JPS6334986B2 - - Google Patents

Info

Publication number
JPS6334986B2
JPS6334986B2 JP14246579A JP14246579A JPS6334986B2 JP S6334986 B2 JPS6334986 B2 JP S6334986B2 JP 14246579 A JP14246579 A JP 14246579A JP 14246579 A JP14246579 A JP 14246579A JP S6334986 B2 JPS6334986 B2 JP S6334986B2
Authority
JP
Japan
Prior art keywords
current
output
component
signal
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14246579A
Other languages
Japanese (ja)
Other versions
JPS5666763A (en
Inventor
Tatsuji Matsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP14246579A priority Critical patent/JPS5666763A/en
Publication of JPS5666763A publication Critical patent/JPS5666763A/en
Publication of JPS6334986B2 publication Critical patent/JPS6334986B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 本発明は接地系の絶縁抵抗測定方法に関する電
気機器等の絶縁抵抗の測定には一般にメガーと呼
ばれる測定器を用いているが活線状態での測定に
は適用できない。また活線状態の絶縁抵抗測定方
法としては商用周波数よりも低い周波数の交流電
圧を被測定回路に重量してその帰還電流を検出す
る方式が知られているが帰還電流には浮遊容量を
通る成分が含まれるため浮遊容量の大きい活線回
路には適用できない。また帰還電流のなかから有
効分のみを取出す方法も用いられているが、浮遊
容量の大きい活線回路では無効分は著しく大なる
ため、測定誤差が大となる。また活線回路のオン
ライン監視等においては測定系の調整等が本来で
きない性質をもつため、測定系は無調整化が必要
であり絶縁劣化に伴う広範囲にわたる絶縁抵抗の
正確な測定を必要とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring insulation resistance of a grounding system. Although a measuring device generally called a megger is used to measure the insulation resistance of electrical equipment, etc., it cannot be applied to measurements in a live line state. A known method for measuring insulation resistance in a live wire condition is to apply an AC voltage with a frequency lower than the commercial frequency to the circuit under test and detect the feedback current, but the feedback current includes a component that passes through stray capacitance. cannot be applied to live-line circuits with large stray capacitance. A method of extracting only the effective component from the feedback current is also used, but in a live circuit with a large stray capacitance, the reactive component becomes significantly large, resulting in a large measurement error. Furthermore, in online monitoring of live circuits, etc., it is inherently impossible to adjust the measurement system, so the measurement system needs to be non-adjustable, and it is necessary to accurately measure insulation resistance over a wide range due to insulation deterioration.

本発明の方法は接地浮遊容量に全く関係なく活
線状態での広範囲にわたる絶縁抵抗の測定が可能
であるという有用な方法である。
The method of the present invention is a useful method in that it is possible to measure insulation resistance over a wide range in a live line state, regardless of ground stray capacitance.

以下図面を参照しながら本発明を詳細に説明す
る。
The present invention will be described in detail below with reference to the drawings.

第1図は従来技術による測定装置を示してい
る。従来技術の方法としては例えば特許公開公報
昭53−68290に詳述されているものがある。以下
の説明においては上記公開公報の例を従来技術と
して説明する。
FIG. 1 shows a measuring device according to the prior art. Examples of prior art methods include those detailed in Japanese Patent Publication No. 53-68290. In the following explanation, the example of the above-mentioned publication will be explained as a prior art.

第1図において、発振器OSCは低周波発振器
であり、商用周波数よりも十分低い周波数を発振
する。発振器OSCの出力はフイルタF1を通過
した後トランスTR5をへて接地系の接地線ELに
送出される。抵抗ROは接地線ELに流れる電流i
を検出するために接地線ELに直列に挿入されて
いる。ところで「接地系の接地線」ELとは接地
系において接地のために用いられる線路を意味す
る。例えば中性点接地式星形3相回路の場合は中
性点を大地に結ぶ線路がこれに当たる。
In FIG. 1, the oscillator OSC is a low frequency oscillator, and oscillates at a frequency sufficiently lower than the commercial frequency. The output of the oscillator OSC passes through the filter F1, then the transformer TR5, and is sent to the ground line EL of the ground system. The resistance RO is the current i flowing through the grounding wire EL.
It is inserted in series with the grounding wire EL to detect. By the way, the "grounding line of the grounding system" EL means a line used for grounding in the grounding system. For example, in the case of a star-shaped three-phase circuit with a grounded neutral point, this is the line that connects the neutral point to the ground.

