JPS6334696B2 - - Google Patents

Info

Publication number
JPS6334696B2
JPS6334696B2 JP55014771A JP1477180A JPS6334696B2 JP S6334696 B2 JPS6334696 B2 JP S6334696B2 JP 55014771 A JP55014771 A JP 55014771A JP 1477180 A JP1477180 A JP 1477180A JP S6334696 B2 JPS6334696 B2 JP S6334696B2
Authority
JP
Japan
Prior art keywords
pole
current
converter
healthy
accident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55014771A
Other languages
Japanese (ja)
Other versions
JPS56112830A (en
Inventor
Takami Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1477180A priority Critical patent/JPS56112830A/en
Publication of JPS56112830A publication Critical patent/JPS56112830A/en
Publication of JPS6334696B2 publication Critical patent/JPS6334696B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 (a) 技術分野の説明 本発明は、原子力発電電力を直流送電で輸送す
る場合の交直変換装置の直流電流制御方式に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Description of the technical field The present invention relates to a DC current control system for an AC/DC converter when nuclear generated power is transported by DC transmission.

(b) 従来技術の説明 第1図は、原子力発電と直結した双極1回線の
直流送電の構成図を示す。第1図において、原子
炉1で発生した蒸気はタービン2へ送られ、その
タービン出力は発電機3、昇高度変圧器4を介し
て光流母線5に接続される。交流母線5は、変換
用変圧器6,7を介して、順変換器8,9に接続
され、前記変換器8,9は原子力発電によつて得
られた交流電力を直流電力に変換し、前記変換さ
れた直流電力は更に逆変換器10,11により交
流電力に変換され負荷に供給される。12,1
3,14,15は平滑リアクトル、16,17は
本線、18は中性線である。
(b) Description of Prior Art FIG. 1 shows a configuration diagram of bipolar single-line DC power transmission directly connected to nuclear power generation. In FIG. 1, steam generated in a nuclear reactor 1 is sent to a turbine 2, and the turbine output is connected to a light current bus 5 via a generator 3 and an elevation transformer 4. The AC bus 5 is connected to forward converters 8 and 9 via conversion transformers 6 and 7, and the converters 8 and 9 convert AC power obtained by nuclear power generation into DC power, The converted DC power is further converted into AC power by inverters 10 and 11 and supplied to the load. 12,1
3, 14, and 15 are smooth reactors, 16, 17 are main lines, and 18 is a neutral line.

尚、説明の便宜上、順変換器8、本線16、逆
変換器10、中性線18で構成された極をP1極、
順変換器9、本線17、逆変換器11、中性線1
8で構成された極をP2極と称す。
For convenience of explanation, the pole composed of the forward converter 8, the main line 16, the inverse converter 10, and the neutral line 18 is referred to as P1 pole,
Forward converter 9, main line 17, inverse converter 11, neutral line 1
The pole composed of 8 is called P2 pole.

このような構成における直流送電を制御する場
合、周知のごとく、順変換器側は、電流設定値
Idpと直流電流検出値Idにより、前記直流電流検
出値Idを一定に制御する定電流制御(ACR)に
よつて運転され、逆変換器側は、電圧設定値Vdp
と直流電圧検出値Vdにより、前記直流電圧検出
値Vdを一定に制御する定電圧制御(AVR)によ
つて運転される。即ち、第2図におけるA点が順
逆変換装置の協調のとれた動作点である。
When controlling DC power transmission in such a configuration, as is well known, the forward converter side must control the current setting value.
It is operated by constant current control (ACR) that controls the DC current detection value Id to a constant value based on Idp and DC current detection value Id, and the inverter side is controlled by the voltage setting value Vdp.
It is operated by constant voltage control (AVR) that controls the DC voltage detection value Vd to be constant based on the DC voltage detection value Vd and the DC voltage detection value Vd. That is, point A in FIG. 2 is the cooperative operating point of the forward/inverse converter.

