JPS6258173B2 - - Google Patents

Info

Publication number
JPS6258173B2
JPS6258173B2 JP5602579A JP5602579A JPS6258173B2 JP S6258173 B2 JPS6258173 B2 JP S6258173B2 JP 5602579 A JP5602579 A JP 5602579A JP 5602579 A JP5602579 A JP 5602579A JP S6258173 B2 JPS6258173 B2 JP S6258173B2
Authority
JP
Japan
Prior art keywords
frequency
vibration
crystal resonator
tuning fork
temperature characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5602579A
Other languages
Japanese (ja)
Other versions
JPS55147818A (en
Inventor
Katsuma Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5602579A priority Critical patent/JPS55147818A/en
Publication of JPS55147818A publication Critical patent/JPS55147818A/en
Publication of JPS6258173B2 publication Critical patent/JPS6258173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、水晶振動子に関する。[Detailed description of the invention] The present invention relates to a crystal resonator.

本発明は、比較的低い共振周波数を有する水晶
振動子の共振周波数温度特性を改良すべき複合振
動タイプ水晶振動子の周波数温度特性の周波数及
び温度特性の両者を精度良く、かつ、効率的に調
整するものである。
The present invention accurately and efficiently adjusts both the frequency and temperature characteristics of a complex vibration type crystal resonator in which the resonant frequency temperature characteristics of a crystal resonator having a relatively low resonant frequency are to be improved. It is something to do.

電子時計の高精度化に伴い、その時間標準源で
ある水晶振動子の高精度化が注目されている。
As electronic clocks become more precise, attention is being focused on increasing the precision of the crystal oscillators that serve as their time standard sources.

現在、例えば腕時計に使用されている水晶振動
は、32KHz程度の発振周波数を有する屈曲振動の
音叉型水晶振動子が、その低消費電流特性の為、
主流となつている。しかし、この屈曲振動モード
音叉型水晶振動子は、その周波数温度特性が、0
℃〜20℃の間で、15〜20PPmを変化し、現在要
請されている高精度水晶振動子用時間標準源とは
言い難い。一方、現存する高精度水晶振動子とし
て、厚み辷り振動をするATカツト水晶振動子が
あり、かなり良好な3次曲線の周波数温度特性を
描くが、これは発振周波数が、数MHzと高く、消
費電流が高いばかりでなく、寸法的にも大きい。
Currently, for example, the crystal vibration used in wristwatches is a tuning fork crystal resonator with a bending vibration that has an oscillation frequency of about 32KHz, but due to its low current consumption characteristics,
It has become mainstream. However, this bending vibration mode tuning fork crystal resonator has a frequency temperature characteristic of 0.
It varies by 15 to 20 PPm between ℃ and 20℃, and cannot be called a time standard source for high-precision crystal resonators, which is currently required. On the other hand, as an existing high-precision crystal oscillator, there is an AT-cut crystal oscillator that vibrates through the thickness, and it has a fairly good cubic curve frequency-temperature characteristic, but this has a high oscillation frequency of several MHz and consumes Not only does it have a high current, but it is also large in size.

このように、従来の水晶振動子は、二律背反し
ていたが、電子時計の高精度化の為には、この二
律背反していた周波数温度特性の改善と、発振周
波数低減に伴う、消費電流の低減の両方の実現が
必要である。本発明において述べる屈曲振動モー
ドと捩り振動モードの結合を利用した音叉型水晶
振動子は、上記高精度化の為の周波数温度特性の
改善と消費電流低減の両方を実現するものであ
り、周波数温度特性は、第1図に示す如く3次曲
線を示し、第1図に示す例では、0℃〜40℃の温
度範囲ではほとんど平らな温度特性を有してお
り、屈曲振動モード、捩り振動モード共、主振動
から二次振動以上の高次振動を利用したものなど
様々なものが存在する。
In this way, conventional crystal oscillators had trade-offs, but in order to improve the precision of electronic watches, it was necessary to improve the frequency-temperature characteristics, which were trade-offs, and to reduce current consumption by lowering the oscillation frequency. It is necessary to realize both. The tuning fork type crystal resonator that utilizes the combination of the bending vibration mode and the torsional vibration mode described in the present invention achieves both the improvement of frequency temperature characteristics for the above-mentioned high precision and the reduction of current consumption. The characteristics show a cubic curve as shown in Figure 1, and the example shown in Figure 1 has almost flat temperature characteristics in the temperature range of 0℃ to 40℃, with bending vibration mode and torsional vibration mode. There are various types of vibrations, including those that utilize higher-order vibrations ranging from main vibration to secondary vibration.