接地線ELに流れる電流iは測定すべき絶縁抵
抗Rを介して循環する電流iRの他に、浮遊容量C
を介して循環する電流iCを含み更には活線状態の
ために系統周波数の電流成分も含んでいる。発振
器OSCの角周波数をW1とし、トランスTR5に
おける2次側の発振器電圧VをV=Vosinw1tと
おくことにすると、この周波数の電圧により接地
線に流れる電流iは、 i=iR+iC=VO/Rsinw1t+w1cVo cosw1t となる。
The current i flowing through the grounding wire EL is not only the current i R circulating through the insulation resistance R to be measured, but also the stray capacitance C.
It also contains the current component circulating at the system frequency due to the live line condition. If the angular frequency of the oscillator OSC is W 1 and the oscillator voltage V on the secondary side of the transformer TR5 is V = Vosinw 1 t, then the current i flowing through the ground wire due to the voltage at this frequency is: i = i R + i C =V O /Rsinw 1 t+w 1 cVo cosw 1 t.

電圧Vと電流iとの掛算を行なうと V×i=Vo2/R−Vo2/2Rcos2w1t+w1cVo2/2 sin2w1t となる。つまり掛算器出力の直流分はVo2/Rと
なりVoを一定としておけば絶縁抵抗に逆比例し
た値が得られこの値は浮遊容量Cに関係しない。
When voltage V and current i are multiplied, V×i=Vo 2 /R−Vo 2 /2R cos2w 1 t+w 1 cVo 2 /2 sin2w 1 t. In other words, the DC component of the multiplier output is Vo 2 /R, and if Vo is kept constant, a value that is inversely proportional to the insulation resistance is obtained, and this value is not related to the stray capacitance C.

ところで一般にiRとiCの大きさを比較するとiR
はiCよりもはるかに小さく測定装置の感度を高め
ようとするとiCによる増幅器の飽和等が発生し回
路構成上の問題を生じる。従つて式の第2項の
成分は掛算をする前に十分に小さくしておかねば
ならない。この点について従来の方法は、OSC
の出力を90゜移相器PHで位相をずらした後その極
性を反転して得る補正信号を式のiに加えるこ
とにより式の第2項を減少するように工夫して
いる。
By the way, in general, when comparing the sizes of i R and i C , i R
is much smaller than i C , and when trying to increase the sensitivity of the measuring device, saturation of the amplifier due to i C occurs, causing problems with the circuit configuration. Therefore, the component of the second term in the equation must be made sufficiently small before multiplication. The traditional method in this regard is
The second term in the equation is reduced by adding to i in the equation a correction signal obtained by shifting the phase of the output using a 90° phase shifter PH and then inverting its polarity.

この場合はこの補正信号などの位の振幅の電流
とするかがこの方法の重要な問題となる。上記公
開公報ではこの補正信号の振幅をタツプ切替え等
によつて調整可能にしておく方法がとられてい
る。即ち、精度のよい絶縁抵抗測定を行なうに
は、補正信号の人手による調整を必要とした。し
かし浮遊容量の値は雨天などには大きく変動しタ
ツプ調整はその都度行なわなければ精度は保てな
いという欠点をもつている。
In this case, an important issue in this method is whether to use a current with an amplitude as large as this correction signal. In the above-mentioned publication, a method is adopted in which the amplitude of this correction signal is made adjustable by tap switching or the like. That is, in order to measure insulation resistance with high precision, manual adjustment of the correction signal was required. However, the value of stray capacitance fluctuates greatly in rainy weather, etc., and accuracy cannot be maintained unless the tap adjustment is made each time.

