JPH04217172A - Picture processor - Google Patents

Picture processor

Info

Publication number
JPH04217172A
JPH04217172A JP2403312A JP40331290A JPH04217172A JP H04217172 A JPH04217172 A JP H04217172A JP 2403312 A JP2403312 A JP 2403312A JP 40331290 A JP40331290 A JP 40331290A JP H04217172 A JPH04217172 A JP H04217172A
Authority
JP
Japan
Prior art keywords
data
pixel
recording
interest
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2403312A
Other languages
Japanese (ja)
Other versions
JP2859445B2 (en
Inventor
Hiroshi Tanioka
宏 谷岡
Yasuhiro Yamada
康博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2403312A priority Critical patent/JP2859445B2/en
Publication of JPH04217172A publication Critical patent/JPH04217172A/en
Application granted granted Critical
Publication of JP2859445B2 publication Critical patent/JP2859445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Facsimile Image Signal Circuits (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Color, Gradation (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To realize requantization capable of reserving the density and to obtain a device accurately correcting the recording irregularity for each recording element by executing the requantization for each picture element forming the final output based on the peripheral requantization data. CONSTITUTION:An irregularity correction ROM 34 stores the irregularity data correcting the recording density irregularity generating addresses corresponding to each recording element, and the irregularity data on the periphery of the noted picture element is successively read out by the address circuit not shown in the figure. F/F 35-1 to 35-4 held the delay of the irregularity data for each picture element, and the output of the ROM 34 corrects binary data (a) and (f), the output of the F/F 35-1, (b) and (g), the output of the F/F 35-2, (e) and (h), F/F 35-3, (d), (i), and (k), F/F 35-4, (e), (j), and (l). Multiple devices 30-a to 30-k performs the multiplication between correction data and the binary data located in (a) to (k), and the weight coefficient according to the location is multiplied. An adder 32 adds 12 elements of multiplication result to obtain the weighted average by multiplying it 1/63 times through removing device 33.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はデジタル複写機、FAX
、プリンタ等の記録装置を有する画像処理装置に関し、
特に記録画素毎に記録ムラを補正する画像処理装置に関
するものである。
[Industrial Application Field] The present invention is applicable to digital copying machines, FAX machines, etc.
, regarding an image processing device having a recording device such as a printer,
In particular, the present invention relates to an image processing apparatus that corrects recording unevenness for each recording pixel.

【0002】0002

【従来の技術】従来、疑似中間調処理方式の1方式とし
て誤差拡散法が知られている。又、固体記録素子を配列
して線順次に記録する装置は、LCDプリンタ、LED
プリンタ、インクジエツト記録方式等、多数知られてい
るが、それぞれの記録素子が均一な記録ドツトを記録出
来ない為に記録画像データごとに記録素子ムラを補正す
る事が知られている。
2. Description of the Related Art Conventionally, an error diffusion method has been known as one of the pseudo halftone processing methods. Furthermore, devices that arrange solid-state recording elements and record in line sequential order include LCD printers and LED printers.
Many printers, inkjet recording systems, etc. are known, but since each recording element cannot record uniform dots, it is known to correct the unevenness of recording elements for each recorded image data.

【0003】その中で誤差拡散法は、入力画像データを
それよりも少ないレベル数に再量子化するにもかかわら
ず、入力画像の有する階調性と解像情報をほぼ保存出来
る為に、この方式で記録信号に再量子化する前に入力デ
ータの記録素子ムラを補正すれば、ムラの発生を抑圧し
て記録する事が可能となる。
[0003] Among these methods, the error diffusion method is effective because it can almost preserve the gradation and resolution information of the input image, even though the input image data is requantized to a smaller number of levels. By correcting the recording element unevenness of the input data before requantizing the recording signal using the method, it becomes possible to record while suppressing the occurrence of unevenness.

