JPS6334645B2 - - Google Patents

Info

Publication number
JPS6334645B2
JPS6334645B2 JP2695880A JP2695880A JPS6334645B2 JP S6334645 B2 JPS6334645 B2 JP S6334645B2 JP 2695880 A JP2695880 A JP 2695880A JP 2695880 A JP2695880 A JP 2695880A JP S6334645 B2 JPS6334645 B2 JP S6334645B2
Authority
JP
Japan
Prior art keywords
tuning fork
metal film
fork arm
frequency
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2695880A
Other languages
Japanese (ja)
Other versions
JPS56123120A (en
Inventor
Shigeru Kogure
Eiji Momozaki
Minoru Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2695880A priority Critical patent/JPS56123120A/en
Priority to FR8103611A priority patent/FR2477803A1/en
Priority to GB8106490A priority patent/GB2072943B/en
Priority to US06/240,045 priority patent/US4377765A/en
Priority to CH145181A priority patent/CH645509GA3/fr
Priority to DE3108166A priority patent/DE3108166C2/en
Publication of JPS56123120A publication Critical patent/JPS56123120A/en
Publication of JPS6334645B2 publication Critical patent/JPS6334645B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • H03H9/215Crystal tuning forks consisting of quartz

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、結合音叉型水晶振動子、特に、音叉
腕先端付近の電極形状に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coupled tuning fork type crystal resonator, and in particular to an electrode shape near the tip of a tuning fork arm.

従来、電子腕時計には+5゜Xカツトの屈曲振動
を用いた音叉型水晶振動子が用いられている。
Traditionally, electronic wristwatches have used tuning fork crystal oscillators that use +5°X-cut bending vibration.

この振動子は室温で周波数温度特性が放物線に
なるため、時間精度の点で有利だからである。ま
た、低周波のため消費エネルギーが少ないという
利点もある。しかし、この振動子を用いても、1
ケ月の誤差は20秒程度になる。
This is because this resonator has a parabolic frequency-temperature characteristic at room temperature, which is advantageous in terms of time accuracy. Another advantage is that it consumes less energy due to its low frequency. However, even if this oscillator is used, 1
The error in the moon is about 20 seconds.

そこで、更に精度を向上させ、同時に、長寿命
の電子腕時計を実現するため、低周波で室温で3
次の周波数温度特性を有する結合音叉型水晶振動
子が実現された。結合音叉型水晶振動子について
は、特願昭53−23903号、特開昭53−149499号、
特願昭53−149500号に詳細に述べられている。
Therefore, in order to further improve the accuracy and at the same time realize a long-life electronic wristwatch, we
A coupled tuning fork crystal resonator with the following frequency-temperature characteristics was realized. Regarding coupled tuning fork type crystal resonators, see Japanese Patent Application No. 53-23903, Japanese Patent Application Laid-open No. 53-149499,
It is described in detail in Japanese Patent Application No. 149500/1983.

本発明に係わる結合音叉型水晶振動子は、主振
動として、屈曲振動の第1高調波、副振動として
捩り振動の基本振動を用いたものである。第1図
は、この結合音叉型水晶振動子の外観を示す。1
は振動子、2は支持リード、3は半田、4はプラ
グである。X軸は電気軸、Y′軸は電気軸まわり
に回転した機械軸、Z′軸は電気軸まわりに回転し
た光軸である。第1図の如く音叉腕はY′軸方向
を向いている。
The coupled tuning fork type crystal resonator according to the present invention uses the first harmonic of bending vibration as the main vibration and the fundamental vibration of torsional vibration as the sub-vibration. FIG. 1 shows the external appearance of this coupled tuning fork type crystal resonator. 1
is a vibrator, 2 is a support lead, 3 is solder, and 4 is a plug. The X-axis is an electric axis, the Y'-axis is a mechanical axis rotated around the electric axis, and the Z'-axis is an optical axis rotated around the electric axis. As shown in Figure 1, the tuning fork arm is oriented in the Y' axis direction.