本発明の方法はこの補正信号の量を自動的に決
定することを可能とするもので、調整の必要をな
くすものである。
The method of the invention makes it possible to automatically determine the amount of this correction signal, eliminating the need for adjustment.

すなわち、 発振器出力Vosinw1tを分岐して得たVo′sinw1t
(Vo′はVoと等しい必要はない)を90゜移相器Psに
通すことによりV′=Vo′cosw1tを得る。かくして
えられたV′と式の電流iとの積をとると V′×i=w1c/2VoVo′+w1cVoVo′/2cos2w1t+Vo
Vo′/2Rsin2w1t すなわち式の直流分はw1c/2VoVo′となること を知る。これは浮遊容量に比例している。すなわ
ちV′wiの直流分を2/Vo′倍(Vo′は一定)した値 はw1CVoとなる。そこで補正信号としてV′を極
性反転した信号V″=−Vo′cosw1tの振幅成分
Vo′がV′xiの直流分を2/Vo′倍したものに等しくな るようにV″の振幅を自動調整するときは、それ
によつて得られる信号は −w1CVocosw1t となる。これを式のiに加算すれば i−w1CVocosw1t=Vo/Rsinw1t となる。
In other words, Vo′sinw 1 t obtained by branching the oscillator output Vosinw 1 t
(Vo′ does not have to be equal to Vo) is passed through a 90° phase shifter Ps to obtain V′=Vo′cosw 1 t. Taking the product of V′ thus obtained and the current i in the equation, V′×i=w 1 c/2VoVo′+w 1 cVoVo′/2cos2w 1 t+Vo
Vo′/2Rsin2w 1 t In other words, we know that the DC component of the equation is w 1 c/2VoVo′. This is proportional to stray capacitance. That is, the value obtained by multiplying the DC component of V'wi by 2/Vo'(Vo' is constant) becomes w 1 CVo. Therefore, as a correction signal, the amplitude component of the signal V″=−Vo′cosw 1 t, which is the polarity-inverted signal of V′
When the amplitude of V'' is automatically adjusted so that Vo' is equal to the DC component of V'xi multiplied by 2/Vo', the resulting signal is −w 1 CVocosw 1 t. If added to i in the equation, it becomes i-w 1 CVocosw 1 t=Vo/Rsinw 1 t.

このことは、式の信号の振幅は絶縁抵抗Rに
逆比例している。式からRに逆比例した直流分
を得るためには、式の信号を整流してもよい
し、式の場合と同様にVとの積をとつても得ら
れることは明らかである。
This means that the amplitude of the signal in the equation is inversely proportional to the insulation resistance R. It is clear that in order to obtain the DC component inversely proportional to R from the equation, the signal in the equation may be rectified, or it can be obtained by multiplying it by V as in the case of the equation.