【0004】0004

【発明が解決しようとしている課題】しかしながら、誤
差拡散法は再量子化時に発生する誤差を同一ラインの次
の画素、次のラインの同一画素という、処理方向に拡散
する為に、記録画素に対する忠実なムラ補正が出来ない
[Problem to be Solved by the Invention] However, in the error diffusion method, the error that occurs during requantization is diffused in the processing direction to the next pixel on the same line and the same pixel on the next line, so it is difficult to maintain fidelity to the recorded pixels. It is not possible to correct unevenness.

【0005】[0005]

【課題を解決するための手段】本発明は上述の課題を解
決することを目的として成されたもので、上述の課題を
解決する一手段として以下の構成を備える。即ち、再量
子化された注目画素データを該注目画素位置に対応する
補正データで補正する第1の補正手段と、該第1の補正
手段で補正した前記注目画素近傍の複数個のデータより
注目画素データを再量子化する閾値を演算する閾値演算
手段と、該閾値で注目画素データを再量子化する量子化
手段と、再量子化により生じる誤差を補正する第2の補
正手段と、再量子化データで出力する出力手段を備える
[Means for Solving the Problems] The present invention has been made for the purpose of solving the above-mentioned problems, and has the following configuration as a means for solving the above-mentioned problems. That is, a first correction means corrects requantized pixel data of interest with correction data corresponding to the position of the pixel of interest, and a plurality of pieces of data near the pixel of interest corrected by the first correction means a threshold calculation means for calculating a threshold value for requantizing pixel data; a quantization means for requantizing pixel data of interest using the threshold value; a second correction means for correcting an error caused by the requantization; It is equipped with an output means for outputting converted data.

【0006】閾値演算手段は注目画素を除く近傍の複数
個のデータより閾値を演算する。閾値演算手段は、注目
画素の予測値を含む近傍の複数個のデータより閾値を演
算する。
[0006] The threshold value calculation means calculates a threshold value from a plurality of pieces of data in the vicinity excluding the pixel of interest. The threshold value calculation means calculates a threshold value from a plurality of pieces of neighboring data including a predicted value of the pixel of interest.

【0007】[0007]

【作用】以上の構成において、記録ムラを考慮して、最
終出力を形成する画素毎の再量子化をその近傍の再量子
化データに基づいて実行するため、より正確な記録ムラ
補正が可能となる。
[Operation] In the above configuration, since recording unevenness is taken into account and requantization is performed for each pixel that forms the final output based on requantized data in its vicinity, more accurate recording unevenness correction is possible. Become.

【0008】[0008]

【実施例】以下、図面を参照して本発明に係る一実施例
を詳細に説明する。 [第1実施例] 図1及び図2は本発明に係る一実施例のブロツク構成図
である。図1及び図2において、処理すべき原稿画像情
報等は、スキャナなどの画像信号入力部1ー1で読み込
まれ、量子化部1ー2で8ビツト256階調の諧調に量
子化される。3は12画素分の2値データをムラ補正し
たうえで、加重平均値を求めるムラ補正平均値演算部、
4は量子化された画像データがセットされるラッチであ
リ、256は階調の場合は8ビットである。5は減算器
、6は1/2分配器であり、出力e1は注目画素の次の
画素に加算される。e2はラインメモリ7を介して1行
遅れの同一画素に加算される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. [First Embodiment] FIGS. 1 and 2 are block diagrams of an embodiment according to the present invention. In FIGS. 1 and 2, original image information to be processed is read by an image signal input section 1-1 such as a scanner, and quantized into 8-bit 256-gradation by a quantization section 1-2. 3 is an unevenness correction average value calculation unit that calculates a weighted average value after correcting unevenness of binary data for 12 pixels;
4 is a latch in which quantized image data is set, and 256 is 8 bits in the case of gradation. 5 is a subtracter, 6 is a 1/2 divider, and the output e1 is added to the pixel next to the pixel of interest. e2 is added via the line memory 7 to the same pixel delayed by one line.