屈曲振動の第1高調波F1の共振周波数をfF
捩り振動の基本振動T0の共振周波数をfTとす
る。fFとfTの差を △f=fF−fT と定義する。結合音叉型水晶振動子の周波数温度
特性は、△fによつて決まる。△fが特定の値△
f0のとき、室温で3次の温度特性が得られるので
ある。結合音叉型水晶振動子を量産する際、問題
となるのは、量産上、避けられない外形寸法のば
らつきからfF,fTがばらついてしまい、その結
果、△fがばらつき、最終的に周波数温度特性が
ばらつくことである。また、単一モードの振動子
の場合と同じく、主振動の共振周波数が所定の値
からずれるという問題もある。そこで、結合音叉
型水晶振動子を量産するには、周波数温度特性の
調整と主振動の共振周波数の調整が不可欠であ
る。
The resonant frequency of the first harmonic F1 of bending vibration is f F ,
Let f T be the resonant frequency of the fundamental vibration T0 of torsional vibration. The difference between f F and f T is defined as △f = f F - f T. The frequency-temperature characteristics of the coupled tuning fork crystal resonator are determined by Δf. △f is a specific value △
When f 0 , third-order temperature characteristics are obtained at room temperature. When mass producing coupled tuning fork type crystal resonators, the problem is that f F and f T vary due to the unavoidable variations in external dimensions due to mass production, and as a result, △f varies, and ultimately the frequency This is because the temperature characteristics vary. Further, as in the case of a single mode vibrator, there is also the problem that the resonant frequency of the main vibration deviates from a predetermined value. Therefore, in order to mass produce coupled tuning fork type crystal resonators, it is essential to adjust the frequency temperature characteristics and the resonance frequency of the main vibration.

本発明は、周波数温度特性の調整とfFを設計値
fF0に調整することが目的である。
The present invention adjusts the frequency temperature characteristics and sets f F to the design value.
The purpose is to adjust to f F0 .

第2図は、F1のX方向変位UXとT0の音叉
腕の中心線を軸としたねじり角τの分布を示して
いる。横軸のA,B,C,D,Eは第1図のA,
B,C,D,Eの各位置に対応する。
FIG. 2 shows the distribution of the X-direction displacement U X of F1 and the torsion angle τ about the center line of the tuning fork arm of T0. A, B, C, D, and E on the horizontal axis are A, B, C, D, and E in Figure 1.
Corresponds to positions B, C, D, and E.

位置DはF1の振動の節であるので、Dの位置
に金属膜を蒸着、又は、蒸着膜をレーザビームで
切り取るとfFは、ほんのわずかしか変化しない
が、fFは大きく低下、又は、大きく上昇する。
Since position D is the vibration node of F1, if a metal film is deposited at position D or the deposited film is cut out with a laser beam, f F changes only slightly, but f F decreases greatly, or rise significantly.

この調整をP、又はP′とする。この様子を図示
したが第3図、第4図である。第3図は金属膜を
蒸着した場合、第4図は金属膜をレーザビームで
切り取つた場合に相当する。第3図、第4図にお
いて、初期状態5から、調整P、又は、P′を行う
ことにより中間状態6に移行し、この中間状態で
△fは最適値△f0に追い込まれる。中間状態6で
はfFは設計値f0には追い込まれていない。
Let this adjustment be P or P'. This situation is illustrated in FIGS. 3 and 4. FIG. 3 corresponds to the case where a metal film is deposited, and FIG. 4 corresponds to the case where the metal film is cut out with a laser beam. In FIGS. 3 and 4, the initial state 5 shifts to an intermediate state 6 by performing adjustment P or P', and in this intermediate state Δf is driven to the optimum value Δf 0 . In intermediate state 6, f F is not driven to the design value f 0 .

そこで、中間状態6から、何らかの方法で、△
fを△f0に維持したままfFをfF0に追い込まねばな
らない。第1図、第2図のEとDの間に金属膜を
単に蒸着、又は、蒸着膜をレーザビームで単に切
り取る方法もあるが、この方法ではfFをfF0に追い
込む途中で△fが変化して△f0でなくなつてしま
う。
Therefore, from intermediate state 6, by some method, △
We must drive f F to f F0 while maintaining f at △f 0 . There is also a method of simply depositing a metal film between E and D in Figures 1 and 2, or simply cutting out the deposited film with a laser beam, but in this method, △f increases while driving f F to f F0 . It will change and △f will no longer be 0 .