第2図は本発明の上記を実現する実施例であ
る。商用周波数よりも低い角周波数w1の発振器
OSCの出力はフイルタF1を通過した後トランス
TR5をへて前記接地系の接地線ELに送出され
る。TR5の2次側電圧はVとする。抵抗Roに流
れる電流は例えばバツフアアンプBAを通すこと
によりその出力には電流iに比例した電圧が得ら
れる。(これは電圧に変換せずに電流のまま処理
してもよいことは明らかである)。一方フイルタ
F1の出力は90゜移相器は移相器psに加えられる。
移相器psの出力V′と電流iに比例する前記バツ
フアアンプBAの出力電圧との積をかけ算器
MUP1でとるとかけ算器MUP1の出力には式
の両辺をRo倍した信号が得られる。その信号の
直流分をとるためにローパスフイルタLPF1に
加えるとローパスフイルタLPF1の出力には
w1CVoVo′/2Roが得られる。ローパスフイルタ出 力は係数回路2/Vo′で2/Vo′倍することによ
りw1CVoRoが得られ、これが引算回路SUB1の
一方の入力に加えられる。他方90゜移相器PSの出
力を極性反転回路INVにて反転した後これをト
ランジスタ、FFT(電界効果トランジスタ)等で
構成される可変減衰器VRに加える。可変減衰器
VRの出力は整流器LDで整流されてその直流分
は引算回路SUB1のもう一方の入力端に加えら
れる。この引算回路SUB1の出力は増幅器AP3
に加えられ、その出力は可変減衰器VRの制御入
力に加えられてSUB1の出力が零となるように
自動調整されるのである。かくして可変減衰器
VRの出力には−w1CVoRo cosw1tなる信号が得
られる。可変減衰器VRの出力はバツフアーアン
プBAの出力と加算器ADDで加算することにより
その出力には式の左辺のRoi−w1CVo
Rocosw1tが得られる。すなわち加算器ADDの出
力はVoRo/Rsinw1tとなりその振幅は絶縁抵抗に 比例した値となる。Vo/Rに比例した電圧は加算器 ADDの出力を整流してもその直流分として得ら
れるが、第2図のように加算器出力と発振器出力
との積をかけ算器MUP2で作りその直流分をロ
ーパスフイルタLPF2で取出すことでも絶縁抵
抗に逆比例した値が出力OUTに得られる。
FIG. 2 shows an embodiment of the present invention that implements the above. Oscillator with angular frequency w 1 lower than the commercial frequency
The output of OSC passes through filter F1 and then transformer
It passes through TR5 and is sent to the ground line EL of the ground system. The secondary side voltage of TR5 is assumed to be V. By passing the current flowing through the resistor Ro through a buffer amplifier BA, for example, a voltage proportional to the current i can be obtained at its output. (It is clear that this may be processed as a current without converting it to a voltage). On the other hand, the filter
The output of F1 is applied to a 90° phase shifter ps.
a multiplier for the product of the output V' of the phase shifter ps and the output voltage of the buffer amplifier BA which is proportional to the current i;
When taken by MUP1, a signal obtained by multiplying both sides of the equation by Ro is obtained at the output of the multiplier MUP1. If you add it to low pass filter LPF1 to take the DC component of that signal, the output of low pass filter LPF1 will be
w 1 CVoVo′/2Ro is obtained. The low-pass filter output is multiplied by 2/Vo' by the coefficient circuit 2/Vo' to obtain w 1 CVoRo, which is added to one input of the subtraction circuit SUB1. On the other hand, the output of the 90° phase shifter PS is inverted by a polarity inversion circuit INV and then applied to a variable attenuator VR composed of transistors, FFTs (field effect transistors), etc. variable attenuator
The output of VR is rectified by a rectifier LD, and its DC component is added to the other input terminal of the subtraction circuit SUB1. The output of this subtraction circuit SUB1 is the amplifier AP3
The output is added to the control input of the variable attenuator VR and automatically adjusted so that the output of SUB1 becomes zero. Thus the variable attenuator
A signal −w 1 CVoRo cosw 1 t is obtained at the output of VR. The output of the variable attenuator VR is added to the output of the buffer amplifier BA by the adder ADD, and the output is Roi−w 1 CVo on the left side of the equation.
Rocosw 1t is obtained. In other words, the output of the adder ADD is VoRo/Rsinw 1 t, the amplitude of which is proportional to the insulation resistance. The voltage proportional to Vo/R can be obtained as the DC component even if the output of the adder ADD is rectified, but as shown in Figure 2, the DC component is created by multiplying the adder output and the oscillator output by the multiplier MUP2. By extracting it with the low pass filter LPF2, a value inversely proportional to the insulation resistance can be obtained at the output OUT.

上記実施例においてはバツフア・アンプBAの
出力の後にw1の周波数成分のみを通すフイルタ
を省略しているが、これを追加すれば好結果が得
られる。また上記ではバツフアアンプBAを介し
て電流iを電圧iRoに変換して処理したが、電流
のままでも同様の処理のできることはすでに述べ
た通りである。
In the above embodiment, the filter that passes only the frequency component of w1 after the output of the buffer amplifier BA is omitted, but good results can be obtained by adding this filter. Further, in the above description, the current i was converted to the voltage iRo via the buffer amplifier BA for processing, but as already mentioned, the same processing can be performed using the current as it is.