さて、原子力発電では、負荷しや断の検出を目
的として、パワーロードアンバランスリレー(以
下、PLURYと呼ぶ。)が設置されており、この
PLURYは発電機電流の変化減少量及び変化減少
速度が各々所定値に達した時動作し、原子炉をス
クラムさせる原理である為、例えば第1図におけ
る本線16に地絡が発生した場合、この時の事故
電流により前記PLURYが不要動作し、原子炉を
スクラムさせることになる。従つて、予め変換器
や直流送電線路を短時間は過負荷に耐え得るよう
に設計しておいて、例えば第1図における本線1
6に地絡が発生した場合、変換器8,10を停止
するとともに、いままでP1極に流れていた直流
電流を急速にP2極へ移すことによつて前記
PLURYの不要動作を防止することが必要である
が、この方法としては、通常、健全極であるP2
極の定電流制御(ACR)の電流設定値Idpを大き
くして、P2極の直流電流を増加させる方法が知
られている。
Now, in nuclear power generation, power load unbalance relays (hereinafter referred to as PLURY) are installed for the purpose of detecting load interruptions.
PLURY operates when the change reduction amount and change reduction speed of the generator current each reach a predetermined value, and the principle is to scram the reactor, so for example, if a ground fault occurs in the main line 16 in Figure 1, this Due to the fault current at the time, the PLURY would operate unnecessarily, causing the reactor to scram. Therefore, by designing converters and DC transmission lines in advance so that they can withstand overload for a short period of time, for example, main line 1 in Fig.
6, the converters 8 and 10 are stopped, and the DC current that has been flowing to the P 1 pole is quickly transferred to the P 2 pole.
It is necessary to prevent unnecessary operation of PLURY, but this method usually requires P2 , which is a healthy pole.
A known method is to increase the DC current of the P2 pole by increasing the current setting value Idp of the constant current control (ACR) of the pole.

しかしながら、健全極であるP2極の直流電流
を例えば定格直流電流の120%にすることによつ
て、前記PLURYの不要動作を防止することがで
きるならば、問題はないが、例えば定格直流電流
の200%の直流電流を健全極であるP2極に流さな
ければPLURYが不要動作するような場合には、
前記方法によつては問題は解決しない。
However, if unnecessary operation of the PLURY can be prevented by setting the DC current of the P 2 poles, which are healthy poles, to, for example, 120% of the rated DC current, there will be no problem. If 200% of the DC current is not passed to the healthy P2 pole, PLURY will operate unnecessarily.
The above methods do not solve the problem.

例えば、第3図に示すように、B点は、順変換
器側の2次無負荷直流電圧であるが、逆変換器側
の直流電圧は、変換用変圧器のインピーダンスや
直流送電線路による損失の為、前記2次無負荷直
流電圧より大きく低下している。従つて例え電流
設定値Idpを200%にしても、直流電流は実際には
200%は流れないと云う欠点があつた。
For example, as shown in Figure 3, point B is the secondary no-load DC voltage on the forward converter side, but the DC voltage on the inverse converter side is due to the impedance of the conversion transformer and the loss due to the DC transmission line. Therefore, the voltage is significantly lower than the secondary no-load DC voltage. Therefore, even if the current setting value Idp is set to 200%, the DC current is actually
The drawback was that it did not flow 200%.

(c) 発明の目的 従つて、本発明の目的は、このような欠点を除
去する為になされたものであつて、直流送電線路
事故などの場合に、PLURYの不要動作を防止
し、原子炉をスクラムに到らしめない交直変換装
置の直流電流制御方式を提供することにある。
(c) Purpose of the invention Therefore, the purpose of the present invention was to eliminate such drawbacks, and to prevent unnecessary operation of PLURY in the event of a DC transmission line accident, etc. The object of the present invention is to provide a DC current control method for an AC/DC converter that does not cause the AC/DC converter to reach a scram.

(d) 発明の構成 以下、図面を参照して本発明を説明する。(d) Structure of the invention The present invention will be described below with reference to the drawings.

