Ixy + exy llxy = Ixy+5xyKa +(SA+SC+
5o)Kb(但し、0<Ka<1.        ・
・・・・・(3)0<Kb<1) Exy = hxy −Pxy −(Ixy + Sxy ) −Pxy     =1
5)となる。
Expressing the above one-pixel processing process in a formula, IIXY =
Ixy + exyllxy = Ixy+5xyKa + (SA+SC+
5o) Kb (however, 0<Ka<1.・
...(3) 0<Kb<1) Exy = hxy -Pxy -(Ixy + Sxy) -Pxy = 1
5).

更に、入力補正レベルbxyと新たな2値化誤差Exy
について詳細に述べる。
Furthermore, input correction level bxy and new binarization error Exy
I will explain in detail.

今、周辺画素領域の各位置に対応する誤差配分係数KA
−に、を1、更に係数Ka = Kb = 1とすると
、入力レベルIxyに補正される補正誤差レベルexy
は、これまでの過程の誤差の集積がそれぞれ Sxy =7(Ex−1,y−1+Ex、  y−1+
Ex+ 1. y −1十Ex−s、 y) SA  =7(Ex、y−1+EX+1.y−1+EX
+2.y−t)Ba  =0 ■ SD =7(Ex−1,y+Ex−2,いと表わすこと
ができるので exy=Sxy+ (SA+SC十5D)=8(Ex−
1,y−t+2Ex、y−t+2Ex+x、y−1+3
Ex−1,y+EX+2. y−t+Ex−2,いとな
る。従って注目画素と集積誤差との相関において、第2
図に示すような注目画素の周辺領域を形成する。このよ
うな相関に基すいて形成された誤差成分によって、入力
レベルIxyを補正スルコとは注目画素を含む周辺の誤
差成分を平均的に補正することを意味し、滑らかな再生
画像を得ることができる。更に係数Ka、Kbを小さく
選択することによって注目画素処理における補正量が小
さくなって、その結果注目画素の画信号成分が大きくな
り輪郭の強調された再生画像が得られる。
Now, the error distribution coefficient KA corresponding to each position in the peripheral pixel area
-, and further set the coefficient Ka = Kb = 1, the correction error level exy corrected to the input level Ixy
The accumulation of errors in the previous processes is Sxy = 7(Ex-1, y-1+Ex, y-1+
Ex+ 1. y −10Ex−s, y) SA =7(Ex, y−1+EX+1.y−1+EX
+2. y-t) Ba = 0 ■ SD = 7 (Ex-1, y + Ex-2, so it can be expressed as exy = Sxy + (SA + SC + 5D) = 8 (Ex-
1, y-t+2Ex, y-t+2Ex+x, y-1+3
Ex-1,y+EX+2. y-t+Ex-2. Therefore, in the correlation between the pixel of interest and the integration error, the second
A surrounding area of the pixel of interest as shown in the figure is formed. The input level Ixy is corrected by the error component formed based on such correlation. Surco means to averagely correct the error components around the pixel of interest, and it is possible to obtain a smooth reproduced image. can. Further, by selecting the coefficients Ka and Kb to be small, the amount of correction in processing the pixel of interest becomes small, and as a result, the image signal component of the pixel of interest becomes large, and a reproduced image with an enhanced outline is obtained.

さて、新たな2値化誤差は本発明の特徴の1つであるが
、入力レベルIxyに集積誤差3xyヲ加!した補正レ
ベルI+xyから前述した補正レベルIIXyの2値化
した結果を減算して求められたことであシ、従来の誤差
拡散法のように2値化される補正レベルより求めるので
はない。この理由は、本発明における入力レベルIxy
に補正される誤差レベルexyは、注目画素とその周辺
の誤差との相関から成牛された誤差成分の一部を重畳し
たもので、この系で得られる誤差は濃度保存系を満足し
ない。従って濃度保存系を維持するための新たな誤差は
、注目画素と誤差配分係数の総和が1になるような系で
の集積誤差、即ち、5xy=DKij・Ex−j+z、
 y−i−Hと入カレベ/1zIxyとの加算値より求
める。
Now, the new binarization error is one of the features of the present invention, but the integration error 3xy is added to the input level Ixy! This is obtained by subtracting the binarized result of the above-mentioned correction level IIXy from the correction level I+xy, and is not obtained from the binarized correction level as in the conventional error diffusion method. The reason for this is that the input level Ixy in the present invention
The error level exy that is corrected is a superposition of a part of the error component that is calculated from the correlation between the pixel of interest and the errors in its surroundings, and the error obtained with this system does not satisfy the density conservation system. Therefore, the new error for maintaining the density preservation system is the integration error in a system where the sum of the pixel of interest and the error distribution coefficient is 1, that is, 5xy=DKij・Ex−j+z,
It is obtained from the addition value of y-i-H and input level/1zIxy.