また式の第2項を消去するためには上述の他
に次の方法を採用してもよい。
Further, in order to eliminate the second term of the equation, the following method may be adopted in addition to the above method.

すなわち、電流iに発振器出力電圧を90゜移相
器に通すことにより得られる電圧を極性反転する
と振幅aの電流i′=−acosw1tなる補正電流を得
る。
That is, by inverting the polarity of the voltage obtained by passing the oscillator output voltage to the current i through a 90 DEG phase shifter, a correction current with an amplitude a of current i'=-acosw 1 t is obtained.

これをiに加算すれば式から i+i′=Vo/Rsinw1t+(w1CVo−a)cosw1t が得られ式と同様にi+i′とV′との積をとると V′×(i+i′)=(w1CVo−a)/2Vo′+(w1CVo−
a)/2Vo′cos2w1t+VoVo′/2Rsin2w1t となる。式の右辺の直流分 (w1CVo−a)/2Vo′ は、w1CVo=aのとき零となる。すなわちV′×
(i+i′)の直流分が零となるように自動調整す
るときに得られ、i+i′には有効分のVo/Rsinw1t のみが含まれることになる。
Adding this to i, we get i+i'=Vo/Rsinw 1 t+(w 1 CVo-a)cosw 1 t from the formula, and taking the product of i+i' and V' in the same way as the formula, we get V'×(i+i ′)=(w 1 CVo−a)/2Vo′+(w 1 CVo−
a)/2Vo′cos2w 1 t+VoVo′/2Rsin2w 1 t. The DC component (w 1 CVo-a)/2Vo' on the right side of the equation becomes zero when w 1 CVo=a. That is, V′×
This is obtained when the DC component of (i+i') is automatically adjusted to zero, and i+i' includes only the effective component Vo/Rsinw 1 t.

第3図は上記を実現する本発明の第2の実施例
を示す。
FIG. 3 shows a second embodiment of the invention that achieves the above.

第3図の実施例は基本的には第2図と同じであ
つて無効分の消去方法、が異なつているのみであ
る。したがつて第2図と同一の機能をもつ部分に
ついては説明を省略する。バツフアアンプBAの
出力にはiRo=VoRo/RSinw1t+w1cVoRo・ cosw1tが得られ、可変抵抗減衰器VRの出力には
−a′cosw1t(a′は電圧の振幅である)の信号が得
られている。したがつて加算器ADDの出力には
iRo−a′cosw1tが得られ、このiRo−a′cosw1tと
90゜移相器ps出力のV′=V′ocosw1tの積をかけ算
器MUP1でとり、且かけ算器MUP1の出力をロ
ーパスフイルタLPF1に加えることによりロー
パスフイルタLPF1の出力には直流分
(w1CVoRo−a′)/2Vo′が得られる。増幅器AP3 はこの直流分を増幅して可変減衰器VRを制御し
LPF1出力の直流分が零となるように動作する
ものである。
The embodiment shown in FIG. 3 is basically the same as that shown in FIG. 2, and differs only in the method of erasing invalid components. Therefore, descriptions of parts having the same functions as those in FIG. 2 will be omitted. At the output of the buffer amplifier BA, iRo=VoRo/RSinw 1 t+w 1 cVoRo・cosw 1 t is obtained, and at the output of the variable resistance attenuator VR, a signal of −a′cosw 1 t (a′ is the amplitude of the voltage) is obtained. is obtained. Therefore, the output of adder ADD is
iRo−a′cosw 1 t is obtained, and this iRo−a′cosw 1 t and
Multiplier MUP1 takes the product of V' = V'ocosw 1 t of the 90° phase shifter ps output, and adds the output of multiplier MUP1 to low-pass filter LPF1, so that the output of low-pass filter LPF1 has a DC component (w 1 CVoRo−a′)/2Vo′ is obtained. Amplifier AP3 amplifies this DC component and controls variable attenuator VR.
It operates so that the DC component of the LPF 1 output becomes zero.

