JPH0126258B2 - - Google Patents

Info

Publication number
JPH0126258B2
JPH0126258B2 JP56165008A JP16500881A JPH0126258B2 JP H0126258 B2 JPH0126258 B2 JP H0126258B2 JP 56165008 A JP56165008 A JP 56165008A JP 16500881 A JP16500881 A JP 16500881A JP H0126258 B2 JPH0126258 B2 JP H0126258B2
Authority
JP
Japan
Prior art keywords
transmission line
power transmission
time
ground fault
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56165008A
Other languages
Japanese (ja)
Other versions
JPS5869429A (en
Inventor
Buichi Sakurai
Kyoshi Goto
Takami Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP56165008A priority Critical patent/JPS5869429A/en
Publication of JPS5869429A publication Critical patent/JPS5869429A/en
Publication of JPH0126258B2 publication Critical patent/JPH0126258B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 (a) 技術分野の説明 本発明は、直流送電線路に地絡が発生したと
き、その地絡を検出して所定の保護操作を行なつ
た後で再起動する際の直流送電設備の再起動方式
に関する。
[Detailed Description of the Invention] (a) Description of the Technical Field The present invention provides a method for restarting a DC power transmission line after detecting the ground fault and performing predetermined protective operations when a ground fault occurs in a DC transmission line. Concerning a method for restarting DC power transmission equipment.

(b) 従来技術の説明 第1図は、直流送電設備の概略構成図を示し、
交流母線1,1′は変換用変圧器2,2′を介し
て、例えば、多数個のサイリスタの直並列接続か
ら成る変換器3,3′に接続され、各サイリスタ
の点弧位相を制御することにより交流を直流に又
は直流を交流に変換する。4,4′は平滑リアク
トル、5は直流送電線路、6,6′は計器用変圧
器(P・T)、7,7′は計器用変流器(C・T)
を示す。このような主回路構成における制御装置
としては、定電流制御回路(ACR)8,8′及び
定電圧制御回路(AVR)9,9′はそれぞれ基準
値Idp、Edpと検出値Id、Edとの偏差を制御電圧Ec
に変換し、この制御電圧Ecは制御電圧選択回路1
0,10′に入力される。前記制御電圧選択回路
10,10′は各種制御のうちで制御角を一番進
める制御系を自動的に選択するものであり、ここ
で選択された制御電圧Ecは、制御電圧リミツタ回
路11,11′で上限、下限のリミツタをかけら
れ点弧位相制御回路12,12′に入力される。
前記点弧位相制御回路12,12′は制御電圧Ec
に比例した点弧位相を決定してサイリスタに点弧
指令を出力する。このようにして構成された交直
変換装置では、周知のごとく、電流マージン
(ΔI)の切替により一方が順変換装置として定電
流制御により運転され、他方が逆変換装置として
定電圧制御により運転される。
(b) Description of prior art Figure 1 shows a schematic configuration diagram of DC power transmission equipment,
The AC buses 1, 1' are connected via converting transformers 2, 2' to converters 3, 3' consisting of, for example, a number of thyristors connected in series and parallel, and control the firing phase of each thyristor. This converts alternating current into direct current or direct current into alternating current. 4, 4' are smoothing reactors, 5 is DC transmission line, 6, 6' are instrument transformers (P/T), 7, 7' are instrument current transformers (C/T)
shows. As a control device in such a main circuit configuration, constant current control circuits (ACR) 8, 8' and constant voltage control circuits (AVR) 9, 9' have reference values I dp , E dp and detected values I d , respectively. The deviation from E d is controlled by the voltage E c
This control voltage E c is converted into control voltage selection circuit 1
0,10'. The control voltage selection circuits 10, 10' automatically select the control system that advances the control angle the most among various controls, and the control voltage E c selected here is the control voltage limiter circuit 11, Upper and lower limiters are applied at 11', and the signal is input to ignition phase control circuits 12 and 12'.
The ignition phase control circuit 12, 12' has a control voltage E c
determines the firing phase proportional to and outputs the firing command to the thyristor. As is well known, in the AC/DC converter configured in this way, by switching the current margin (ΔI), one is operated as a forward converter under constant current control, and the other is operated as an inverse converter under constant voltage control. .