【0009】また、8はムラ補正平均値演算部3で得ら
れる2値化平均値と入力画像データとを比較し、入力画
像データが2値化平均値より大か小かで2値化する比較
器であり、該比較器8よりの出力は記録装置20に出力
されると共に、ラインメモリ2−f及びフリツプフロツ
プ(以下「F/F」と記す)2−kに入力される。ライ
ンメモリ2−fは、2値データをほぼ1ライン分遅延さ
せてF/F2−gに出力すると共に、ラインメモリ2−
aに入力し、さらにもう1ライン分遅延させてF/F2
−bに出力する。
Further, 8 compares the binarized average value obtained by the unevenness correction average value calculating section 3 with the input image data, and binarizes the input image data depending on whether it is larger or smaller than the binarized average value. The output from the comparator 8 is output to the recording device 20, and is also input to a line memory 2-f and a flip-flop (hereinafter referred to as "F/F") 2-k. The line memory 2-f delays the binary data by approximately one line and outputs it to the F/F 2-g.
input to a, delay one more line, and switch to F/F2
- Output to b.

【0010】F/F2−kの出力をF/F2−lに、F
/F2−gの出力をF/F2−h,F/F2−i,F/
F2−jに、F/F2−bの出力をF/F2−c,F/
F2−d,F/F2−eにそれぞれ画素クロツクで遅延
して保持すれば、それぞれのF/F入出力端子で得られ
る2値データa〜kは、注目画素近傍の複数個のデータ
を示す図3の様に今2値化しようとする注目画素位置(
*)に隣接して位置する。
[0010] The output of F/F2-k is transferred to F/F2-l,
/F2-g output to F/F2-h, F/F2-i, F/
Connect the output of F/F2-b to F2-j, F/F2-c, F/
If F2-d and F/F2-e are delayed by the pixel clock and held, the binary data a to k obtained at each F/F input/output terminal indicates multiple pieces of data near the pixel of interest. As shown in Figure 3, the pixel position of interest (
*) Located adjacent to.

【0011】つまり、kは直前に2値化されたデータ、
hは注目画素位置の1ライン前の2値データとなる。 尚、上述したムラ補正平均値演算部3は、該12画素分
の2値データをムラ補正したうえで、加重平均値を求め
る。さて、減算器5は誤差補正された後の入力画像デー
タと隣接する12画素のムラ補正後の2値データから求
まる加重平均値との差を演算し、その出力を2値化誤差
とする。この誤差は上述の分配器6で2分され、一方の
出力(e2)はラインメモリ7で1ライン分遅延保持さ
れる。他方の主力e1はラインメモリ7より出力される
1ライン前の誤差データe2と共に、加算器9で次画素
入力画像データを誤差補正する。誤差補正した画像デー
タはラッチ4に入力され、次の画素クロツクが入力され
れば、減算器5および比較器8に読み出され、上記の誤
差補正、2値化動作が順次行なわれる。
[0011] That is, k is the data that was binarized immediately before,
h is binary data one line before the pixel position of interest. Note that the above-mentioned unevenness correction average value calculation unit 3 calculates a weighted average value after correcting unevenness of the binary data for the 12 pixels. Now, the subtracter 5 calculates the difference between the input image data after error correction and the weighted average value obtained from the binary data of the adjacent 12 pixels after unevenness correction, and uses the output as a binarization error. This error is divided into two by the above-mentioned distributor 6, and one output (e2) is held in the line memory 7 with a delay of one line. The other main power e1, together with the error data e2 of the previous line outputted from the line memory 7, corrects the error of the next pixel input image data in the adder 9. The error-corrected image data is input to the latch 4, and when the next pixel clock is input, it is read out to the subtracter 5 and comparator 8, and the above-described error correction and binarization operations are performed sequentially.