この種の技術は自動利得調整回路等で慣用され
ている技術である。かくして上記直流分が零とな
ることにより加算器ADDの出力に含まれる無効
成分即ち、(w1CVoRo−a′)cosw1tは、零に近づ
くことになる。したがつて、加算器の出力とフイ
ルタF1の出力Vo′sinw1tとの積をかけ算器MUP
2でとりその直流分をローパスフイルタLPF2
で求めれば、ローパスフイルタLPF2の出力
OUTには、VoVo′Ro/Rが得られる。これは絶縁 抵抗Rに逆比例した量となる。また、ADDの出
力を整流しても、絶縁抵抗に逆比例した量が得ら
れることは明らかである。
This type of technique is commonly used in automatic gain adjustment circuits and the like. As the DC component becomes zero, the reactive component included in the output of the adder ADD, ie, (w 1 CVoRo−a') cosw 1 t approaches zero. Therefore, the product of the output of the adder and the output Vo′sinw 1 t of the filter F 1 is the product of the multiplier MUP
2 and its DC component is passed through a low pass filter LPF2.
The output of low pass filter LPF2 is found by
VoVo'Ro/R is obtained at OUT. This amount is inversely proportional to the insulation resistance R. It is also clear that even if the output of the ADD is rectified, a value inversely proportional to the insulation resistance can be obtained.

本発明の方法によれば無調整(自動調整)で高
精度な絶縁抵抗の測定が可能となる。
According to the method of the present invention, insulation resistance can be measured with high accuracy without adjustment (automatic adjustment).

なお上記説明においては電流検出用の抵抗をト
ランスTR5に直列に挿入して原理的な説明を行
なつたが電流検出方法は必ずしもこれに限定され
ないことは明らかである。すなわちTR5の1次
巻線に電流検出用抵抗器を直列に挿入することに
よつても本方法は使用できることは明らかであ
る。この場合は測定対象を完全に絶縁できる効果
がある。
In the above description, the principle was explained by inserting a current detection resistor in series with the transformer TR5, but it is clear that the current detection method is not necessarily limited to this. That is, it is clear that the present method can also be used by inserting a current detection resistor in series with the primary winding of TR5. In this case, there is an effect that the measurement target can be completely insulated.

【図面の簡単な説明】[Brief explanation of drawings]

R:絶縁抵抗、C:浮遊容量、EL:接地系の
接地線、TR5:トランス、F1,F2:フイルタ、
ADJ:手動調整器、PH:90度移相器、Ro:電流
検出用抵抗、AP3,AP1,AP2:増幅器、OSC:
発振器、MUP,MUP1,MUP2:掛算器、ps:
90゜移相器、INV:極性反転回路、VR:可変減衰
器、LD:整流器、SUB1:引算回路、LPF1
LPF2:ローパスフイルタ、ADD:加算器、2/
Vo′:係数回路。 第1図は従来の絶縁測定装置のブロツク図。第
2,3図は夫々この発明の絶縁抵抗測定装置の系
統図。
R: Insulation resistance, C: Stray capacitance, EL: Grounding wire for grounding system, TR5: Transformer, F 1 , F 2 : Filter,
ADJ: Manual adjuster, PH: 90 degree phase shifter, Ro: Current detection resistor, AP 3 , AP 1 , AP 2 : Amplifier, OSC:
Oscillator, MUP, MUP 1 , MUP 2 : Multiplier, ps:
90° phase shifter, INV: polarity inversion circuit, VR: variable attenuator, LD: rectifier, SUB1: subtraction circuit, LPF 1 ,
LPF 2 : Low pass filter, ADD: Adder, 2/
Vo′: Coefficient circuit. Figure 1 is a block diagram of a conventional insulation measuring device. 2 and 3 are system diagrams of the insulation resistance measuring device of the present invention, respectively.