第5図は、本発明になる結合音叉型水晶振動子
の音叉腕先端付近の電極形状の一具体例を示す。
FIG. 5 shows a specific example of the electrode shape near the tip of the tuning fork arm of the coupled tuning fork type crystal resonator according to the present invention.

図中のE,Dは第1図、第2図のE,Dに対応
する。8は、F1の節D上に形成された電極膜
で、第3図、第4図の調整P,P′を行う部分であ
る。
E and D in the figure correspond to E and D in FIGS. 1 and 2. Reference numeral 8 denotes an electrode film formed on node D of F1, which is the part where adjustments P and P' in FIGS. 3 and 4 are performed.

8を△f調整用電極と名付ける。9は逆三角形
の電極で△fを△f0に維持しつつ、fFをfF0に追い
込むための電極で、fF調整用電極と名付ける。9
の逆三角形の部分に金属膜をさらに蒸着すれば、
△fは△f0に維持されたまま、fFをfF0に追い込め
る。又は、9の逆三角の部分の金属膜をレーザビ
ームで切り取ることによつても、△fを△f0に維
持したまま、fFをfF0に追い込める。
8 is named the Δf adjustment electrode. Reference numeral 9 is an inverted triangular electrode for driving f F to f F0 while maintaining Δf at Δf 0 , and is named the f F adjustment electrode. 9
If a metal film is further deposited on the inverted triangular part of
While △f is maintained at △f 0 , f F can be driven to f F0 . Alternatively, f F can be driven to f F0 while maintaining Δf at Δf 0 by cutting out the metal film in the inverted triangular part 9 with a laser beam.

この調整が、第3図、第4図にQ,Q′として
示されている。7は最終的に△fとfFが、各々△
f0,fF0に追い込まれた状態を示す。
This adjustment is shown as Q and Q' in FIGS. 3 and 4. 7 is finally △f and f F are each △
f 0 , shows the state of being driven to f F0 .

さて、fF調整用電極として9の如き逆三角形の
形状が採られる理由について述べる。本明細書の
中では第6図の如き下の頂点の欠けた形も、逆三
角形と呼ぶことにする。第2図に示す如くEとD
の間では、UXの変化は大きいがτの変化は小さ
い。またτによつて生ずる変位は音叉腕の中心に
近いほど小さく、音叉腕の端では大きい。UX
音叉腕の中心近くでも、端でもほぼ一様である。
Now, the reason why an inverted triangular shape such as 9 is adopted as the f F adjustment electrode will be explained. In this specification, a shape with a missing lower apex as shown in FIG. 6 will also be referred to as an inverted triangle. E and D as shown in Figure 2
Between , the change in U X is large, but the change in τ is small. Further, the displacement caused by τ is smaller closer to the center of the tuning fork arm, and larger at the end of the tuning fork arm. U

第7図の斜線部14にそれぞれ、10,11,
12,13の幅で金属膜を蒸着すると、fF,fT
変化量△fF,△fTは第8図の如く変化する。
10, 11,
When a metal film is deposited with a width of 12 and 13, the amount of change Δf F and Δf T in f F and f T changes as shown in FIG.

従つて、12の幅で金属膜を蒸着するとfFとfT
の低下量が等しくなる。逆に言えば、fFとfTの低
下量の等しくなる金属膜の蒸着する幅が存在する
ものである。蒸着する部分14の位置を変えれ
ば、その位置で△fFと△fTが等しくなる幅が存在
する。その位置がDに近づけば、UXが急激に小
さくなるため、△fFと△fTが等しくなる幅は小さ
くなる。Eに近づけば、UXが大きいため△fF
△fTが等しくなる幅は大きくなる。そこで、fF調
整用電極は逆三角形になるのである。
Therefore, if a metal film is deposited with a width of 12, f F and f T
The amount of decrease becomes equal. In other words, there is a width over which the metal film is deposited such that f F and f T decrease by the same amount. If the position of the portion 14 to be vapor-deposited is changed, there is a width at which Δf F and Δf T are equal. As the position approaches D, U X decreases rapidly, and therefore the width in which △f F and △f T become equal becomes smaller. As it approaches E , since U Therefore, the f F adjustment electrode is shaped like an inverted triangle.