以下、このような、屈曲振動モードと捩り振動
モードの2つの振動モードの結合を利用して、周
波数温度特性を改善する音叉型水晶振動子を複合
振動タイプ水晶振動子と呼び、以下その概要を説
明する。
Hereinafter, a tuning fork type crystal resonator that improves frequency-temperature characteristics by utilizing the combination of two vibration modes, a bending vibration mode and a torsional vibration mode, will be referred to as a compound vibration type crystal resonator, and an overview thereof will be described below. explain.

一般に、水晶振動子の周波数温度特性は、次式
のように、20℃を中心とした3次までのテーラー
展開によつて近似される。
Generally, the frequency-temperature characteristics of a crystal resonator are approximated by Taylor expansion up to third order centered at 20°C, as shown in the following equation.

20+α(T−20) +β(T−20)2+γ(T−20)3 但し T……温度 α……一次係数 β……二次係数 γ……三次係数 20……20℃における発振周波数 水晶に電気軸、機械軸、光軸に対して、第2図
のような切断角度にて切り出された本発明におけ
る音叉型水晶振動子は、ほぼZ′面内において屈曲
振動を行ない、屈曲振動の発振周波数Fは主に
音叉の腕の長さl、巾wにより決定され、音叉腕
のY′軸方向の軸を中心とした捩り振動の発振周
波数Tは、前、l,w、の他に厚みtによて決
定される。
= 20 + α (T-20) + β (T-20) 2 + γ (T-20) 3 However, T...Temperature α...Primary coefficient β...Second order coefficient γ...Third order coefficient 20 ...Oscillation at 20℃ Frequency The tuning fork type crystal resonator of the present invention, which is cut out from the crystal at the cutting angle shown in Fig. 2 with respect to the electrical axis, mechanical axis, and optical axis, performs bending vibration approximately in the Z' plane, and bends. The oscillation frequency F of the vibration is mainly determined by the length l and width w of the tuning fork arm, and the oscillation frequency T of the torsional vibration centered on the Y′ axis of the tuning fork arm is determined by the front, l, and w. It is also determined by the thickness t.

屈曲振動の発振周波数Fと捩り振動の発振周
波数が互いにかけ離れている時、両振動モードは
互いに影響しあわないが、FTが近い値とな
つた時、水晶振動子の水晶の各結晶軸からの切り
出し角度,θ,ψを適当に選び、,θ
ψとし、水晶振動子各部の寸法l,w,tを適
当に選択し、l1,w1,t1とすると前記周波数温度
特性式中、一次係数α及び二次係数βが共にほと
んど0になり、水晶振動子の周波数温度特性は、
三次曲線のきわめて良好なものとなる。
When the oscillation frequency F of the bending vibration and the oscillation frequency of the torsional vibration are far apart from each other, the two vibration modes do not affect each other, but when F and T become close values, each crystal axis of the crystal of the crystal resonator Appropriately select the cutting angles, θ and ψ from 1 , θ 1 ,
If ψ is 1 , the dimensions l, w, and t of each part of the crystal oscillator are appropriately selected, and l 1 , w 1 , and t 1 , then in the frequency-temperature characteristic equation, both the first-order coefficient α and the second-order coefficient β are almost 0. The frequency-temperature characteristics of the crystal resonator are
The result is an extremely good cubic curve.