【0012】次に本実施例の特徴的構成であるムラ補正
平均値演算部3の詳細を図4を用いて説明する。図4に
おいて、ムラ補正ROM34は各記録素子に対応するア
ドレスに発生する、記録濃度ムラを補正するための6ビ
ツト幅のムラデータが格納されており、図示しないアド
レス回路により順次注目画素位置近傍のムラデータが読
み出される。
Next, details of the unevenness correction average value calculating section 3, which is a characteristic configuration of this embodiment, will be explained with reference to FIG. In FIG. 4, the unevenness correction ROM 34 stores 6-bit wide unevenness data for correcting recording density unevenness that occurs at addresses corresponding to each recording element, and is sequentially stored in the vicinity of the pixel position of interest by an address circuit (not shown). The unevenness data is read out.

【0013】F/F35−1,35−2,35−3,3
5−4は、読み出されたムラデータを画素毎に遅延保持
するためのF/Fであり、ROM34の出力は2値デー
タaとf、F/F35−1の出力はbとg、F/F35
−2の出力はcとh、F/F35−3の出力はd,i,
k、F/F35−4の出力はe,j,lの2値データを
補正する。
[0013] F/F35-1, 35-2, 35-3, 3
5-4 is an F/F for delaying and holding read unevenness data for each pixel; the output of the ROM 34 is binary data a and f, and the output of the F/F 35-1 is b, g, and F. /F35
-2 outputs are c and h, F/F35-3 outputs are d, i,
The output of k, F/F 35-4 corrects the binary data of e, j, and l.

【0014】乗算器30−a,30−b,…,30−k
はそれぞれ補正データとa〜kに位置する2値データと
の乗算を行ない、それぞれ、その後乗算器31−a〜3
1ーkを用いて図6及び図7に図示する位置に応じた重
み係数が乗算される。加算器32は上記乗算結果を12
画素分加算する加算器であり、その加算結果を除算器3
3で1/63倍すれば、入力画像データ幅(0〜255
,8ビツト)に正規化された加重平均値が求まる。 尚、図示する重みの総和は255に設定する。
Multipliers 30-a, 30-b,..., 30-k
perform multiplication of the correction data and the binary data located at a to k, respectively, and then multipliers 31-a to 31-3 respectively.
1-k is used to multiply by a weighting coefficient according to the position shown in FIGS. 6 and 7. The adder 32 converts the above multiplication result into 12
This is an adder that adds pixels, and the addition result is sent to divider 3.
If you multiply by 3 to 1/63, the input image data width (0 to 255
, 8 bits) is determined. Note that the total sum of weights shown in the figure is set to 255.

【0015】以上説明した様に本実施例によれば、2値
データを記録素子に対応づけてムラ補正したうえで、加
重平均値を求め2値化閾値とする為に、注目位置近傍に
ムラの為に淡いドツトしか記録出来なければ、それに応
じて平均値が小さくなり、より記録“1”信号を発生さ
せ易くし、又このムラを考慮した加重平均値より2値化
誤差を演算して誤差補正する為に、より正確にムラ補正
しつつ2値化が可能となる。特に複写機に適用するなら
画像2値化部とムラ補正を同時に実施出来る為に効率が
良い。
As explained above, according to this embodiment, after correcting the unevenness by associating the binary data with the recording element, the unevenness is corrected in the vicinity of the position of interest in order to obtain the weighted average value and use it as the binarization threshold. If only faint dots can be recorded due to this, the average value will be correspondingly smaller, making it easier to generate a recording "1" signal, and the binarization error will be calculated from a weighted average value that takes this unevenness into account. In order to correct errors, it becomes possible to perform binarization while correcting unevenness more accurately. Particularly when applied to a copying machine, it is efficient because the image binarization section and unevenness correction can be performed at the same time.

