JPS6334971A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6334971A
JPS6334971A JP61179541A JP17954186A JPS6334971A JP S6334971 A JPS6334971 A JP S6334971A JP 61179541 A JP61179541 A JP 61179541A JP 17954186 A JP17954186 A JP 17954186A JP S6334971 A JPS6334971 A JP S6334971A
Authority
JP
Japan
Prior art keywords
lift
spacer
channel
polyimide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61179541A
Other languages
Japanese (ja)
Inventor
Yuji Yanagi
柳 裕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61179541A priority Critical patent/JPS6334971A/en
Publication of JPS6334971A publication Critical patent/JPS6334971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain the GaAs static RAM in which the shift of threshold voltage can be prevented and also the variability of the threshold voltage can be suppressed by a method wherein an organic high molecular film, having a heat- resisting property, a chemical-proof property and an electrical insulating property, is formed on the gate electrode and the n channel of a self-alignment type MESFET part. CONSTITUTION:An n channel 2, a gate electrode 4, and an n<+> active layer 3 are formed on a GaAs substrate 1, and the n channel 2 and the n<+> active layer 3 are activated by performing a capless annealing method. Then, polyimide to be used for a lift-off spacer is formed, and a lift-off spacer polyimide 6 is formed by converting it completely into an imide by stepwise curing. Then, the n<+> active layer 3 is exposed by wet or dry etching on the lift-off spacer polyimide 6 using a photoresist 13 as a mask, and an ohmic metal 7 is formed. Subsequently, the first interlayer insulating layer 8, the first layer wiring film 9, the second interlayer insulating layer 10, the second layer wiring film 11 and a protective film 12 are formed successively by a lift-off method on the ohmic metal 7.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、GaAs自己魯合型MESFETを用いた
スタティックRAMの製造工程において層間絶縁膜や保
護膜のもつストレスによってしきい値電圧vthのシフ
トを防止する半導体装置の構造に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the shift of threshold voltage vth due to stress in interlayer insulating films and protective films in the manufacturing process of static RAM using GaAs self-combining MESFETs. The present invention relates to a structure of a semiconductor device that prevents this.

〔従来の技術〕[Conventional technology]

第2図は従来のGaAsスタティックRAMの自己整合
型MES1’ET部を示す断面図であり、第2図A −
Dは自己整合型ME8FB’l’の製造方法を説明する
ためにその主要段階における状態を製造順序に従って示
した断面図であり、第2図EはスタティックRAMの製
造工程が終了した時点の自己整合型ME8FETの状態
を示した断面図である。図において、(1)ばGaAs
基板、(2)はチャネルn、(3)はオーミックコンタ
クトのためのF?!、dJ層n1(4)はゲート電極、
(5)はリフトオフスペーサシリコン窒化膜、(7)は
オーミンク金属、(8)は第1層間絶縁層、(9)は第
1層配線、(lO)は第2層間絶縁層、(11) I/
i@ 2層配線膜、(12)は保譲膜、(13)はフォ
トレジストである。
FIG. 2 is a cross-sectional view showing a self-aligned MES 1'ET section of a conventional GaAs static RAM.
D is a cross-sectional view showing the state at the main stages according to the manufacturing order in order to explain the manufacturing method of the self-aligned ME8FB'l', and FIG. FIG. 3 is a cross-sectional view showing the state of a type ME8FET. In the figure, (1) is GaAs
Substrate, (2) is channel n, (3) is F? for ohmic contact. ! , dJ layer n1(4) is a gate electrode,
(5) is a lift-off spacer silicon nitride film, (7) is an ohmink metal, (8) is a first interlayer insulating layer, (9) is a first layer wiring, (lO) is a second interlayer insulating layer, (11) I /
i@ two-layer wiring film, (12) is a preservation film, and (13) is a photoresist.

次に作用について説明する。第2図Aに示すようにGa
As基板(1) Kチャネルn(2)、ゲート電極(4
へ能動層n”(3)を形成しキャップレスアニール法に
よりチャネルn(2)及び能動層n”(3)を活性化さ
せて2く。
Next, the effect will be explained. As shown in Figure 2A, Ga
As substrate (1) K channel n (2), gate electrode (4
An active layer n'' (3) is formed thereon, and the channel n (2) and active layer n'' (3) are activated by capless annealing.