しかし、本発明において述べる複合振動タイプ
水晶振動子は、前記周波数温度特性式中、一次係
数α、及び二次係数βを共にほとんど0になるよ
うに、初期加工から作り込むことは、複合振動タ
イプ水晶振動子の周波数温度特性に影響する加工
パラメータがあまりにも多いが故に、きわめて困
難である。一方、複合振動タイプ水晶振動子の周
波数温度特性の一次係数α、及び二次係数βは、
屈曲振動モードの周波数Fと捩り振動モードの
周波数Tの差(FT)と大いに関係し、例
えば、αは(FT)と第3図のような関係が
ある。従つて、複合振動タイプ水晶振動子におい
ては、水晶の各結晶軸からの切断角度,θ,
ψ、腕長さl、腕巾w、厚みtをある加工精度の
もとに製造した後、蒸着等によつて、屈曲振動モ
ードの周波数Fと捩り振動モードの周波数T
相方を調整することによつて、(FT)を所
定の値に追い込み、周波数温度特性式のα、及び
βをほとんど0に追い込み、周波数温度特性を三
次曲線の良好なものとすることができる。
However, the compound vibration type crystal resonator described in the present invention is manufactured from the initial processing so that both the first order coefficient α and the second order coefficient β in the frequency temperature characteristic equation are almost 0. This is extremely difficult because there are too many processing parameters that affect the frequency-temperature characteristics of a crystal resonator. On the other hand, the first-order coefficient α and second-order coefficient β of the frequency-temperature characteristics of the complex vibration type crystal resonator are:
It is closely related to the difference ( F - T ) between the frequency F of the bending vibration mode and the frequency T of the torsional vibration mode, and for example, α has a relationship with ( F - T ) as shown in Figure 3. Therefore, in a compound vibration type crystal resonator, the cutting angle from each crystal axis of the crystal, θ,
ψ, arm length l, arm width w, and thickness t are manufactured with a certain processing accuracy, and then the frequency F of the bending vibration mode and the frequency T of the torsional vibration mode are adjusted by vapor deposition, etc. Accordingly, ( F - T ) can be driven to a predetermined value, α and β in the frequency-temperature characteristic equation can be driven to almost 0, and the frequency-temperature characteristic can be made to have a good cubic curve.

他方、複合タイプ水晶振動子を電子時計の時間
標準源として使用する時、基準となる振動モード
の発振周波数が、所定の標準周波数とほとんど一
致していなければならない。従つて、複合振動タ
イプ水晶振動子は、電子時計の時間標準源として
活用すべく、かつ周波数温度特性を良好ならしめ
る為には、基準となる振動モードの発振周波数を
所定の標準周波数に狙い込みつつ、(FT
の値を所定の値にしなければならないという、周
波数調整と温度特性調整の煩雑きわまる神技的同
時立脚が必要であつた。
On the other hand, when a composite type crystal oscillator is used as a time standard source for an electronic watch, the oscillation frequency of the reference vibration mode must almost match a predetermined standard frequency. Therefore, in order to use a compound vibration type crystal oscillator as a time standard source for electronic watches and to achieve good frequency-temperature characteristics, it is necessary to aim the oscillation frequency of the reference vibration mode to a predetermined standard frequency. ( FT )
It was necessary to adjust the frequency and temperature characteristics at the same time, which was extremely complicated and required the simultaneous adjustment of frequency and temperature characteristics.

本発明の目的は、このような複合振動タイプ水
晶振動子の周波数調整と、温度特性調整の煩雑な
絡みあいを簡単化、かつ壮麗化することにある。
An object of the present invention is to simplify and streamline the complicated interaction between frequency adjustment and temperature characteristic adjustment of such a complex vibration type crystal resonator.

以下、その一例を示す。 An example is shown below.

例えば、屈曲振動モードが二次振動であり、捩
り振動モードが主振動である時、第4図に示すよ
うに、音叉先端に蒸着した時、両振動モードの振
動周波数の変化量は異なり、屈曲振動モードの周
波数Fの変化量△F、及び捩り振動モードの周
波数Tの変化量△Tの比△T/△Fを利用し
て(FT)を調整し、周波数温度特性を調整
することができる。
For example, when the bending vibration mode is the secondary vibration and the torsional vibration mode is the main vibration, as shown in FIG. Adjust ( FT ) using the amount of change in frequency F of vibration mode △ F and the amount of change in frequency T of torsional vibration mode △ T ratio △ T / △ F to adjust frequency temperature characteristics. Can be done.