Claims (1)

【特許請求の範囲】 1 接地線に挿入接続される低周波信号源と該低
周波信号によつて接地線に流れる電流を検出する
電流検出部と、前記低周波信号源出力を位相を
90゜移相する手段と該90゜移相した信号と前記電流
検出部の電流との積をとる手段と、該積の直流分
を定数倍する手段と、前記この直流信号と90゜移
相した信号の振幅値が前記定数倍した直流分と等
しくなるように制御する可変減衰器と該可変減衰
器の出力信号と前記定数倍した直流信号との加算
又は減算を行う演算手段とを具えたことを特徴と
する絶縁抵抗測定装置。 2 特許請求の範囲第1項において電流検出部の
電流と、前記低周波信号源と位相が90゜異なる第
1の電流との差の信号を得る手段と、該「差」の
信号と、前記低周波信号源と位相が90゜異なる第
2の信号との積の直流分を得る手段と、該直流分
が零となるように前記第1の電流の大きさを自動
調整する手段とを具えたことを特徴とする絶縁抵
抗測定装置。
[Claims] 1. A low-frequency signal source inserted and connected to a grounding line, a current detection unit that detects a current flowing through the grounding line based on the low-frequency signal, and a phase difference between the output of the low-frequency signal source.
means for shifting the phase by 90 degrees; means for multiplying the 90 degrees phase-shifted signal by the current of the current detection section; means for multiplying the DC component of the product by a constant; a variable attenuator that controls the amplitude value of the signal to be equal to the DC component multiplied by the constant; and arithmetic means for adding or subtracting the output signal of the variable attenuator and the DC signal multiplied by the constant. An insulation resistance measuring device characterized by: 2. In claim 1, means for obtaining a signal of a difference between the current of the current detection unit and a first current having a phase different from the low frequency signal source by 90 degrees, the signal of the "difference", and the means for obtaining a DC component of the product of a low frequency signal source and a second signal having a phase difference of 90°; and means for automatically adjusting the magnitude of the first current so that the DC component becomes zero. An insulation resistance measuring device characterized by:
JP14246579A 1979-11-01 1979-11-01 Measuring device for insulation resistance Granted JPS5666763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14246579A JPS5666763A (en) 1979-11-01 1979-11-01 Measuring device for insulation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14246579A JPS5666763A (en) 1979-11-01 1979-11-01 Measuring device for insulation resistance

Publications (2)

Publication Number Publication Date
JPS5666763A JPS5666763A (en) 1981-06-05
JPS6334986B2 true JPS6334986B2 (en) 1988-07-13

Family

ID=15315941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14246579A Granted JPS5666763A (en) 1979-11-01 1979-11-01 Measuring device for insulation resistance

Country Status (1)

Country Link
JP (1) JPS5666763A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127173A (en) * 1982-01-26 1983-07-28 Toyo Commun Equip Co Ltd Measurement of insulation resistance for electric line

Also Published As

Publication number Publication date
JPS5666763A (en) 1981-06-05

Similar Documents

Publication Publication Date Title
US4181881A (en) Electrical impedance measuring apparatus for providing separate measurements of the conductivity and dielectric coefficient of various materials
JPS6334986B2 (en)
JP2617324B2 (en) Insulation resistance measurement method
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JPH0552466B2 (en)
JPS6042419B2 (en) Insulation resistance measuring device
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
JP2646097B2 (en) Simple insulation resistance measurement method
JP2646089B2 (en) Method for measuring insulation resistance of low-voltage circuit
JPH07234102A (en) Displacement measuring apparatus
JPS637349B2 (en)
JP2750690B2 (en) Leakage current detection method
JPS6154464A (en) Measuring instrument of earth insulating resistance
JPS606877A (en) Method and device for detecting reactive power
JP2764582B2 (en) Simple insulation resistance measurement method
JP2593669B2 (en) Method for locating defective electrical insulation
JP2593668B2 (en) Insulation fault detection method for electric circuit
JPH0783973A (en) Insulation resistance measuring apparatus
JP2617325B2 (en) Insulation resistance measurement method
JP2002062317A (en) Capacitor-current measuring apparatus
SU1196775A1 (en) Alternating voltage meter
JPS6159267A (en) Method for measuring insulating resistance of electric circuit
JP2696510B2 (en) Measurement method of insulation resistance of electric circuit
JP2696513B2 (en) Electrical capacitance measurement method for ground
JPH0346787B2 (en)