次に第2図Bに示すようにリフトオフスペーサシリコン
窒化膜(5)をプラズマCVD法やスパッタ法等により
形成する。次に第2図Cに示すように7オトレジスト(
13)をマスクとしてリフトオフスペーサシリコン窒化
膜(5)を湿式または乾式により工7 fングし能動層
♂(3)を露出させる。次いで電子ビームまたは抵抗加
熱式蒸着によりオーミンク金属(7)を形成する。次い
で溶剤によりフォトレジスト(13)を除去しフォトレ
ジスト(13)上に形成されたオーミンク金属(7)を
リフトオフする。第2図りはり7トオ7後の状態図であ
る。次いで第2図Eに示すように成膜技術及び写真製版
・エツチング技術を駆使して第1層間絶縁層(8)、第
1層配線1俣(9)、第2層間絶縁膜(lO)、第2層
配線膜(11)、保護膜(12)r順次形成しスタティ
ックRAMの製造工程が終了する。
Next, as shown in FIG. 2B, a lift-off spacer silicon nitride film (5) is formed by plasma CVD, sputtering, or the like. Next, as shown in Figure 2C, 7 otoresist (
Using mask 13), lift-off spacer silicon nitride film (5) is etched by wet or dry process to expose active layer ♂ (3). Then, an ohmink metal (7) is formed by electron beam or resistance heating vapor deposition. Next, the photoresist (13) is removed using a solvent, and the ohmink metal (7) formed on the photoresist (13) is lifted off. It is a state diagram after the second measurement 7 to 7. Next, as shown in FIG. 2E, a first interlayer insulating layer (8), one strip of first layer wiring (9), a second interlayer insulating film (lO), A second layer wiring film (11) and a protective film (12) are sequentially formed to complete the manufacturing process of the static RAM.

〔発り1が解決しようとする問題点J 従来のGaAsスタティックRAMは以上のようにa成
されているのでリフトオフスペーサシリコン窒化膜(5
)がゲート電極(4)、チャネルn(2)にストレスを
与えしきい値電圧マthがシフトしバラツキも増大する
。また第2図Eに示すようにゲート電極(4)、チャネ
ルn(2)上に層間絶縁層及び配線膜が多層に形成され
るためその都度ストレスが与えラレるためしきい値電圧
vthがシフトしバラツキが増大しGaAsスタティッ
クRAMの性能及び歩留りを低下させる。
[Problem J that Prologue 1 attempts to solve Since the conventional GaAs static RAM is constructed as described above, the lift-off spacer silicon nitride film (5
) applies stress to the gate electrode (4) and channel n(2), causing a shift in the threshold voltage Math and an increase in variation. In addition, as shown in FIG. 2E, since multiple interlayer insulating layers and wiring films are formed on the gate electrode (4) and channel n (2), stress is applied each time and the threshold voltage vth shifts. This increases the variation and reduces the performance and yield of the GaAs static RAM.

この発明は上記のような問題点を解消するためになされ
たものでしきい値電圧vthのシフトを防止できるとと
もKしさい値電圧vthのバラツキを抑制できるGaA
sスタティックRAMを得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to prevent the shift of the threshold voltage vth and suppress the variation in the threshold voltage vth.
The purpose is to obtain s static RAM.

[問題点を解決するための手段J この発明に係るGaA3スタティックRAM1す7トオ
7スペーサ窒化膜(5)を#熱性、耐薬品性、電気絶縁
性を有する有機高分子膜に変更したものである。
[Means for solving the problem J The GaA3 static RAM 17 spacer nitride film (5) according to the present invention is changed to an organic polymer film having heat resistance, chemical resistance, and electrical insulation properties. .

〔作用J この発明におけるGaAsスタティックRAMの構造は
リフトオフスペーサに耐熱性、耐薬品性、電気絶縁性を
有する有機高分子膜を採用したことによりゲート電極(
4)、チャネルn(2)に与えるストレスを低減ししき
い値電圧vthのシフトを防止しバラツキを抑制する。
[Function J] The structure of the GaAs static RAM in this invention uses an organic polymer film having heat resistance, chemical resistance, and electrical insulation properties as the lift-off spacer, so that the gate electrode (
4) The stress applied to channel n(2) is reduced to prevent shifts in threshold voltage vth and suppress variations.

またその後形成される多層の層間絶縁層及び配線膜のゲ
ート電極(4)、チャネルn(2)に与えるストレスが
緩和されしきい値電圧7thのシフトを防止しバラツキ
を抑制する。
Further, the stress applied to the gate electrode (4) and channel n (2) of the multilayer insulating layer and interconnection film formed thereafter is alleviated, thereby preventing a shift in the threshold voltage 7th and suppressing variations.