しかし、上記△T/△Fは、音叉先端の蒸着
位置及び量が、同じであつても、音叉型水晶振動
子の切断角度の影響によつて、+Z′面から蒸着す
る場合と、−Z′面から蒸着する場合とでは異なる
値を呈する。第5図は、フオトリソグラフイの製
法による薄板状音叉型水晶振動子における、第4
図Aのように音叉先端全面を+Z′面から蒸着した
場合と、−Z′面から蒸着した場合の屈曲振動モー
ドの発振周波数Fと、捩り振動モードの発振周
波数Tの差(FT)の変化量とFの変化量
の関係を示したものである。第5図においては、
+Z′面からの蒸着における△T/△Fが2.9で
あるのに対して、−Z′面からの蒸着における△
T/△Fは0.85であり、全く逆の変化を呈する。
However, even if the deposition position and amount at the tip of the tuning fork are the same, the above △ T / The value is different for the case of evaporation from the ′ plane. Figure 5 shows the fourth part of a thin plate tuning fork type crystal resonator manufactured by photolithography.
As shown in Figure A, the difference between the oscillation frequency F of the bending vibration mode and the oscillation frequency T of the torsional vibration mode when the entire tip of the tuning fork is deposited from the +Z' plane and from the -Z' plane ( F - T ) This shows the relationship between the amount of change in and the amount of change in F. In Figure 5,
T / △ F in evaporation from +Z′ plane is 2.9, while △ in evaporation from −Z′ plane
T /△ F is 0.85, exhibiting completely opposite changes.

この+Z′面からの蒸着した場合の△T/△F
の値と、−Z′面から蒸着した場合の△T/△F
の値は、音叉複合振動タイプ水晶振動子の水晶の
結晶軸からの切断角度、及び蒸着位置及び蒸着面
積、さらにはフオトリソグラフイによる製法にお
いて、エツチング時間による、−X′方向のエツチ
ング残りの大きさ等により異なる。
T / △ F when deposited from this +Z′ plane
and △ T / △ F when deposited from the −Z′ plane.
The value of is determined by the cutting angle from the crystal axis of the crystal of the tuning fork compound vibration type crystal resonator, the deposition position and deposition area, and the size of the etching residue in the -X' direction due to the etching time in the photolithography manufacturing method. It varies depending on the size.

ある加工条件下において製造された複合振動タ
イプ水晶振動子において、+Z′面から蒸着した場
合の△T/△Fは、第6図に示すように音叉先
端への蒸着位置、及び蒸着面積を適当に選択する
ことによつて、ほとんど1にすることもできれ
ば、1より小さい値にも、1より大きな値にもす
ることができる。一方、−Z′面から蒸着した場合
の△T/△Fは、ほとんど1より大きな値を示
す。複合振動タイプ水晶振動子において、上記に
述べたような、−Z′面から音叉先端に蒸着した場
合の△T/△Fと+Z′面から音叉先端に蒸着し
た場合の△T/△Fの性格をうまく利用するこ
とによつて、複合振動タイプ水晶振動子の発振周
波数と温度特性の両者を簡便に所定の値に追い込
むことが可能となつた。
In a complex vibration type crystal resonator manufactured under certain processing conditions, △ T / △ F when vapor deposited from the +Z' plane is determined by adjusting the vapor deposition position to the tip of the tuning fork and the vapor deposition area appropriately, as shown in Figure 6. By choosing , it can be almost 1, it can be less than 1, or it can be more than 1. On the other hand, when deposited from the -Z' plane, ΔT / ΔF almost always shows a value larger than 1. In a compound vibration type crystal resonator, as mentioned above, △ T / △ F when deposited from the -Z' plane to the tuning fork tip and △ T / △ F when deposited from the +Z' plane to the tuning fork tip. By making good use of this characteristic, it has become possible to easily drive both the oscillation frequency and temperature characteristics of a complex vibration type crystal resonator to predetermined values.