【0016】[第2実施例] 次に、図6及び図7を参照して本発明に係る第2の実施
例を詳説する。図6及び図7において、図1及び図2と
同証構成には同一番号を付し、詳細説明を省略する。図
6及び図7に示す第2実施例は、ムラ補正平均値演算部
30で注目画素の2値化を予測し、注目画素2値化を記
録“1”と予測した場合の加重平均値m1と、注目画素
2値化を非記録“0”と予測した場合の加重平均値m0
を演算し、加算器12及び除算器13を用いて(m0+
m1)/2を2値化閾値として比較器8で2値化し、2
値化結果に応じてセレクタ11で“1”の場合m1を、
“0”の場合m0を減算器5に入力し、2値化誤差を求
める。つまり、記録“1”の場合はm1からの差が2値
化誤差であり、非記録“0”の場合はm0からの差が2
値化誤差となる。従つて、前記実施例に比べてより正確
な2値化処理となる。
[Second Embodiment] Next, a second embodiment of the present invention will be explained in detail with reference to FIGS. 6 and 7. In FIGS. 6 and 7, the same reference numerals as those in FIGS. 1 and 2 are given to the same components, and detailed description thereof will be omitted. The second embodiment shown in FIGS. 6 and 7 is a weighted average value m1 when the unevenness correction average value calculation unit 30 predicts the binarization of the pixel of interest and predicts that the binarization of the pixel of interest is recorded as "1". and the weighted average value m0 when the binarization of the pixel of interest is predicted to be non-recording “0”
is calculated, and using the adder 12 and the divider 13, (m0+
The comparator 8 binarizes m1)/2 as the binarization threshold, and
If the selector 11 is “1” according to the value conversion result, m1 is
In the case of "0", m0 is input to the subtracter 5 to obtain the binarization error. In other words, in the case of recording "1", the difference from m1 is the binarization error, and in the case of non-recording "0", the difference from m0 is 2
This results in a valuation error. Therefore, the binarization process is more accurate than that of the embodiment described above.

【0017】次に、図6及び図7に示す第2実施例にお
けるムラ補正平均値演算部30の詳細を図8を参照して
以下に説明する。図8に示す演算部30が図4に示した
ムラ補正演算部3と異なる点は、図9に図示する様に加
重平均値を求める為の重み係数が注目画素を含んでおり
、かつ、その総和が255に設定してある点である。 従つて、a〜kの2値データをムラ補正したうえで、加
重加算した加算器32出力を1/63倍した値は、注目
画素を“0”に2値化予測する平均値m0であり、加算
器32出力値に注目画素の重み“38“と注目画素位置
のムラデータを乗算器30−xで乗算した結果を加算器
36で加算した値を1/63倍すれば、注目画素を“1
”に2値化を予測した平均値m1となる。
Next, details of the unevenness correction average value calculating section 30 in the second embodiment shown in FIGS. 6 and 7 will be explained below with reference to FIG. The difference between the calculation unit 30 shown in FIG. 8 and the unevenness correction calculation unit 3 shown in FIG. The point is that the total sum is set to 255. Therefore, the value obtained by multiplying the weighted output of the adder 32 by 1/63 after correcting the unevenness of the binary data of a to k is the average value m0 that predicts the pixel of interest to be binarized to "0". , the output value of the adder 32 is multiplied by the weight "38" of the pixel of interest and the unevenness data of the pixel of interest position by the multiplier 30-x, and the value added by the adder 36 is multiplied by 1/63 to obtain the pixel of interest. “1
” is the average value m1 that is predicted to be binarized.

【0018】尚、図4及び図8のムラ補正ROMには、
8ビツト幅のデータを格納し、除算器33−1,33−
2を1/255とすることにより、より正確な補正が可
能である。逆に、ムラ変動幅が小さい場合においては、
画素単位でデータを格納せずとも、1画素おきに格納し
、連続して2画素分づつ同一補正データを用いて補正す
ればより安価小容量のROMで実施可能である。
Note that the unevenness correction ROM shown in FIGS. 4 and 8 includes:
8-bit width data is stored, and dividers 33-1, 33-
By setting 2 to 1/255, more accurate correction is possible. On the other hand, when the fluctuation range of unevenness is small,
Instead of storing data pixel by pixel, if data is stored every other pixel and two consecutive pixels are corrected using the same correction data, it is possible to perform the correction using a cheaper and smaller capacity ROM.