〔発明の実施例J 以゛ド、この発明の一失施例を図について説明する。な
お第2図と同−符勿を付したものは同−又は相当部分を
示す。第1図A −Dはこの発明を説明するためにその
主要段階における状態を示した断面図で第1図Eはこの
発明によるGaAsスタティックRAMの製造工程が終
Tした時点の状態を示゛す断面図である。第1図におい
て(6〕は耐熱性、耐薬品性、電気絶縁性を有する有機
高分子膜、例えばポリイミドにより形成されたリフトオ
フスペーサポリイミドである。
[Embodiment J of the Invention Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Note that the same reference numerals as in FIG. 2 indicate the same or equivalent parts. 1A to 1D are cross-sectional views showing the state at the main stages for explaining the present invention, and FIG. 1E shows the state at the end of the manufacturing process of the GaAs static RAM according to the present invention. FIG. In FIG. 1, (6) is an organic polymer film having heat resistance, chemical resistance, and electrical insulation properties, such as a lift-off spacer polyimide made of polyimide.

次に作用について説明する。まず第1図Aの状態を従来
方法第2図Aと同様に形成する。次に第1図Bに示すよ
うにり7トオフスベーサ用としてポリイミドをスピン塗
布やロールコータ塗布法等により形成し、例えば150
℃1時間、400’C1時間のステップキュアにより完
全にイミド化させてリフトオフスペーサポリイミド(6
)を形成する。
Next, the effect will be explained. First, the state shown in FIG. 1A is formed in the same manner as the conventional method shown in FIG. 2A. Next, as shown in FIG.
Completely imidized by step curing at 400°C for 1 hour and lift-off spacer polyimide (6
) to form.

次に第1図Cに示すように7オトレジス) (13)を
マスクトシてリフトオフスペーサポリイミド(6)を湿
式(例えばヒドラジンヒトラード)または乾式(酸素R
工E)によりエツチングし能動層n” (3)を露出さ
せる。次いで電子ヒームまたeよ抵抗加熱式蒸着により
オーミンク金属(7)を形成する。その後%1図りは第
2図りと同様に形成し、第1図Eは第2図Eと同様に形
成しスタティックRAMの製造工程が終了する。
Next, as shown in FIG.
The active layer n'' (3) is exposed by etching using step E). Then, the Ohmink metal (7) is formed by electron beam or resistive heating evaporation. After that, the %1 pattern is formed in the same manner as the second pattern. , FIG. 1E are formed in the same manner as FIG. 2E, and the manufacturing process of the static RAM is completed.

本発明によればしきい値電圧vthのシフトを防止しバ
ラツキの増大を抑制できるがその他副次同な効果として
リフトオフスペーサ暎としてシリコン窒化膜からポリイ
ミドに変更したため比誘電率が7から3.7と半減しダ
ート電極(4)と第1層配線膜(9)との間ンζ生じる
配線間容量を減小させGaAsスタティックRAMの性
能を向上できる。また第1層間絶縁層(8)以降に生ず
るストレスを嶽和し一8基板(1)のそりの経時変化を
抑制するため写真製版工程における重ね合わせ精度及び
フォトレジストの解像度を安定させることができる。ま
たポリイミドは露光波長を吸収するため第1層間絶縁層
(8)以降に行なう写真製版工程において7オトレジス
トの解像度が向上する。
According to the present invention, it is possible to prevent the shift of the threshold voltage vth and suppress the increase in variation, but as a secondary effect, the dielectric constant is changed from 7 to 3.7 because the lift-off spacer is changed from silicon nitride film to polyimide. The capacitance between the wirings generated between the dirt electrode (4) and the first layer wiring film (9) can be reduced by half, and the performance of the GaAs static RAM can be improved. In addition, the stress generated after the first interlayer insulating layer (8) is suppressed and the warpage of the substrate (1) is suppressed from changing over time, making it possible to stabilize the overlay accuracy and photoresist resolution in the photolithography process. . Furthermore, since polyimide absorbs the exposure wavelength, the resolution of the 7 photoresist is improved in the photolithography process performed after the first interlayer insulating layer (8).