次に誤差補正レベルexyを求ちる場合に、集積誤差S
xyに乗算される係数Kaと、周辺画素領域の集積誤差
S^、 SB、 3oの総和に乗算される係数Kbを説
明の便宜上Ka = Kb = 1としたが、KaKb
をそれぞれO<K、a<1.O<Kb<1の範囲で小さ
くすると相対的に注目画素の画信号成分が大きくなり輪
郭の強調された出力画像が得られる。
Next, when calculating the error correction level exy, the integrated error S
For convenience of explanation, the coefficient Ka multiplied by
O<K, a<1., respectively. If it is made small within the range of O<Kb<1, the image signal component of the pixel of interest will become relatively large, and an output image with enhanced contours will be obtained.

例えば、係数Kaを大きくとり(即ち集積誤差の影響を
大きく)、またKbを小さくする(即ち注目画素周辺の
誤差成分を小さくする)と、緻密な再生画像は得られな
い。又、Ka、Kbも大きくすると、誤差成分の補正領
域を大きくとったこととなって、全体にぼけた再生画像
となる。反対にKa。
For example, if the coefficient Ka is made large (that is, the influence of the integration error is made large) and Kb is made small (that is, the error component around the pixel of interest is made small), a precise reproduced image cannot be obtained. Furthermore, if Ka and Kb are also increased, the error component correction area becomes larger, resulting in a reproduced image that is entirely blurred. On the contrary, Ka.

Kbの両者とも小さくした場合は、輪郭の極めて強調さ
れた再生画像となる。Kaを小さくLKbを大きくする
と輪郭強調されたしかも緻密な再生画像が得られる。こ
のことは、前述したようにKaを小さくすることにより
相対的に注目画素の画信号成分が大きくなって輪郭を強
調する効果があり、又Kbを大きくすることは注目画素
の周辺の誤差成分による補正割合が大きくすることであ
り、緻密な再生画像を得る効果がある。これらの係数は
1/2n(nは整数)又は1−≦Lにすることn によって論理演算が容易であり、高速処理が可能となる
If both Kb are made small, the reproduced image will have extremely emphasized contours. When Ka is made small and LKb is made large, a reproduced image with enhanced contours and high precision can be obtained. This means that, as mentioned above, by decreasing Ka, the image signal component of the pixel of interest becomes relatively large, which has the effect of emphasizing the outline, and by increasing Kb, the error component around the pixel of interest increases. This increases the correction ratio, which has the effect of obtaining a precise reproduced image. By setting these coefficients to 1/2n (n is an integer) or 1-≦L, logical operations are easy and high-speed processing is possible.

第3図は、本発明の第2の実施例における画像信号処理
装置の要部ブロック構成図で、第1の実施例と異なる点
についてのみ述べる。
FIG. 3 is a block diagram of main parts of an image signal processing apparatus according to a second embodiment of the present invention, and only the points different from the first embodiment will be described.

第3図において、7は一部間値T=%を印加する信号端
子である。8は入力レベルIxyと閾値補正値T′を入
力して比較する比較器で、Ixy≧T’のときPxy 
= R1その他のときPxy = Oを出力する2値化
手段である。305は補正誤差演算手段12によって出
力された誤差補正レベルexyと、一定量値Tを入力し
てその差分を演算する閾値補正手段である。
In FIG. 3, 7 is a signal terminal to which a partial value T=% is applied. 8 is a comparator that inputs and compares the input level Ixy and the threshold correction value T', and when Ixy≧T', Pxy
= R1 and other times, this is a binarization means that outputs Pxy = O. Reference numeral 305 denotes a threshold value correction means for inputting the error correction level exy outputted by the correction error calculation means 12 and a fixed amount value T, and calculating the difference therebetween.

動作原理は、第1の実施例と同じであるが、第1の実施
例と異なる点は、第1の実施例では誤差補正レベルex
yは入力レベルIxyに加算された入力補正レベルを一
定閾値によって2値化したのに対し、本実施例では入力
レベルを閾値補正値T′により2値化するようにした点
である。すなわち、本実施例の特徴は2値化手段8の演
算を軽くできることである。第1の実施例の2値化演算
は10ビツト演算が必要であるが、本実施例では9ビツ
ト演算が可能となる。
The operating principle is the same as the first embodiment, but the difference from the first embodiment is that in the first embodiment, the error correction level
y is that the input correction level added to the input level Ixy is binarized using a fixed threshold value, whereas in this embodiment the input level is binarized using a threshold correction value T'. That is, the feature of this embodiment is that the calculations of the binarization means 8 can be lightened. The binarization operation in the first embodiment requires a 10-bit operation, but the present embodiment allows a 9-bit operation.