【0019】又、格納データは半固定的データに限定さ
れずRAMを用いて経時変化データとして測定し、順次
更新すればさらに正確な補正が可能となる。以上説明し
た様に本実施例によれば、第1実施例と同様に、2値デ
ータを記録素子に対応づけてムラ補正したうえで、加重
平均値を求め2値化閾値とする為に、注目位置近傍にム
ラの為に淡いドツトしか記録出来なければ、それに応じ
て平均値が小さくなり、より記録“1”信号を発生させ
易くし、又このムラを考慮した加重平均値より2値化誤
差を演算して誤差補正する為に、より正確にムラ補正し
つつ2値化が可能となる。特に複写機に適用するなら画
像2値化部とムラ補正を同時に実施出来る為に効率が良
い。
Furthermore, the stored data is not limited to semi-fixed data, but can be measured as time-varying data using a RAM, and more accurate correction can be made by sequentially updating the data. As explained above, according to the present embodiment, similarly to the first embodiment, after correlating binary data with the recording element and correcting unevenness, the weighted average value is obtained and used as the binarization threshold. If only faint dots can be recorded near the target position due to unevenness, the average value will be correspondingly smaller, making it easier to generate a recording "1" signal, and binary conversion will be performed using a weighted average value that takes this unevenness into account. Since the error is calculated and corrected, it is possible to perform binarization while correcting unevenness more accurately. Particularly when applied to a copying machine, it is efficient because the image binarization section and unevenness correction can be performed at the same time.

【0020】[第3実施例] 次に、図10及び図11を用いて更に本発明に係る第3
の実施例を詳説する。図10及び図11に示す実施例が
図1及び図2のそれと異なる点は再量子化すべき入力デ
ータが1ビツトの場合である。つまり、記録データとし
て、記録装置固有のムラ特性を考慮しないで2値化され
たデータをムラ補正して再び2値化する別実施例である
[Third Example] Next, using FIGS. 10 and 11, a third example according to the present invention will be explained.
Examples will be explained in detail. The embodiment shown in FIGS. 10 and 11 differs from that shown in FIGS. 1 and 2 in that the input data to be requantized is 1 bit. In other words, this is another embodiment in which data that has been binarized as recording data is corrected for unevenness and then binarized again without considering the unevenness characteristics specific to the recording apparatus.

【0021】図10及び図11において、入力1ビツト
データはセレクタ10の選択入力端子に入力され、記録
“1”の場合は“255”,非記録の場合は“0”をそ
れぞれ加算器9に出力して、画像データとする。従つて
、以後の動作は第1実施例と同様になり、該2値データ
が入力される記録素子固有の素子ムラを補正しつつ、再
2値化が可能となる。
In FIGS. 10 and 11, input 1-bit data is input to the selection input terminal of the selector 10, and "255" is sent to the adder 9 for recording "1" and "0" for non-recording. Output it as image data. Therefore, the subsequent operation is similar to that of the first embodiment, and re-binarization is possible while correcting the element unevenness inherent in the recording element to which the binary data is input.

【0022】本実施例は、第1及び第2実施例と比し、
プリンタ単体として構成可能である。
[0022] Compared to the first and second embodiments, this embodiment has the following points:
It can be configured as a standalone printer.