尚、第8図の10′,11′,12′,13′は、
第7図の10,11,12,13の幅で金属膜を
蒸着した場合に対応する。また、△fF,△fTは、
金属膜を蒸着しないときの周波数との差である。
In addition, 10', 11', 12', 13' in FIG.
This corresponds to the case where a metal film is deposited with widths 10, 11, 12, and 13 in FIG. Also, △f F and △f T are
This is the difference from the frequency when no metal film is deposited.

上記の理由からfF調整用電極をレーザビームで
切り取つてもfF,fTを等量、増加させることがで
きる。
For the above reasons, even if the f F adjustment electrode is cut out with a laser beam, f F and f T can be increased by the same amount.

△fとfFを調整するために、△f調整を蒸着で
行い、fF調整をレーザビームで行うこともでき
る。同じく、△f調整をレーザビームで行い、fF
調整を蒸着で行うこともできる。
In order to adjust Δf and f F , the Δf adjustment can be performed by vapor deposition, and the f F adjustment can also be performed by a laser beam. Similarly, △f adjustment is performed using a laser beam, and f F
Adjustment can also be carried out by vapor deposition.

レーザビームで調整を行うとき調整量を大きく
するため、△f調整用電極とfF調整用電極のどち
らか一方、あるいは、両方に、あらかじめ、金属
膜を厚く蒸着しておくか、メツキしておくと、効
果的である。
In order to increase the amount of adjustment when adjusting with a laser beam, deposit or plate a thick metal film on either or both of the △f adjustment electrode and fF adjustment electrode in advance. It is effective if you leave it on.

F1の節Dは、音叉腕の長さを1としたとき先
端から約0.2の部分に存在する。そこで、△f調
整用電極8は、音叉腕先端から0.1〜0.4の領域
に、fF調整用電極は0〜0.2の部分に設けること
が必要である。
Node D of F1 exists at a portion approximately 0.2 from the tip, assuming the length of the tuning fork arm to be 1. Therefore, it is necessary to provide the Δf adjustment electrode 8 in a region of 0.1 to 0.4 from the tip of the tuning fork arm, and the f F adjustment electrode in a region of 0 to 0.2.

また、△f調整用電極とfF調整用電極は、音叉
腕の表裏に付けることが必要である。その理由を
以下に述べる。第9図は、0℃〜40℃でのfFの変
化量(△)を縦軸にとり、△fを横軸にとり、製
造ばらつきによる温度特性のばらつきを示したも
のである。黒点は△fに対する△を示す。
Further, it is necessary to attach the Δf adjustment electrode and the f F adjustment electrode to the front and back of the tuning fork arm. The reason for this is explained below. FIG. 9 shows variations in temperature characteristics due to manufacturing variations, with the vertical axis representing the change in f F (Δ) between 0° C. and 40° C., and Δf representing the horizontal axis. The black dots indicate △ relative to △f.

点16の特性を示す振動子の−Z′面の△f調整
用電極に金属膜を蒸着すると矢印18の如く温度
特性が変化する。+Z′面に同様の操作を施すと矢
印19の如く温度特性が変化する。−Z′面と+
Z′面の両面の△f調整用電極に金属膜を蒸着する
と矢印20の如く温度特性が変化する。
When a metal film is deposited on the Δf adjustment electrode on the -Z' plane of the vibrator exhibiting the characteristic at point 16, the temperature characteristic changes as shown by arrow 18. When a similar operation is performed on the +Z' plane, the temperature characteristics change as shown by arrow 19. −Z′ plane and +
When a metal film is deposited on the Δf adjustment electrodes on both sides of the Z' plane, the temperature characteristics change as shown by arrow 20.