さて、このような構成において、いま、落雷な
どにより直流送電線路5に地絡が発生した場合を
考える。このような場合従来では、例えば、特公
昭53−20304号公報に開示されている如く前記地
絡を検出して、変換器3,3′のゲートを所定の
位相迄シフト(以下、このような操作をGSと略
す。)し、所定時間後ゲートブロツク(以下GB
と略す。)し、一定の無電圧時間後再起動すると
云う方式が採用されていた。第2図は、この従来
方式の説明図で、横軸は時間(t)軸、縦軸は送
電電力値(P)を示している。即ち、第2図にお
いて、t1の時点で地絡が発生して、送電電力は零
(直流電圧が零となる為。)となり、t2の時点で、
保護継電器が地絡を検出するとともに、即座に
GSし、t3の時点でGBする。t3からt4迄の時間は、
無電圧時間で、この時間は、直流送電線路の絶縁
回復時間によつて決められ、この無電圧時間経過
後、即ちt4の時点で再起動し、t5の時点で事前の
送電電力値に戻る。通常のシステムでは、t1から
t4迄の時間が数100ms、t4からt5迄の時間は、
200〜300msである。
Now, in such a configuration, let us now consider a case where a ground fault occurs in the DC power transmission line 5 due to a lightning strike or the like. In such a case, the conventional method is to detect the ground fault and shift the gates of the converters 3 and 3' to a predetermined phase (hereinafter, such a method is disclosed in Japanese Patent Publication No. 53-20304). operation is abbreviated as GS), and after a predetermined time the gate block (hereinafter referred to as GB) is activated.
It is abbreviated as ) and then restarted after a certain period of no voltage. FIG. 2 is an explanatory diagram of this conventional system, in which the horizontal axis represents time (t) and the vertical axis represents the transmitted power value (P). That is, in Fig. 2, a ground fault occurs at time t 1 , the transmitted power becomes zero (because the DC voltage becomes zero), and at time t 2 ,
Protective relays detect ground faults and immediately
GS and GB at t 3 . The time from t 3 to t 4 is
This is the no-voltage time, which is determined by the insulation recovery time of the DC transmission line.After the no-voltage time has passed, that is, at t4 , the power is restarted, and at t5 , the power is returned to the previous transmitted power value. return. In a normal system, from t 1
The time until t 4 is several hundred ms, and the time from t 4 to t 5 is
It is 200-300ms.

第2図から明白なように、送電々力が零と云う
期間が数100msである。従つて、極力この時間
を短かくすることが望ましい。又、近年特に、送
電端側が発電機と直結された謂ゆる直流単独送電
の設備が増加している。例えば、原子力発電々力
や地熱発電々力を直流送電設備だけを使つて負荷
側へ送電すると云うシステムである。このような
システムでは、前記数100msと云う時間は、非
常に重要であり、数100ms間送電々力が零とな
ると、前記直流単独送電のようなシステムでは、
送電端側の周波数は大幅に変動し、その結果、発
電機トリツプに至る。このような事情により、近
年、特に送電々力の減少を極力防止するような直
流送電線路地絡時の再起動方式が要望されてい
る。
As is clear from Figure 2, the period during which the transmitted power is zero is several 100 ms. Therefore, it is desirable to shorten this time as much as possible. Furthermore, in recent years, there has been an increase in the number of so-called direct current independent power transmission facilities in which the power transmission end is directly connected to a generator. For example, there is a system in which nuclear power or geothermal power is transmitted to the load side using only DC transmission equipment. In such a system, the several 100 ms time is very important, and if the power transmission power becomes zero for several 100 ms, in a system such as the above-mentioned DC single power transmission,
The frequency at the sending end fluctuates significantly, resulting in a generator trip. Under these circumstances, in recent years, there has been a demand for a restart system in the event of a ground fault in a DC power transmission line, which prevents a decrease in power transmission power as much as possible.