【0023】[その他の実施例] 上記、第1乃至第3実施例は、全て画像を2値化する例
であるが、2レベル以上、数レベルに多値疑似中間調処
理する場合においても、同様に実施出来る事は述べるま
でもない。又、実施例は、線順次にラスタ記録する例で
述べたが、面状に記録素子群がある記録装置、あるいは
表示器の場合、二次元的補正データを用いれば、二次元
的補正を行ないながら記録表示する事も可能である。
[Other Embodiments] The first to third embodiments described above are all examples in which images are binarized, but even when performing multilevel pseudo halftone processing at two or more levels or several levels, Needless to say, it can be implemented in the same way. Furthermore, although the embodiment has been described as an example of line-sequential raster recording, in the case of a recording device or a display device that has a group of recording elements in a planar manner, two-dimensional correction can be performed by using two-dimensional correction data. It is also possible to record and display the data at the same time.

【0024】以上説明したように本実施例によれば、読
み出し専用メモリにたとえば画像を読み取るスキャナ、
あるいは記録側の素子の記録特性に基づく補正値を保存
しておけば正確な画像を再生できる。また、書換が可能
なRAMに経時変化データとして補正値を持たせればス
キャナ、記録素子の経時変化を補正できる。
As explained above, according to this embodiment, a scanner for reading an image, for example, is stored in the read-only memory.
Alternatively, if correction values based on the recording characteristics of the recording side element are stored, accurate images can be reproduced. Further, if a rewritable RAM is provided with correction values as data on changes over time, changes over time in the scanner and recording element can be corrected.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、濃
度を保存できる再量子化を実現し、かつ記録素子毎の記
録ムラをより正確に補正する画像処理装置を提供できる
As described above, according to the present invention, it is possible to provide an image processing apparatus that realizes requantization that can preserve density and more accurately corrects recording unevenness for each recording element.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】及び[Figure 1] and

【図2】本発明に係る第1実施例の構成を示すブロック
図、
FIG. 2 is a block diagram showing the configuration of a first embodiment according to the present invention;

【図3】本実施例の注目画素近傍の複数個のデータを示
す図、
FIG. 3 is a diagram showing a plurality of pieces of data near the pixel of interest in this embodiment;

【図4】図1及び図2のムラ補正平均値演算部の詳細構
成を示すブロック図、
FIG. 4 is a block diagram showing the detailed configuration of the unevenness correction average value calculation unit in FIGS. 1 and 2;

【図5】図4における注目画素近傍の重み付け値を示す
図、
FIG. 5 is a diagram showing weighting values near the pixel of interest in FIG. 4;

【図6】及び[Figure 6] and

【図7】本発明に係る第2実施例の構成を示すブロック
図、
FIG. 7 is a block diagram showing the configuration of a second embodiment according to the present invention;

【図8】図6及び図7のムラ補正平均値演算部の詳細構
成を示すブロック図、
FIG. 8 is a block diagram showing the detailed configuration of the unevenness correction average value calculation unit in FIGS. 6 and 7;

【図9】図8における注目画素近傍の重み付け値を示す
図、
9 is a diagram showing weighting values near the pixel of interest in FIG. 8,

【図10】及び[Figure 10] and

【図11】本発明に係る第3の実施例の構成を示すブロ
ック図である。
FIG. 11 is a block diagram showing the configuration of a third embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1−1    画像信号入力部 1ー2    量子化部 2−2,2−f,7    ラインメモリ3,30  
  ムラ補正平均値演算部5    減算器 6    1/2分配器 8    比較器 20    記録装置 34    ムラ補正ROM
1-1 Image signal input section 1-2 Quantization section 2-2, 2-f, 7 Line memory 3, 30
Unevenness correction average value calculation section 5 Subtractor 6 1/2 divider 8 Comparator 20 Recording device 34 Unevenness correction ROM