点17の特性を示す振動子の−Z′面のみ、+
Z′面のみ、+Z′面と−Z′面の両面にそれぞれ同様
の操作を施すと、矢印21,22,23の如く温
度特性が変化する。もしも、片面の△f調整用電
極だけに金属膜を蒸着すると、点16の振動子と
点17の振動子では、△が非常に小さくなる△f
が異なつてしまう。ところが、両面の△f調整用
電極に金属膜を蒸着すれば、矢印20,23に示
す如く、2つの振動子は、△fが△f0で△が非常
に小さくなる。これは、量産する際、△fを管理
することで、温度特性を調整できるので、大きな
利点である。
Only the −Z′ plane of the resonator exhibiting the characteristic of point 17, +
When the same operation is performed on only the Z' plane, and on both the +Z' plane and the -Z' plane, the temperature characteristics change as shown by arrows 21, 22, and 23. If a metal film is deposited only on the △f adjustment electrode on one side, △ will be extremely small for the vibrator at point 16 and the vibrator at point 17.
becomes different. However, if a metal film is deposited on the Δf adjustment electrodes on both sides, the Δf of the two vibrators becomes Δf 0 and becomes very small, as shown by arrows 20 and 23. This is a great advantage because the temperature characteristics can be adjusted by controlling Δf during mass production.

また、あらかじめ、付加された△f調整用電極
の金属膜をレーザビームで切り取るときも、両面
の金属膜を切りとれば、振動子の温度特性は△f0
で狙つた3次の温度特性が得られる。
Also, when cutting off the metal film of the △f adjustment electrode that has been added in advance with a laser beam, if the metal films on both sides are cut off, the temperature characteristics of the resonator will be △f 0
The desired third-order temperature characteristics can be obtained.

fF調整用電極も音叉腕の両面に設け、両面に金
属膜を蒸着、あるいは、両面の電極を切り取るこ
とが必要である。これは、両面にこのような操作
を施さないと、△fを△f0に維持したまま、fF
fF0に押え込んだとしても、温度特性がずれてし
まうのである。言い換えれば、3次の温度特性の
得られる△fの値が△f0でなくなつてしまうので
ある。従つて、△f調整用電極もfF調整用電極も
音叉腕の両面に設け、両面に調整操作を行わねば
ならない。
f F adjustment electrodes must also be provided on both sides of the tuning fork arm, and metal films must be deposited on both sides, or the electrodes on both sides must be cut out. This means that unless such operations are performed on both sides, f F will remain unchanged while △f remains △f 0 .
Even if it is suppressed to f F0 , the temperature characteristics will deviate. In other words, the value of △f obtained by the third-order temperature characteristic is no longer △f 0 . Therefore, both the Δf adjustment electrode and the f F adjustment electrode must be provided on both sides of the tuning fork arm, and adjustment operations must be performed on both sides.

以上、述べた如く、音叉腕先端の両面に△f調
整用電極とfF調整用電極を設けることにより、結
合音叉型水晶振動子のfFと△fを調整することが
可能となり、量産性を向上することができる。
As mentioned above, by providing the △f adjustment electrode and the f F adjustment electrode on both sides of the tip of the tuning fork arm, it becomes possible to adjust f F and △f of the coupled tuning fork type crystal resonator, which improves mass production. can be improved.