(c) 本発明の目的 従つて、本発明の目的は、このような要望を満
たすべくなされたものであつて、特に直流単独送
電のようなシステムにおける直流送電線路地絡時
の高速再起を可能とした直流送電設備の再起動方
式を提供することにある。
(c) Object of the present invention Accordingly, the object of the present invention is to meet these demands, and in particular to provide a system for high-speed recovery in the event of a ground fault in a DC transmission line in a system such as single DC power transmission. The purpose of this invention is to provide a method for restarting DC power transmission equipment that makes it possible to restart DC power transmission equipment.

(d) 発明の構成 以下、本発明を図面を参照して説明する。(d) Structure of the invention Hereinafter, the present invention will be explained with reference to the drawings.

第3図は、本発明の一実施例を示し、第1図と
同一符号は同一要素を示す。13はスイツチで、
直流送電線路の地絡を検出する保護継電器14が
動作すると、フリツプフロツプ回路15がセツト
されて、上記スイツチ13はオフされ、その後再
起動指令が発生すると、上記フリツプフロツプ回
路15がリセツトされて、上記スイツチ13はオ
ンとなる。16は、1次遅れ回路である。
FIG. 3 shows an embodiment of the present invention, in which the same reference numerals as in FIG. 1 indicate the same elements. 13 is a switch,
When the protective relay 14 that detects a ground fault in the DC transmission line operates, the flip-flop circuit 15 is set and the switch 13 is turned off.When a restart command is issued thereafter, the flip-flop circuit 15 is reset and the switch 13 is turned off. 13 is turned on. 16 is a first-order lag circuit.

(e) 発明の作用 次に、このような構成における本発明の動作を
説明する。いま直流送電線路に地絡が発生したと
する。この地絡を前記保護継電器14が検出する
と、即座に所定の保護操作が行なわれるが、同時
に前記保護継電器14の出力信号に応動してスイ
ツチ13がオフされる。前記所定の保護操作が完
了した後、すみやかに再起動指令を発生させれ
ば、前記スイツチ13がオンとなるが、このと
き、1次遅れ回路16により、電圧基準値Edpは、
ゆつくり立上がつていく。従つて、前記1次遅れ
回路16の時定数を、直流送電線路の絶縁回復速
度よりも所望値だけ大きくしておけば、前記所定
の保護操作が完了後、すみやかに再送電が可能で
あり、且つ直流電圧の立上げ速度は絶縁回復速度
よりも遅い為に、再び地絡が発生することもな
い。
(e) Operation of the invention Next, the operation of the present invention in such a configuration will be explained. Suppose that a ground fault occurs in a DC power transmission line. When the protective relay 14 detects this ground fault, a predetermined protective operation is immediately performed, and at the same time, the switch 13 is turned off in response to the output signal of the protective relay 14. If a restart command is generated immediately after the predetermined protection operation is completed, the switch 13 is turned on, but at this time, the voltage reference value E dp is set by the primary delay circuit 16.
Standing up slowly. Therefore, if the time constant of the first-order delay circuit 16 is made larger than the insulation recovery speed of the DC power transmission line by a desired value, it is possible to promptly retransmit power after the predetermined protection operation is completed. Moreover, since the rising speed of the DC voltage is slower than the insulation recovery speed, a ground fault will not occur again.