第4図、第5図は、本発明の一実施例を示す制
御ブロツク図で、第4図は順変換器側、第5図は
逆変換器側の制御ブロツク図を示す。第4図にお
いて、19は定電流制御回路、20は制御遅れ角
(以下、αと呼ぶ。)の下限リミツタ、21,22
は事故信号に連動するスイツチで、事故信号が発
生するとスイツチ21はOFF、スイツチ22は
ONとなり、αの下限リミツタ20の出力電圧が
選択され、その出力電圧が点弧位相を決定する位
相制御回路23、最終的に変換器に送出するゲー
ト信号を発生させるゲート制御回路24に送ら
れ、瞬時にαを小さくして直流電流を増加させ
る。第5図も第4図と同様な構成で、25は定電
圧制御回路、26は制御進み角(以下、βと呼
ぶ。)の上限リミツタで、事故信号により、βの
上限リミツタの出力電圧が選択され、βを大きく
して直流電圧を減少させる。
4 and 5 are control block diagrams showing one embodiment of the present invention, with FIG. 4 showing a control block diagram on the forward converter side and FIG. 5 showing a control block diagram on the inverse converter side. In FIG. 4, 19 is a constant current control circuit, 20 is a lower limiter of the control delay angle (hereinafter referred to as α), 21, 22
is a switch that is linked to an accident signal. When an accident signal occurs, switch 21 is turned OFF and switch 22 is turned OFF.
ON, the output voltage of the lower limiter 20 of α is selected, and the output voltage is sent to the phase control circuit 23 that determines the ignition phase, and finally to the gate control circuit 24 that generates the gate signal sent to the converter. , instantly decreases α and increases the DC current. Fig. 5 also has the same configuration as Fig. 4, 25 is a constant voltage control circuit, 26 is an upper limiter of the control advance angle (hereinafter referred to as β), and the output voltage of the upper limiter of β is changed by the fault signal. selected, increasing β and decreasing the DC voltage.

(e) 発明の作用 このような構成において、前記と同様に、P1
極の本線16が地絡した場合、その地絡を両変換
所で検出し、第4図及び第5図におけるスイツチ
21をOFF、スイツチ22をONすれば、健全極
であるP2極の順変換装置はαを瞬時にαの下限
リミツタ迄小さくすることになり、逆変換装置は
βを瞬時に上限リミツタ迄大きくすることになる
ので、順逆変換装置が共に直流電流を増加させる
ように動作することになり、直流電流を大幅に増
加させることができる。即ち、第3図において、
定常状態の順逆変換装置の動作点はA点であり、
順変換装置の電流設定値Idpを大幅に大きくして
も、動作点はたかだかA点からC点に移行するの
みで、それほど大きな直流電流を流すことはでき
ない。しかしながら、本発明のような構成にすれ
ば、逆変換器側で、直流電圧を急速に低下させる
為、動作点Aはすみやかに動作点Oに移行し大き
な電流を流すことができる。
(e) Effect of the invention In this configuration, as above, P 1
If the main wire 16 of the pole has a ground fault, detect the ground fault at both converter stations, turn off the switch 21 and turn on the switch 22 in Figs . The converter instantly reduces α to the lower limit of α, and the inverse converter instantly increases β to the upper limiter, so both forward and inverse converters operate to increase the DC current. Therefore, the DC current can be significantly increased. That is, in FIG.
The operating point of the forward/backward converter in steady state is point A,
Even if the current setting value Idp of the forward converter is significantly increased, the operating point only shifts from point A to point C, and it is not possible to flow that large a direct current. However, with the configuration of the present invention, the DC voltage is rapidly reduced on the inverter side, so the operating point A quickly shifts to the operating point O, allowing a large current to flow.