なお上記実施例では、リフトオフスペーサにポリイミド
を用いたが池の耐熱性、耐薬品性、電気絶縁性を肩する
有機高分子膜を用いても上記実施例と同様の効果が得ら
れる。
Although polyimide is used for the lift-off spacer in the above embodiment, the same effects as in the above embodiment can be obtained by using an organic polymer film that takes care of the heat resistance, chemical resistance, and electrical insulation properties of the spacer.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればゲート電極形成後のオ
ーミック金属形成においてり7トオ7スベーサとして耐
熱性、耐薬品性、電気絶縁性を有する有機高分子膜を用
いたのでゲート電極及びチャネルnrこ与えられるスト
レスを緩和できしきい値電圧vthのシフトを防止しパ
ランキの増大を抑制しGaAsスタティックRAMの設
計通りの性能が得られ、また歩留りも向上する。
As described above, according to the present invention, an organic polymer film having heat resistance, chemical resistance, and electrical insulation properties is used as a base material in forming the ohmic metal after forming the gate electrode. The applied stress can be alleviated, a shift in the threshold voltage vth can be prevented, and an increase in paranchi can be suppressed, so that the designed performance of the GaAs static RAM can be obtained and the yield can also be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるGaAsスタティッ
クRAMの自己整合型MISFET部を示す断面図、第
2図は従来のGaAsスタティックRAMの自己整合型
MESFKT部を示す断面図である0(1)はGaAs
基板、(2)はチャネルn、(3)は能動層n、(4)
はゲート電極、(5)はリフトオフスペーサシリコンf
fl化膜、(6)はリフトオフスペーサポリイミド、(
7)はオーミック金線、(8)は第1層間絶縁層、(9
)は第1層間絶縁、(10)は第2層間絶縁層、(11
)は第2層間絶縁、(12) Vi保保護膜(13)は
7オトレジストである。 なお、図中、同一符号は同一、又は同等部分を示す。
FIG. 1 is a sectional view showing a self-aligned MISFET section of a GaAs static RAM according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a self-aligned MESFKT section of a conventional GaAs static RAM. is GaAs
Substrate, (2) channel n, (3) active layer n, (4)
is the gate electrode, (5) is the lift-off spacer silicon f
fl film, (6) is lift-off spacer polyimide, (
7) is an ohmic gold wire, (8) is a first interlayer insulating layer, (9
) is the first interlayer insulation layer, (10) is the second interlayer insulation layer, (11
) is the second interlayer insulation, (12) the Vi protection film (13) is the 7-photoresist. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  GaAsスタテイツクRAMの製造工程において、自
己整合型MESFET部のゲート電極及びチャネルn上
に耐熱性、耐薬品性、電気絶縁性を有する有機高分子膜
を形成したことを特徴とする半導体装置の製造方法
A method for manufacturing a semiconductor device, characterized in that an organic polymer film having heat resistance, chemical resistance, and electrical insulation properties is formed on the gate electrode and channel n of a self-aligned MESFET section in the manufacturing process of a GaAs static RAM.
JP61179541A 1986-07-29 1986-07-29 Manufacture of semiconductor device Pending JPS6334971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61179541A JPS6334971A (en) 1986-07-29 1986-07-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61179541A JPS6334971A (en) 1986-07-29 1986-07-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6334971A true JPS6334971A (en) 1988-02-15

Family

ID=16067553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61179541A Pending JPS6334971A (en) 1986-07-29 1986-07-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6334971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185278A (en) * 1990-10-22 1993-02-09 Motorola, Inc. Method of making self-aligned gate providing improved breakdown voltage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185278A (en) * 1990-10-22 1993-02-09 Motorola, Inc. Method of making self-aligned gate providing improved breakdown voltage

Similar Documents

Publication Publication Date Title
US3475234A (en) Method for making mis structures
EP0046371B1 (en) Method of manufacturing a semiconductor device
KR900008277B1 (en) Method manufacturing a field effect transistor
JPS5950567A (en) Manufacture of field effect transistor
US4136434A (en) Fabrication of small contact openings in large-scale-integrated devices
JPH0260217B2 (en)
US6215142B1 (en) Analog semiconductor device and method of fabricating the same
US6645819B2 (en) Self-aligned fabrication method for a semiconductor device
JPS6334971A (en) Manufacture of semiconductor device
JPS6292481A (en) Manufacture of semiconductor device
KR19980050968A (en) Method for manufacturing gate electrode of semiconductor device
JPH0510827B2 (en)
JPH09102585A (en) Semiconductor device and manufacture thereof
JP2844963B2 (en) Semiconductor device and manufacturing method thereof
KR0172263B1 (en) Method of manufacturing semiconductor device
JPH0766408A (en) Manufacture of semiconductor device
US10790397B2 (en) Semiconductor device and method for manufacturing the same
JP2951056B2 (en) Method for manufacturing field effect transistor
JP3342260B2 (en) Semiconductor device and method of manufacturing the same
KR0163741B1 (en) Method for fabricating the ohmic contact electrode of semiconductor devices
JPH06151354A (en) Electrode formation method of semiconductor element
JPH09129828A (en) Semiconductor integrated circuit device
KR940010561B1 (en) Manufacturing method of mesfet
JPH058571B2 (en)
JPH03185841A (en) Manufacture of semiconductor device