発明の効果 以上のように本発明では、注目画素に注目画素位置に対
応する集積誤差の一部とその周辺の集積誤差の総和の一
部とを加算して補正した入力補正レベルを2値化し、濃
度保存系を満足するために新たな2値化誤差を注目画素
と注目画素位置の集積誤差とを加算した補正レベルより
前記の2値化結果を減算することにより、階調と解像度
特性の向上を可能とした。又、補正誤差レベルexyの
係数Ka、Kbを適当に選択することにより、輪郭強調
制御が可能である。そして、誤差配分係数を一律にして
も従来誤差拡散法でみられるようなテクスチャや一方向
に流れるような模様も発生せず、緻密で高解像度の2値
再生画像を得ることができ、その効果は大きい。
Effects of the Invention As described above, the present invention binarizes the input correction level corrected by adding a part of the integration error corresponding to the position of the pixel of interest and a part of the total sum of the surrounding integration errors to the pixel of interest. , in order to satisfy the density conservation system, the gradation and resolution characteristics can be adjusted by subtracting the above-mentioned binarization result from the correction level obtained by adding the new binarization error to the pixel of interest and the accumulation error of the pixel of interest position. This made it possible to improve. Furthermore, by appropriately selecting the coefficients Ka and Kb of the correction error level exy, edge enhancement control is possible. Furthermore, even if the error distribution coefficient is set uniformly, textures and patterns flowing in one direction, which are seen with conventional error diffusion methods, do not occur, making it possible to obtain a detailed, high-resolution binary reproduced image. is big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における画像信号処理装置の
ブロック結線図、第2図は同装置の要部である補正誤差
演算手段によって形成される周辺誤差領域概念為図、第
3図は本発明の第2の実施例における画像信号処理装置
のブロック結線図、第4図は従来の誤差拡散法を実現す
る装置のブロック結線図である。 1・・・誤差記憶手段、2・・・周辺画素領域、3・・
・注目画素位置、4・・・入力端子、5・・・第1の入
力補正手段、6・・・出力端子、7・・・一部間値入力
端子、8・・・2値化手段、9・・・差分演算手段、1
0・S・誤差配分演算手段、101・・・第2の入力補
正手段、11・・・誤差配分更新手段、12・・・補正
誤差演算手段、201・・・新たな周辺画素領域、30
5・・・閾値補正手段。 代理人の氏名 弁理士 中 尾 敏 男ほか1名第1図 第2図 第3図 第4図
FIG. 1 is a block diagram of an image signal processing device according to an embodiment of the present invention, FIG. 2 is a conceptual diagram of the peripheral error region formed by the correction error calculation means which is the main part of the device, and FIG. FIG. 4 is a block diagram of an image signal processing device according to a second embodiment of the present invention. FIG. 4 is a block diagram of a device implementing the conventional error diffusion method. 1... Error storage means, 2... Surrounding pixel area, 3...
- Pixel position of interest, 4... Input terminal, 5... First input correction means, 6... Output terminal, 7... Partial value input terminal, 8... Binarization means, 9... Difference calculation means, 1
0.S.Error distribution calculation means, 101... Second input correction means, 11... Error distribution update means, 12... Correction error calculation means, 201... New surrounding pixel region, 30
5...Threshold value correction means. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)画素単位でサンプリングした多階調の画信号レベ
ルを2値化する際に、注目画素の2値化誤差をその周辺
の画素位置に対応させて記憶する誤差記憶手段と、前記
誤差記憶手段内の注目画素位置に対応した集積誤差とそ
の周辺の誤差とを加算演算し誤差補正レベルを出力する
補正誤差演算手段と、前記誤差補正レベルと注目画素の
入力レベルとを加算し第1の入力補正レベルを出力する
第1の入力補正手段と、前記第1の入力補正レベルを予
め定められた閾値と比較し注目画素の2値化レベルを決
定する2値化手段と、前記注目画素の入力レベルと前記
集積誤差とを加算し第2の補正レベルを出力する第2の
入力補正手段と、前記第2の入力補正レベルと2値化レ
ベルとの差分により2値化誤差を求める差分演算手段と
、前記差分演算手段からの2値化誤差と誤差配分係数か
ら注目画素周辺の未処理画素に対応する誤差配分値を算
出し、前記誤差配分値を前記誤差記憶手段内の対応する
画素位置の集積誤差とを加算し再び記憶させる誤差配分
更新手段とを具備した画像信号処理装置。
(1) Error storage means for storing the binarization error of the pixel of interest in correspondence with the surrounding pixel positions when binarizing the multi-gradation image signal level sampled in pixel units; and the error storage. a correction error calculation means for adding an integrated error corresponding to the pixel position of interest and errors in its surroundings in the means and outputting an error correction level; a first input correction means for outputting an input correction level; a binarization means for comparing the first input correction level with a predetermined threshold value to determine a binarization level of the pixel of interest; a second input correction means that adds the input level and the integrated error and outputs a second correction level; and a difference calculation that calculates a binarization error based on the difference between the second input correction level and the binarization level. and calculates an error distribution value corresponding to unprocessed pixels around the pixel of interest from the binarization error and error distribution coefficient from the difference calculation means, and stores the error distribution value at the corresponding pixel position in the error storage means. An image signal processing device comprising: an error distribution update means for adding the accumulated error of
(2)補正誤差演算手段は、注目画素に対応した集積誤
差とその周辺の誤差の総和にそれぞれ係数1/2n又は
1−1/2n(但し、nは正の整数)を乗算して加算演
算し誤差補正レベルを求めることを特徴とする請求項1
記載の画像信号処理装置。
(2) The correction error calculation means performs an addition operation by multiplying the sum of the integrated error corresponding to the pixel of interest and the errors in its surroundings by a coefficient 1/2n or 1-1/2n (where n is a positive integer), respectively. Claim 1 characterized in that the error correction level is determined.
The image signal processing device described.
JP63066585A 1988-03-18 1988-03-18 Picture signal processor Pending JPH01238373A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63066585A JPH01238373A (en) 1988-03-18 1988-03-18 Picture signal processor
US07/324,780 US4924322A (en) 1988-03-18 1989-03-17 Bi-level image display signal processing apparatus
EP89302732A EP0333520B1 (en) 1988-03-18 1989-03-20 Bi-level image display signal processing apparatus
DE8989302732T DE68902662T2 (en) 1988-03-18 1989-03-20 PROCESSING DEVICE FOR TWO-LEVEL SIGNALS FOR IMAGE DISPLAY.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066585A JPH01238373A (en) 1988-03-18 1988-03-18 Picture signal processor