(f) 変形例 尚、本発明の一実施例では、順変換器側では事
故信号によりαの下限リミツタβの上限リミツタ
に瞬時に切換えるように構成したが、PLURYの
不要動作を防止することができるならば、電流設
定値Idpを大きくして、且つ電圧設定値Vdpを小
さくして、定電流制御と定電圧制御により直流電
流を大幅に増加させることも可能である。但し、
安定度上の問題により、通常、特に定電圧制御は
大きな遅れ時定数をもつている為に、急速に健全
極の電流を増加させることはできないので、
PLURYが不要動作する可能性がある。このよう
な場合には、例えば、定常時の定電圧制御と事故
時に対応する高速な定電圧制御と2個設け、それ
らを必要に応じて切換えることも可能である。更
に、これまでの説明では、定電流制御や定電圧制
御の出力電圧に着目してきたが、この代りに例え
ば、第4図における位相制御回路23において、
パルス切換方式を採用することもできる。即ち、
事故信号により、所望の点弧位相をもつた点弧パ
ルスに切換るように位相制御回路23を構成する
こともできる。
(f) Modification In one embodiment of the present invention, the forward converter side is configured to instantly switch from the lower limiter of α to the upper limiter of β in response to the fault signal, but it is possible to prevent unnecessary operation of PLURY. If possible, it is also possible to increase the current setting value Idp and decreasing the voltage setting value Vdp to significantly increase the DC current by constant current control and constant voltage control. however,
Due to stability issues, it is usually not possible to rapidly increase the current in the healthy pole, especially since constant voltage control has a large delay time constant.
PLURY may operate unnecessarily. In such a case, for example, it is possible to provide two constant voltage controls, one for steady-state constant voltage control and one for high-speed constant voltage control in case of an accident, and to switch between them as necessary. Furthermore, in the explanation so far, we have focused on the output voltage of constant current control and constant voltage control, but instead of this, for example, in the phase control circuit 23 in FIG.
A pulse switching method can also be adopted. That is,
The phase control circuit 23 can also be configured to switch to an ignition pulse having a desired ignition phase depending on the fault signal.

(g) 総合的な効果 以上説明したように、本発明によれば、或る極
に事故が発生したとき、その事故を検出し、その
事故の検出信号により、健全極の順変換装置のα
を強制的に所望値まで小さくし、且つ逆変換装置
のβを強制的に所望値まで大きくし、健全極の直
流電流を大幅に増加させることにより、原子力発
電のPLURYの不要動作を防止し、ひいては原子
炉の誤スクラムを防止することができると云う著
しい効果を有する。
(g) Overall effect As explained above, according to the present invention, when an accident occurs on a certain pole, the accident is detected, and the detection signal of the accident is used to adjust the α of the forward conversion device of the healthy pole.
By forcibly reducing β to the desired value, and forcibly increasing β of the inverter to the desired value, and significantly increasing the DC current of the healthy pole, unnecessary operation of PLURY in nuclear power generation can be prevented. Furthermore, it has the remarkable effect of being able to prevent erroneous scrams in the nuclear reactor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子力発電と直結した直流送電の概略
構成図、第2図、第3図は直流制御系の動作説明
図、第4図、第5図は本発明の一実施例を示すブ
ロツク図である。 1……原子炉、2……タービン、3……発電
機、4……昇高変圧器、5……交流母線、6,7
……変換用変圧器、8,9……順変換器、10,
11……逆変換器、12,13,14,15……
平滑リアクトル、16,17……本線、18……
中性線、19……定電流制御回路、20……制御
遅れ角リミツタ回路、21,22……スイツチ、
23……位相制御回路、24……ゲート制御回
路、25……定電圧制御回路、26……制御進み
角リミツタ回路。
Figure 1 is a schematic configuration diagram of DC power transmission directly connected to nuclear power generation, Figures 2 and 3 are operation explanatory diagrams of the DC control system, and Figures 4 and 5 are block diagrams showing one embodiment of the present invention. It is. 1... Nuclear reactor, 2... Turbine, 3... Generator, 4... Step-up transformer, 5... AC bus, 6, 7
... Conversion transformer, 8, 9 ... Forward converter, 10,
11... Inverse converter, 12, 13, 14, 15...
Smooth reactor, 16, 17... Main line, 18...
Neutral wire, 19... Constant current control circuit, 20... Control delay angle limiter circuit, 21, 22... Switch,
23... Phase control circuit, 24... Gate control circuit, 25... Constant voltage control circuit, 26... Control advance angle limiter circuit.

