JPS6334611B2 - - Google Patents

Info

Publication number
JPS6334611B2
JPS6334611B2 JP48083A JP48083A JPS6334611B2 JP S6334611 B2 JPS6334611 B2 JP S6334611B2 JP 48083 A JP48083 A JP 48083A JP 48083 A JP48083 A JP 48083A JP S6334611 B2 JPS6334611 B2 JP S6334611B2
Authority
JP
Japan
Prior art keywords
iron core
epoxy resin
melting point
powder composition
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48083A
Other languages
Japanese (ja)
Other versions
JPS59125606A (en
Inventor
Toshio Nakao
Kenichi Yanagisawa
Takeshi Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd, NipponDenso Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP48083A priority Critical patent/JPS59125606A/en
Publication of JPS59125606A publication Critical patent/JPS59125606A/en
Publication of JPS6334611B2 publication Critical patent/JPS6334611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 本発明は、各種電気機器の高温時の電気絶縁性
を向上させる高耐熱絶縁被覆を有する電気鉄芯お
よびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric iron core having a highly heat-resistant insulating coating that improves the electrical insulation properties of various electrical devices at high temperatures, and a method for manufacturing the same.

近年、回転電気機器等の各種電気機器について
小型化、軽量化が志向され、ますます回転電機等
に高負荷が加わり高熱が発生する傾向にあるた
め、高温においても絶縁を保持しうる絶縁処理方
法の開発が強く望まれている。
In recent years, there has been a trend toward smaller and lighter rotating electrical equipment and other electrical equipment, and as rotating electrical equipment is subject to increasingly high loads and tends to generate high heat, an insulation treatment method that can maintain insulation even at high temperatures has been developed. development is strongly desired.

従来、回転電気機器等の耐熱絶縁処理として
は、例えば特開昭56−167305公報等に記載がある
ように、シリコーン系樹脂もしくはシリコーン系
樹脂と高融点粉末との混合物によりコイル巻線を
耐熱絶縁処理する方法が知られている。
Conventionally, as heat-resistant insulation treatment for rotating electric equipment, etc., coil windings are heat-resistant insulated with silicone resin or a mixture of silicone resin and high-melting point powder, as described in Japanese Patent Application Laid-Open No. 167305/1984. There are known ways to treat it.

しかしながら、この方法にて耐熱絶縁処理した
コイル巻線は、シリコーン系樹脂の分解する300
〜350℃以下の温度域及び高融点無機粉末が溶解
し、ホウロウ化する600℃以上の温度域ではコイ
ル間に強固な絶縁層が存在するが、中間の350℃
から600℃の温度域ではシリコーン系樹脂は分解
し、一方高融点無機物粉末は溶融せず、機械強度
は皆無に近いため、絶縁層はコイル間から容易に
剥離、脱落し、350℃から600℃の温度域で保持し
た際絶縁層としての役割を果たさず、極めて不完
全なのであつた。
However, the coil winding treated with heat-resistant insulation using this method has a 300%
A strong insulating layer exists between the coils in the temperature range below ~350℃ and in the temperature range above 600℃ where high melting point inorganic powder melts and becomes enamelled, but at 350℃ in the middle
Silicone resin decomposes in the temperature range from 350℃ to 600℃, while high melting point inorganic powder does not melt and has almost no mechanical strength, so the insulating layer easily peels off and falls off from between the coils. When maintained at a temperature range of 200 to 3000, it did not function as an insulating layer and was extremely incomplete.

又、電気鉄芯を耐熱絶縁処理する方法として
は、第1図に示すように、電気鉄芯1の表面(ス
ロツト部分)に、ポリイミド等の成形品又は成形
フイルム4を挿入する、インシユレーター法があ
る。
Furthermore, as a method for heat-resistant insulation treatment of an electric iron core, as shown in FIG. There is a law.

又もう一つの耐熱性絶縁処理する方法として
は、第2図に示すように、耐熱性良好なノボラツ
ク型エポキシ樹脂を併用したビスA型エポキシ樹
脂粉体塗料を流動浸漬法、ホツトスプレー法、静
電流動浸漬法、静電スプレー法等により、電気鉄
芯1の表面(スロツト部分)に付着させ、加熱に
より溶融硬化させて絶縁層5を形成させる粉体塗
装法がある。
As shown in Figure 2, another method for heat-resistant insulation treatment is to use a bis-A type epoxy resin powder coating combined with a novolac-type epoxy resin that has good heat resistance by fluid dipping, hot spraying, or static coating. There is a powder coating method in which the insulating layer 5 is formed by adhering it to the surface (slot portion) of the electric iron core 1 by a current dynamic dipping method, an electrostatic spray method, or the like, and melting and hardening it by heating.