第7は、複合振動タイプ水晶振動子の音叉先端
の+Z′面及び−Z′面への蒸着による△T/△F
の上記に述べた性格を利用した発振周波数及び温
度特性の調整法の一例を述べたものである。第7
図において、1は、時間標準源となる所定の発振
周波数を示し、2は、良好な温度特性を示す所定
の(△T/△Fを示す。第7図においては、−
Z′面からの蒸着による△T/△Fを1になるよ
うに蒸着位置及び面積を選択してある。第7図に
おいて、蒸着前のF及びTは図中3,4のよう
であり、これを所定の1,5に追い込む為、まず
−Z′面の音叉先端に蒸着することによつて、所定
の発振周波数1は無視し、(△F−△T)が所
定の値となるよう、まずFTを6,7に値ま
で追い込む。次に(FT)が変化しないよう
にすなわち△T/△Fが1になるように+Z′面
の適当な位置及び面積に蒸着し、本複合振動タイ
プ水晶振動子の基準振動子Fの周波数を所定の
標準発振源としての周波数第7図中1に追い込
む。しかして、本複合振動タイプ水晶振動子の周
波数及び温度特性は共に所定の値に追い込むこと
が可能である。
Seventh, △ T / △ F is achieved by vapor deposition on the +Z' plane and -Z' plane of the tuning fork tip of the complex vibration type crystal resonator.
This describes an example of a method for adjusting the oscillation frequency and temperature characteristics using the above-mentioned characteristics of. 7th
In the figure, 1 indicates a predetermined oscillation frequency that serves as a time standard source, and 2 indicates a predetermined (△ T / △ F) that exhibits good temperature characteristics. In Fig. 7, -
The vapor deposition position and area are selected so that △ T /△ F due to vapor deposition from the Z' plane becomes 1. In Fig. 7, F and T before vapor deposition are as shown in 3 and 4 in the figure. Ignoring the oscillation frequency 1 of , first drive F and T to values of 6 and 7 so that (△ F - △ T ) becomes a predetermined value. Next, it is deposited at an appropriate position and area on the +Z' plane so that ( F - T ) does not change, that is, △ T / △ F becomes 1, and the reference oscillator F of this complex vibration type crystal oscillator is deposited. The frequency is driven to frequency 1 in FIG. 7 as a predetermined standard oscillation source. Therefore, both the frequency and temperature characteristics of the present compound vibration type crystal resonator can be brought to predetermined values.

上記、音叉型水晶振動子の+Z′面及び−Z′面か
ら蒸着によつて、水晶振動子の発振周波数及び温
度特性を調整した後、水晶振動子の一部をレーザ
ーによつて除去することによつて、水晶振動子の
発振周波数及び温度特性はさらに精度良く所定の
狙い値に追い込むことができる。
After adjusting the oscillation frequency and temperature characteristics of the crystal oscillator by vapor deposition from the +Z' plane and -Z' plane of the above-mentioned tuning fork type crystal oscillator, a part of the crystal oscillator is removed by laser. Accordingly, the oscillation frequency and temperature characteristics of the crystal resonator can be driven to predetermined target values with higher accuracy.

さらに、上記水晶振動子が500μm以下の厚み
で、フオトリソグラフイの製法によつて作成され
ている場合についても、水晶振動子の振動理論、
+Z′面及び−Z′面の各面からの蒸着による屈曲振
動モード発振周波数F及び捩り振動モード発振
周波数Tの変化量への効果については、上述の
内容と同様の事が言え、本発明による水晶振動子
の周波数及び温度特性調整法をそのまま適用する
ことができる。
Furthermore, even if the above-mentioned crystal resonator has a thickness of 500 μm or less and is manufactured by photolithography, the vibration theory of the crystal resonator,
Regarding the effect on the amount of change in the flexural vibration mode oscillation frequency F and the torsional vibration mode oscillation frequency T due to vapor deposition from each of the +Z' and -Z' planes, the same thing can be said as described above, and the present invention The method for adjusting the frequency and temperature characteristics of a crystal resonator can be applied as is.