Claims (1)

【特許請求の範囲】 1 複数の順変換装置及び逆変換装置により構成
された多極1回線又は1極多回線電力変換装置に
おいて、或る極に事故が発生した時。前記事故を
検出する装置の出力信号により、事故極の前記順
変換装置及び逆変換装置を停止すると同時に、健
全極の前記順変換装置の制御遅れ角を強制的に所
望値まで小さくし、且つ健全極の前記逆変換装置
の制御進み角を強制的に所望値まで大きく制御
し、前記健全極の直流電流を増加させることを特
徴とする交直変換装置の直流電流制御方式。 2 健全極の順変換装置の定電流制御回路の電流
説定値を強制的に所望値まで大きくし、且つ前記
健全極の逆変換装置の定電圧制御回路の電圧設定
値を強制的に所望値まで小さくし、前記健全極の
直流電流を増加させることを特徴とする特許請求
の範囲第1項記載の交直変換装置の直流電流制御
方式。
[Claims] 1. When an accident occurs at a certain pole in a multi-pole single-line or single-pole multi-line power conversion device configured with a plurality of forward converters and inverse converters. Based on the output signal of the device for detecting an accident, the forward converter and inverse converter of the accident pole are stopped, and at the same time, the control delay angle of the forward converter of the healthy pole is forcibly reduced to a desired value, and A DC current control method for an AC/DC converter, characterized in that the control advance angle of the inverter of a pole is forcibly controlled to a desired value to increase the DC current of the healthy pole. 2. Forcibly increase the specified current value of the constant current control circuit of the forward converter of the healthy pole to a desired value, and forcibly increase the voltage setting value of the constant voltage control circuit of the inverse converter of the healthy pole to the desired value. 2. The DC current control method for an AC/DC converter according to claim 1, wherein the direct current of the healthy pole is increased.
JP1477180A 1980-02-12 1980-02-12 Dc current control system for ac*dc converter Granted JPS56112830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1477180A JPS56112830A (en) 1980-02-12 1980-02-12 Dc current control system for ac*dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1477180A JPS56112830A (en) 1980-02-12 1980-02-12 Dc current control system for ac*dc converter

Publications (2)

Publication Number Publication Date
JPS56112830A JPS56112830A (en) 1981-09-05
JPS6334696B2 true JPS6334696B2 (en) 1988-07-12

Family

ID=11870312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1477180A Granted JPS56112830A (en) 1980-02-12 1980-02-12 Dc current control system for ac*dc converter

Country Status (1)

Country Link
JP (1) JPS56112830A (en)

Also Published As

Publication number Publication date
JPS56112830A (en) 1981-09-05

Similar Documents

Publication Publication Date Title
JPS6358022B2 (en)
US4680692A (en) Control apparatus of AC/DC power converter
JPS6334696B2 (en)
CN102751735B (en) Generating set output reducing and generating set tripping device used in case of overload of contact outgoing lines of power plant
US4129818A (en) Excitation control apparatus suited for normal stop operation of synchronous generators
JPS6336212B2 (en)
RU2046492C1 (en) Gas-turbine plant electric braking device
JPS649817B2 (en)
RU2095912C1 (en) No-break power supply system
JPH08265975A (en) Static reactive power compensator
SU140486A1 (en) The method of regulating the transfer of direct current with intermediate inverter substations
US3437878A (en) Control system for improving transient stability of a.c. system by joint use of d.c. system
JPS5911736A (en) Transmission controller
JPH0126258B2 (en)
SU858175A1 (en) Method of increasing stability of electric systems
CN112104296A (en) Electrode stator multifunctional controller and setting method thereof
JPH08265976A (en) Short circuit current suppressor
JPH0126256B2 (en)
JPH0126253B2 (en)
JPS6336214B2 (en)
JPS6311855B2 (en)
JPH0368620B2 (en)
Tanomura et al. New control for HVDC system connected to large windfarm
JPS6362986B2 (en)
JPH05344743A (en) Controller for ac-dc converter