第4図は、本発明を用いた場合の説明図で、第
4図において、点線が直流送電線路の絶縁回復特
性を示し、実線は電力のパターンを示す。第2図
と同様に、t1の時点で地絡が発生、t2の時点で保
護継電器が動作、t3の時点で保護操作が完了する
が、第2図と異なる点は、t3からt4迄の時間、即
ち無電圧時間が第2図では、数100msであるの
に対し、第4図では、わずかの時間であると云う
点と、絶縁回復速度(図中点数の部分)よりも遅
い速度で、電力を立上げると云う点である。
FIG. 4 is an explanatory diagram when the present invention is used. In FIG. 4, the dotted line indicates the insulation recovery characteristic of the DC power transmission line, and the solid line indicates the power pattern. Similar to Figure 2, a ground fault occurs at t 1 , the protective relay operates at t 2 , and the protective operation is completed at t 3. However, the difference from Figure 2 is that from t 3 The time until t 4 , that is, the no-voltage time in Figure 2, is several 100 ms, whereas in Figure 4, it is only a short time, and the insulation recovery speed (the numbered part in the figure) The point is that the power is started up at a slow speed.

(f) 変形例 前述の説明では、電圧基準値Edpを絶縁回復速
度に応じてゆつくりと立上げることにより、直流
電圧を立上げる方法を述べたが、例えば、第1図
における制御電圧リミツタ回路11,11′によ
つても同様の効果を有するように構成することも
できる。即ち、変換器がGBしたら、制御電圧リ
ミツタ回路11,11′によりすみやかに、制御
遅れ角が90゜近傍になるようにリミツトをかけ、
再起動指令により、前記制御電圧リミツタ回路1
1,11′のリミツトを絶縁回復速度に応じて一
定の時定数で所定の制御遅れ角迄移行制御する方
法である。
(f) Modification In the above explanation, we described a method for raising the DC voltage by slowly raising the voltage reference value E dp according to the insulation recovery speed. It is also possible to configure the circuits 11 and 11' to have a similar effect. That is, when the converter reaches GB, the control voltage limiter circuits 11 and 11' immediately limit the control delay angle to around 90°.
Due to the restart command, the control voltage limiter circuit 1
In this method, the limits of 1 and 11' are controlled to shift to a predetermined control delay angle with a constant time constant according to the insulation recovery speed.

(g) 総合的な効果 以上、説明したように、本発明によれば、直流
送電線路に地絡が発生した場合、その地絡を検出
して、所定の保護操作を行なつた後、直流送電線
路の絶縁回復時間に応じた無電圧時間を待つこと
なく、可及速やかに直流送電線路の絶縁回復特性
に応じた再起動時間で再起動させ、送電電力を復
旧させるようにしたので、送電電力×時間積の損
失を最小限に止どめることができるとともに、直
流送電線の絶縁回復を確実に行なうことができ、
特に直流単独送電システムにおける周波数変動を
抑制し、発電機トリツプと云うような重大事故を
防止することができると云う著しい効果を有す
る。
(g) Overall effect As explained above, according to the present invention, when a ground fault occurs on a DC power transmission line, the ground fault is detected, and after predetermined protective operations are performed, the DC Instead of waiting for a no-voltage time that corresponds to the insulation recovery time of the power transmission line, the system restarts the DC transmission line as soon as possible with a restart time that corresponds to the insulation recovery characteristics of the power transmission line, and restores the transmitted power. It is possible to minimize loss in the power x time product, and to ensure insulation recovery of DC transmission lines.
In particular, it has the remarkable effect of suppressing frequency fluctuations in a DC single power transmission system and preventing serious accidents such as generator tripping.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、直流送電設備の概略構成図、第2図
は従来の再起動方式の説明図、第3図は本発明の
一実施例を示すブロツク図、第4図は、本発明の
再起動方式の説明図である。 1,1′……交流母線、2,2′……変換用変圧
器、3,3′……変換器、4,4′……平滑リアク
トル、5……直流送電線路、6,6′……計器用
変圧器、7,7′……計器用変流器、8,8′……
定電流制御回路、9,9′……定電圧制御回路、
10,10′……制御電圧選択回路、11,1
1′……制御電圧リミツタ回路、12,12′……
点弧位相制御回路、13……スイツチ、14……
保護継電器、15……フリツプフロツプ回路、1
6……1次遅れ回路。
Fig. 1 is a schematic configuration diagram of DC power transmission equipment, Fig. 2 is an explanatory diagram of a conventional restart method, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 is a restart system of the present invention. It is an explanatory diagram of a starting method. 1, 1'... AC bus, 2, 2'... Conversion transformer, 3, 3'... Converter, 4, 4'... Smoothing reactor, 5... DC transmission line, 6, 6'... ...Instrument transformer, 7,7'...Instrument current transformer, 8,8'...
constant current control circuit, 9,9'...constant voltage control circuit,
10,10'...Control voltage selection circuit, 11,1
1'... Control voltage limiter circuit, 12, 12'...
Ignition phase control circuit, 13... switch, 14...
Protective relay, 15...Flip-flop circuit, 1
6...1st order delay circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 交流を直流に、直流を交流に変換する変換装
置が、直流送電線路を介して接続された直流送電
設備において、直流送電線路に地絡が発生したと
き、その地絡を検出して、所定の保護操作を行な
つた後、直流送電線路の絶縁回復時間に応じた無
電圧時間を待つことなく、直流送電線路の絶縁回
復特性に応じた再起動時間で再起動させることを
特徴とする直流送電設備の再起動方式。
1. When a ground fault occurs in the DC transmission line in DC transmission equipment connected via a DC transmission line, a conversion device that converts AC to DC and DC to AC detects the ground fault and performs the specified After carrying out the protection operation, the DC power transmission line is restarted at a restart time according to the insulation recovery characteristics of the DC transmission line without waiting for a no-voltage time according to the insulation recovery time of the DC transmission line. Method for restarting power transmission equipment.
JP56165008A 1981-10-16 1981-10-16 Restarting system for dc transmission facility Granted JPS5869429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165008A JPS5869429A (en) 1981-10-16 1981-10-16 Restarting system for dc transmission facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165008A JPS5869429A (en) 1981-10-16 1981-10-16 Restarting system for dc transmission facility