本発明になる結合音叉型水晶振動子を電子腕時
計に用いることにより長寿命化、高精度化を実現
できる。
By using the coupled tuning fork type crystal oscillator of the present invention in an electronic wristwatch, it is possible to achieve longer life and higher precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の結合音叉型水晶振動子の外観
を示す。第2図は、F1とT0の変位分布を示す。
第3図は、蒸着による△f,fFの調整方法を示
す。第4図は、レーザによる△f,fFの調整方法
を示す。第5図は、音叉腕先端に設けられた△f
調整用電極8とfF調整用電極9を示す。第6図
は、fF調整用電極の逆三角形を示す。第7図は、
細い帯状に金属膜を蒸着した図を示す。第8図
は、第7図に対応した△fF,△fTを示す。第9図
は、音叉腕の片面と両面に金属膜を蒸着したとき
の温度特性の違いを示す。 1……結合音叉型水晶振動子、2……支持リー
ド、3……半田、4……プラグ、5……初期状
態、6……中間状態、7……最終状態、8……△
f調整用電極、9……fF調整用電極、10,1
1,12,13……帯状に蒸着された金属膜の幅
を示す。14……帯状に蒸着された金属膜、1
0′,11′,12′,13′……第7図の10,1
1,12,13に対応する。16……1つの振動
子の△fに対する△、17……他の、18,21
……−Z′面に金属膜を蒸着したときの温度特性の
変化。19,22……+Z′面に金属膜を蒸着した
ときの温度特性の変化。20,23……+Z′面と
−Z′面に金属膜を蒸着したときの温度特性の変
化。24……△f調整用電極、25……fF調整用
電極。
FIG. 1 shows the appearance of a conventional coupled tuning fork type crystal resonator. Figure 2 shows the displacement distribution of F1 and T0.
FIG. 3 shows a method for adjusting Δf and f F by vapor deposition. FIG. 4 shows a method of adjusting Δf and f F using a laser. Figure 5 shows the △f provided at the tip of the tuning fork arm.
The adjustment electrode 8 and the fF adjustment electrode 9 are shown. FIG. 6 shows an inverted triangle of the f F adjustment electrode. Figure 7 shows
This figure shows a metal film deposited in a thin strip. FIG. 8 shows Δf F and Δf T corresponding to FIG. FIG. 9 shows the difference in temperature characteristics when a metal film is deposited on one side and both sides of a tuning fork arm. 1...Coupled tuning fork crystal resonator, 2...Support lead, 3...Solder, 4...Plug, 5...Initial state, 6...Intermediate state, 7...Final state, 8...△
f adjustment electrode, 9...f F adjustment electrode, 10,1
1, 12, 13...indicates the width of the metal film deposited in a band shape. 14...Metal film deposited in a band shape, 1
0', 11', 12', 13'...10, 1 in Figure 7
Corresponds to 1, 12, and 13. 16...△ for △f of one oscillator, 17...other, 18, 21
……−Change in temperature characteristics when a metal film is deposited on the Z′ plane. 19, 22...Change in temperature characteristics when a metal film is deposited on the +Z' plane. 20, 23...Changes in temperature characteristics when a metal film is deposited on the +Z' and -Z' planes. 24...△f adjustment electrode, 25...f F adjustment electrode.

Claims (1)