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  再量子化された注目画素データを該注
目画素位置に対応する補正データで補正する第1の補正
手段と、該第1の補正手段で補正した前記注目画素近傍
の複数個のデータより注目画素データを再量子化する閾
値を演算する閾値演算手段と、該閾値で注目画素データ
を再量子化する量子化手段と、再量子化により生じる誤
差を補正する第2の補正手段と、再量子化データで出力
する出力手段を備えることを特徴とする画像処理装置。
1. A first correction means for correcting requantized pixel data of interest with correction data corresponding to the position of the pixel of interest; a threshold calculation means for calculating a threshold value for requantizing the pixel data of interest from the data; a quantization means for requantizing the pixel data of interest using the threshold; and a second correction means for correcting an error caused by the requantization. , an image processing device comprising an output means for outputting requantized data.
【請求項2】  前記閾値演算手段は注目画素を除く近
傍の複数個のデータより閾値を演算することを特徴とす
る請求項1記載の画像処理装置。
2. The image processing apparatus according to claim 1, wherein the threshold value calculation means calculates the threshold value from a plurality of pieces of data in the vicinity excluding the pixel of interest.
【請求項3】  前記閾値演算手段は注目画素の予測値
を含む近傍の複数個のデータより閾値を演算することを
特徴とする請求項1記載の画像処理装置。
3. The image processing apparatus according to claim 1, wherein the threshold value calculation means calculates the threshold value from a plurality of pieces of neighboring data including a predicted value of the pixel of interest.
JP2403312A 1990-12-18 1990-12-18 Image processing apparatus and image processing method Expired - Fee Related JP2859445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2403312A JP2859445B2 (en) 1990-12-18 1990-12-18 Image processing apparatus and image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2403312A JP2859445B2 (en) 1990-12-18 1990-12-18 Image processing apparatus and image processing method

Publications (2)

Publication Number Publication Date
JPH04217172A true JPH04217172A (en) 1992-08-07
JP2859445B2 JP2859445B2 (en) 1999-02-17

Family

ID=18513059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2403312A Expired - Fee Related JP2859445B2 (en) 1990-12-18 1990-12-18 Image processing apparatus and image processing method

Country Status (1)

Country Link
JP (1) JP2859445B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707579B1 (en) * 1998-08-11 2004-03-16 Olympus Optical Co., Ltd. Image formation apparatus having unit for correcting irregularities in density of image data after binarization
JP2006305956A (en) * 2005-04-28 2006-11-09 Seiko Epson Corp Method of acquiring correction value, printing method and method of manufacturing printer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707579B1 (en) * 1998-08-11 2004-03-16 Olympus Optical Co., Ltd. Image formation apparatus having unit for correcting irregularities in density of image data after binarization
JP2006305956A (en) * 2005-04-28 2006-11-09 Seiko Epson Corp Method of acquiring correction value, printing method and method of manufacturing printer
JP4655749B2 (en) * 2005-04-28 2011-03-23 セイコーエプソン株式会社 Correction value acquisition method, printing method, and printing apparatus manufacturing method

Also Published As

Publication number Publication date
JP2859445B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
US5172247A (en) High speed digital error diffusion process for continuous tone image-to-binary image conversion
US20050259884A1 (en) Image processing apparatus, image forming apparatus, image processing method, program, and recording medium
EP0781034B1 (en) Image processing apparatus and method
JPH04119763A (en) Image processor
EP0454495A1 (en) Half-tone image processing system
JPH11187264A (en) Method and device for processing image
JP3031994B2 (en) Image processing device
JP3322522B2 (en) Color image processing equipment
JPH04217172A (en) Picture processor
GB2238927A (en) Image processing
JPH0698157A (en) Halftone image forming device
JP3245600B2 (en) Image processing device
JPH05183737A (en) Picture processor
JP3679522B2 (en) Image processing method and apparatus
JP3774523B2 (en) Image processing apparatus and control method thereof
JP3059457B2 (en) Image processing device
JPH0197066A (en) Picture processing method
JPH1032713A (en) Picture processor
JP2662515B2 (en) Image processing device
JP2851661B2 (en) Image processing device
JPH057294A (en) Image processor
JPH0453353A (en) Picture processing unit
JPH07212593A (en) Method and device for processing picture
JPS63272171A (en) Image data processing circuit
JP2001358945A (en) Image processing unit and image processing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981023

LAPS Cancellation because of no payment of annual fees