Publications (2)

Publication Number Publication Date
JPS5869429A JPS5869429A (en) 1983-04-25
JPH0126258B2 true JPH0126258B2 (en) 1989-05-23

Family

ID=15804085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165008A Granted JPS5869429A (en) 1981-10-16 1981-10-16 Restarting system for dc transmission facility

Country Status (1)

Country Link
JP (1) JPS5869429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138375A1 (en) * 2018-12-29 2020-07-02 株式会社anchor Movie distribution system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120353A (en) * 1976-03-31 1977-10-08 Central Res Inst Of Electric Power Ind Protective device for dc power transmission system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120353A (en) * 1976-03-31 1977-10-08 Central Res Inst Of Electric Power Ind Protective device for dc power transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138375A1 (en) * 2018-12-29 2020-07-02 株式会社anchor Movie distribution system

Also Published As

Publication number Publication date
JPS5869429A (en) 1983-04-25

Similar Documents

Publication Publication Date Title
JPH0126258B2 (en)
CA1099339A (en) Conduction through sensing and inverter protection system
JPS6336212B2 (en)
EP0067620B1 (en) Secondary arc extinction device
JPH0216113B2 (en)
JPH0880057A (en) Protective system of ac-dc converter
JP3162586B2 (en) Control device of AC / DC converter
JPS6240930B2 (en)
JPH0353872B2 (en)
JPS6152609B2 (en)
JPS649817B2 (en)
JPS646611B2 (en)
JPS6334696B2 (en)
JPH0130370B2 (en)
JPS5921226A (en) Operating system for switch
JPH08237952A (en) Controller for ac/dc converter
JPH0368620B2 (en)
JPH1032922A (en) Ratio differential relay
JPS5911736A (en) Transmission controller
SU1169072A1 (en) Device for short-circuit protection of three-phase reactor
JPS6122542B2 (en)
JPH0421434B2 (en)
JPS62196015A (en) Controller of circuit breaker
JPS6277099A (en) Dc power decrease preventive apparatus
JPS61173674A (en) Stationary power source controller