【特許請求の範囲】 1 屈曲振動の第1高調波に捩り振動の基本振動
を結合させた結合音叉型水晶振動子において、音
叉腕の長さを1としたとき、音叉腕先端から0〜
0.2の部分に前記屈曲振動周波数fFと捩り振動fT
周波数差△fを変化させることなく前記屈曲振動
周波数fFと捩り振動周波数fTを同時に調整する音
叉先端側が幅広の略逆三角形の金属膜錘りを設け
るとともに、前記金属膜錘りを前記音叉腕の両面
に設けたことを特徴とする結合音叉型水晶振動
子。 2 屈曲振動の第1高調波に捩り振動の基本振動
を結合させた結合音叉型水晶振動子において、音
叉腕の長さを1としたとき、前記音叉腕先端から
0.1〜0.4の部分に前記屈曲振動周波数fFと前記捩
り振動周波数fTの周波数差△fを調整する長方形
の金属膜錘りを設け、前記音叉腕先端から0〜
0.2の部分に前記周波数差△fを変化させること
なく前記屈曲振動周波数fFと捩り振動周波数fT
調整する音叉先端側が幅広の略逆三角形の金属膜
錘りを設けるとともに、前記長方形と逆三角形の
金属膜錘りを前記音叉腕の両面に設けたことを特
徴とする結合音叉型水晶振動子。
[Claims] 1. In a coupled tuning fork type crystal resonator in which the fundamental vibration of torsional vibration is combined with the first harmonic of bending vibration, when the length of the tuning fork arm is 1, the distance from the tip of the tuning fork arm to 0 to
In the 0.2 part, there is a substantially inverted triangular shape with a wide tip side of the tuning fork that simultaneously adjusts the bending vibration frequency f F and the torsional vibration frequency f T without changing the frequency difference △f between the bending vibration frequency f F and the torsional vibration f T. A coupled tuning fork type crystal resonator characterized in that a metal film weight is provided, and the metal film weight is provided on both sides of the tuning fork arm. 2. In a coupled tuning fork crystal resonator in which the fundamental vibration of torsional vibration is combined with the first harmonic of bending vibration, when the length of the tuning fork arm is 1, from the tip of the tuning fork arm
A rectangular metal film weight for adjusting the frequency difference △f between the bending vibration frequency f F and the torsional vibration frequency f T is provided in the 0.1 to 0.4 portion, and a rectangular metal film weight is provided in the 0 to 0.4 portion from the tip of the tuning fork arm.
A substantially inverted triangular metal membrane weight with a wide tuning fork tip side for adjusting the bending vibration frequency f F and torsional vibration frequency f T without changing the frequency difference △f is provided in the 0.2 part, and a metal membrane weight having a substantially inverted triangular shape with a wide tuning fork tip side is provided. A coupled tuning fork type crystal resonator characterized in that triangular metal film weights are provided on both sides of the tuning fork arm.
JP2695880A 1980-03-04 1980-03-04 Coupled tuning fork type quartz oscillator Granted JPS56123120A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2695880A JPS56123120A (en) 1980-03-04 1980-03-04 Coupled tuning fork type quartz oscillator
FR8103611A FR2477803A1 (en) 1980-03-04 1981-02-24 QUARTZ RESONATOR TYPE DIAPASON TYPE COUPLING
GB8106490A GB2072943B (en) 1980-03-04 1981-03-02 Piezo-electric crystal vibrator
US06/240,045 US4377765A (en) 1980-03-04 1981-03-03 Mode coupled tuning fork type quartz crystal vibrator and method of tuning
CH145181A CH645509GA3 (en) 1980-03-04 1981-03-04
DE3108166A DE3108166C2 (en) 1980-03-04 1981-03-04 Tuning fork quartz crystal oscillator with oscillation coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2695880A JPS56123120A (en) 1980-03-04 1980-03-04 Coupled tuning fork type quartz oscillator

Publications (2)

Publication Number Publication Date
JPS56123120A JPS56123120A (en) 1981-09-28
JPS6334645B2 true JPS6334645B2 (en) 1988-07-12

Family

ID=12207659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2695880A Granted JPS56123120A (en) 1980-03-04 1980-03-04 Coupled tuning fork type quartz oscillator

Country Status (1)

Country Link
JP (1) JPS56123120A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929860A (en) * 1988-05-17 1990-05-29 Sundstrand Data Control, Inc. Electrode configuration for vibrating beam transducers

Also Published As

Publication number Publication date
JPS56123120A (en) 1981-09-28

Similar Documents

Publication Publication Date Title
US4377765A (en) Mode coupled tuning fork type quartz crystal vibrator and method of tuning
US4443728A (en) GT-Cut quartz resonator
CN103607178A (en) Film bulk wave resonator and method for raising quality factor of film bulk wave resonator
JP3622202B2 (en) Method for adjusting temperature characteristics of surface acoustic wave device
GB2091486A (en) Piezo-electric tuning fork resonator
US4771202A (en) Tuning fork resonator
US3944862A (en) X-cut quartz resonator using non overlaping electrodes
US4349763A (en) Tuning fork type quartz resonator
JPS6334645B2 (en)
JPS647689B2 (en)
JPS5851687B2 (en) Tuning fork crystal oscillator
JPS644694B2 (en)
JPS6316924B2 (en)
JPS59202720A (en) Tuning fork type crystal resonator
JPS59174010A (en) Rectangular at-cut quartz oscillator
JPS5851689B2 (en) Tuning fork crystal oscillator
JPS6217405B2 (en)
JPS62239707A (en) Crystal resonator
JPS5850046B2 (en) crystal unit
JPS6258173B2 (en)
JPS63173412A (en) Leaky saw resonator
JPS6192010A (en) Vapor deposition mask
JPH0117857Y2 (en)
JPS59182617A (en) Lithium tantalate oscillator
JPS58133019A (en) Gt-cut crystal oscillator