Publications (1)

Publication Number Publication Date
JPH01238373A true JPH01238373A (en) 1989-09-22

Family

ID=13320170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066585A Pending JPH01238373A (en) 1988-03-18 1988-03-18 Picture signal processor

Country Status (1)

Country Link
JP (1) JPH01238373A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638030A (en) * 1992-07-13 1994-02-10 Mita Ind Co Ltd Image processor
US5499111A (en) * 1991-08-06 1996-03-12 Matsushita Graphic Communication Systems, Inc. Image signal processing apparatus
JP2007110699A (en) * 2005-09-16 2007-04-26 Fujifilm Corp Image processing method and image recorder
US7826096B2 (en) 2005-09-16 2010-11-02 Fujifilm Corporation Image processing method and image recording apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499111A (en) * 1991-08-06 1996-03-12 Matsushita Graphic Communication Systems, Inc. Image signal processing apparatus
JPH0638030A (en) * 1992-07-13 1994-02-10 Mita Ind Co Ltd Image processor
JP2007110699A (en) * 2005-09-16 2007-04-26 Fujifilm Corp Image processing method and image recorder
US7826096B2 (en) 2005-09-16 2010-11-02 Fujifilm Corporation Image processing method and image recording apparatus
JP2010252397A (en) * 2005-09-16 2010-11-04 Fujifilm Corp Image processing method and image recording apparatus
JP4596174B2 (en) * 2005-09-16 2010-12-08 富士フイルム株式会社 Image processing method and image recording apparatus

Similar Documents

Publication Publication Date Title
JP2574923B2 (en) Outline enhancement method and image processing device
JP3142334B2 (en) Error diffusion method and image processing apparatus using error diffusion method
JPH01238373A (en) Picture signal processor
JPS63209370A (en) Image signal processor
JPH0666873B2 (en) Image signal processor
JPH0666875B2 (en) Image signal processor
JP2637414B2 (en) Image processing method
JPH0824339B2 (en) Image signal processor
JPH0722333B2 (en) Image signal processor
JP2916171B2 (en) Image processing device
JPH02107062A (en) Picture signal processor
JP2857906B2 (en) Halftone binarization processor
JPH0824338B2 (en) Image signal processor
JPH08111777A (en) Image processor
JPH0666876B2 (en) Image signal processor
JPS63155951A (en) Picture signal processor
JPS63155950A (en) Picture signal processor
JPS63212274A (en) Picture signal processor
JPH06103922B2 (en) Image signal processor
JPH0722334B2 (en) Image signal processor
JPH06101788B2 (en) Image signal processor
JPH079672B2 (en) Image signal processor
JPH11328389A (en) Device and method for image processing
JPH11331589A (en) Image processor and image processing method
JPH01109960A (en) Picture signal processing unit