このように、本発明は、複合振動モード水晶振
動子の一部に+Z′面及び−Z′面の両面に同時ある
いは別個に蒸着することを基本とし、場合によつ
ては、レーザーによる水晶振動子質量一部削除に
よる手法との組み合わせ使用を含め、複合振動モ
ード水晶振動子の基準振動の発振周波数及び温度
特性の調整を簡単かつ明瞭にし、上記調整の工数
低域、及び歩留向上を図るものである。
As described above, the present invention is based on depositing simultaneously or separately on both the +Z' plane and -Z' plane on a part of the complex vibration mode crystal resonator, and in some cases, crystal vibration using a laser. To simplify and clarify the adjustment of the oscillation frequency and temperature characteristics of the reference vibration of a complex vibration mode crystal resonator, including using it in combination with the method of partially removing the child mass, and to reduce the man-hours for the above adjustment and improve the yield. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図……本発明において述べる屈曲振動モー
ドと捩り振動モードの結合を利用した音叉型水晶
振動子の周波数温度特性。第2図……本発明にお
いて述べる音叉型水晶振動子の外形、切出角度の
一例。第3図……複合振動タイプ水晶振動子の周
波数温度特性の一次関数αと、屈曲振動モードの
周波数Fと捩り振動モードの周波数Tの差F
Tとの関係。第4図……本発明において、振
動周波数を調整する為に、音叉型水晶振動子の先
端へ蒸着した一例。第5図……フオトリソグラフ
イの製法による薄板状音叉型水晶振動子におけ
る、音叉先端全面を+Z′面から蒸着した場合と、
−Z′面から蒸着した場合の屈曲振動モード及び捩
り振動モードの各周波数FTの差FT
挙動差の一例。第6図……本発明において述べる
複合振動タイプ音叉型水晶振動子における、音叉
先端への蒸着面積と、屈曲モード及び捩りモード
振動の各周波数の変化量の比△T/△Fの関係
の一例。第7図……本発明よる複合振動タイプ水
晶振動子の周波数及び温度特性の周波数調整法を
示すグラフ。 1…狙いとなる所定の基準振動(この場合、屈
曲振動)の周波数。2…狙いとなる所定の屈曲振
動モード及び捩り振動モードの各周波数の差F
T。3,8…周波数及び温度特性調整前の屈
曲振動モードの発振周波数。4,9…周波数及び
温度特性調整前の捩り振動モードの発振周波数。
5,10…狙いとなる所定の捩り振動モードの発
振周波数。6,11…周波数及び温度特性の調整
中段における屈曲振動モードの発振周波数。7,
12…周波数及び温度特性の調整中段における捩
り振動モードの発振周波数。13…蒸着部。
Figure 1: Frequency-temperature characteristics of a tuning fork crystal resonator that utilizes the combination of bending vibration mode and torsional vibration mode described in the present invention. Fig. 2: An example of the external shape and cutting angle of the tuning fork type crystal resonator described in the present invention. Figure 3: Linear function α of the frequency temperature characteristic of a complex vibration type crystal resonator, and the difference F between the frequency F of the bending vibration mode and the frequency T of the torsional vibration mode.
− Relationship with T. Figure 4: An example of vapor deposition on the tip of a tuning fork crystal resonator in order to adjust the vibration frequency in the present invention. Figure 5: A case where the entire tip of the tuning fork is vapor-deposited from the +Z' plane in a thin plate tuning fork type crystal resonator manufactured by photolithography, and
An example of the difference in behavior of the difference FT between the frequencies F and T of the bending vibration mode and torsional vibration mode when deposited from the −Z′ plane. Figure 6: An example of the relationship between the vapor deposition area at the tip of the tuning fork and the ratio of change in each frequency of bending mode and torsion mode vibration △ T / △ F in the complex vibration type tuning fork type crystal resonator described in the present invention. . FIG. 7: A graph showing a frequency adjustment method for the frequency and temperature characteristics of the complex vibration type crystal resonator according to the present invention. 1... Frequency of a predetermined target reference vibration (in this case, bending vibration). 2...Difference F between the frequencies of the target bending vibration mode and torsional vibration mode
−T . 3, 8...Oscillation frequency of bending vibration mode before adjusting frequency and temperature characteristics. 4, 9...Oscillation frequency of torsional vibration mode before frequency and temperature characteristic adjustment.
5, 10...Oscillation frequency of a predetermined target torsional vibration mode. 6, 11...Oscillation frequency of bending vibration mode in the middle stage of frequency and temperature characteristic adjustment. 7,
12...Oscillation frequency of torsional vibration mode in the middle stage of frequency and temperature characteristic adjustment. 13... Vapor deposition section.

Claims (1)

【特許請求の範囲】[Claims] 1 厚さ500μm以下であつて屈曲振動と捩り振
動を同時に励振させてなる音叉型水晶振動子の周
波数及び温度特性調整法において、前記音叉型水
晶振動子の−Z′面側から音叉先端近傍の1箇所に
錘りとなる金属膜を蒸着し前記屈曲振動の振動周
波数Fと前記捩り振動の振動周波数Tの周波数
差を調整する第1の調整工程と、前記音叉型水晶
振動子の+Z面側から音叉先端近傍の1箇所に錘
りとなる金属膜を蒸着して前記屈曲振動と捩り振
動の振動周波数の各々をほぼ同一量周波数低下さ
せ、前記周波数の値を設定する第2の調整工程と
を有する音叉水晶振動子の周波数及び温度特性調
整法。
1. In a method for adjusting the frequency and temperature characteristics of a tuning fork type crystal resonator having a thickness of 500 μm or less and exciting bending vibration and torsional vibration simultaneously, a first adjustment step of depositing a metal film serving as a weight at one location to adjust the frequency difference between the vibration frequency F of the bending vibration and the vibration frequency T of the torsional vibration; and a +Z surface side of the tuning fork type crystal resonator. a second adjustment step of reducing the vibration frequencies of the bending vibration and torsional vibration by approximately the same amount by depositing a metal film as a weight at one location near the tip of the tuning fork, and setting the value of the frequency; A method for adjusting the frequency and temperature characteristics of a tuning fork crystal resonator.
JP5602579A 1979-05-08 1979-05-08 Frequency and temperature characteristic adjusting method of crystal oscillator Granted JPS55147818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5602579A JPS55147818A (en) 1979-05-08 1979-05-08 Frequency and temperature characteristic adjusting method of crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5602579A JPS55147818A (en) 1979-05-08 1979-05-08 Frequency and temperature characteristic adjusting method of crystal oscillator

Publications (2)

Publication Number Publication Date
JPS55147818A JPS55147818A (en) 1980-11-18
JPS6258173B2 true JPS6258173B2 (en) 1987-12-04

Family

ID=13015512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5602579A Granted JPS55147818A (en) 1979-05-08 1979-05-08 Frequency and temperature characteristic adjusting method of crystal oscillator

Country Status (1)

Country Link
JP (1) JPS55147818A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268462A (en) * 1993-03-12 1994-09-22 Seiko Electronic Components Ltd Frequency adjustment method for ns-gt cut crystal resonator

Also Published As

Publication number Publication date
JPS55147818A (en) 1980-11-18

Similar Documents

Publication Publication Date Title
US4447753A (en) Miniature GT-cut quartz resonator
US4320320A (en) Coupled mode tuning fork type quartz crystal vibrator
US4377765A (en) Mode coupled tuning fork type quartz crystal vibrator and method of tuning
US4443728A (en) GT-Cut quartz resonator
JPH0150129B2 (en)
US4771202A (en) Tuning fork resonator
JP3096472B2 (en) SC-cut crystal unit
JPH03804B2 (en)
JPS6258173B2 (en)
GB2086132A (en) Mode coupled piezo-electric tuning fork resonator
JPS644694B2 (en)
JPS6367364B2 (en)
JPS6316924B2 (en)
JPS647689B2 (en)
JP2003273682A (en) Frequency control method for piezoelectric vibrator, piezoelectric vibrator, and piezoelectric device
JPH11177376A (en) Sc-cut crystal resonator
JPS59202720A (en) Tuning fork type crystal resonator
JP3194442B2 (en) SC-cut crystal unit
JPS59174010A (en) Rectangular at-cut quartz oscillator
JPH0888536A (en) Overtone rectangular crystal oscillator
GB2042797A (en) Tuning fork type piezo-electric vibrator
JPH0329204B2 (en)
JP2000040937A (en) Crystal resonator for sc cut
JP3231055B2 (en) SC-cut crystal unit
JPS625366B2 (en)