しかし、上述のインシユレーター法は、耐熱性
絶縁処理をする場合に、その構造が複雑化し、ま
た、格別高度な成形技術を要するので、出来上が
つた製品のコストが高くなるとともに、有機物で
あるので耐熱性に限界がある。
However, with the above-mentioned insulator method, when applying heat-resistant insulation treatment, the structure becomes complicated and requires extremely advanced molding technology, which increases the cost of the finished product and also reduces the amount of organic matter. Therefore, there is a limit to its heat resistance.

一方、上述の耐熱性の良いノボラツク型エポキ
シ樹脂を併用したビスA型エポキシ樹脂粉体塗料
を使用した流動浸漬法、ホツトスプレー法、静電
流動浸漬法、静電スプレー法等の粉体塗装法で
は、樹脂自体の耐熱性に限界があるため、前述の
ような耐熱性絶縁処理は不可能である。このた
め、ノボラツク型エポキシ樹脂を併用したビスA
型エポキシ樹脂を、ポリイミド系樹脂、ポリフエ
ニレン系樹脂のような公知の高耐熱性樹脂に置き
換えることは、容易に考えられる。
On the other hand, powder coating methods such as fluidized dipping method, hot spray method, electrostatic dynamic dipping method, electrostatic spray method, etc. using bis A type epoxy resin powder coating combined with the above-mentioned novolak type epoxy resin with good heat resistance. However, since the heat resistance of the resin itself is limited, the heat-resistant insulation treatment described above is impossible. For this reason, BisA using a novolac type epoxy resin
It is easily possible to replace the type epoxy resin with a known highly heat resistant resin such as a polyimide resin or a polyphenylene resin.

しかし、実際にこの置き換えをやると、これら
の樹脂は融点が高いため、粉体塗装の際良好な外
観を有する絶縁層が得られず、又電気鉄芯素体と
絶縁層の密着が悪いため、絶縁層の上に巻線を行
なう際、巻線のすべりが悪くなり高速巻線が行な
えず、又素体との密着が悪いため絶縁層にワレ、
ハガレが発生し、巻線時の作業能率が極端に悪い
ものしか得られず、実用上使用することは困難で
あつた。
However, when this replacement is actually carried out, the high melting point of these resins makes it difficult to obtain an insulating layer with a good appearance when powder coating, and the adhesion between the electric iron core element and the insulating layer is poor. When winding a wire on top of an insulating layer, the slip of the winding becomes poor, making high-speed winding impossible, and the insulating layer cracks due to poor adhesion to the element body.
Peeling occurred and the working efficiency during winding was extremely poor, making it difficult to use it practically.

又、上記したいずれの高耐熱性樹脂も500〜600
℃では炭化してしまうため、500〜600℃で長時間
絶縁状態を保つことは出来なかつた。
Also, any of the above-mentioned high heat resistant resins have a rating of 500 to 600.
Because it carbonizes at temperatures of 500 to 600 degrees Celsius, it was not possible to maintain an insulating state for a long time at temperatures of 500 to 600 degrees Celsius.

更に耐熱性を上げる方法として、例えば特開昭
56−23275号公報に記載があるように、金属など
の基材の上に、基材との密着性が良好な無機物か
らなる第1層を形成させ、その上に、第1層の無
機物よりも高融点の無機物とバインダー物質との
混合物からなる第2層を形成させる耐熱絶縁処理
方法が知られている。
As a way to further increase heat resistance, for example,
As described in Japanese Patent Application No. 56-23275, a first layer made of an inorganic substance having good adhesion to the base material is formed on a base material such as metal, and a layer made of an inorganic substance having good adhesion to the base material is formed on top of the base material such as a metal. A heat-resistant insulation treatment method is also known in which a second layer is formed of a mixture of an inorganic substance with a high melting point and a binder substance.

しかしながら、この方法においても、バインダ
ー物質が分解する温度から高融点の無機物が軟化
するまでの温度域で保持した際、第2層の機械的
強度は皆無に近く、基材より容易に剥離、脱落
し、耐熱絶縁処理としては、極めて不完全なもの
であつた。
However, even with this method, when the second layer is kept in the temperature range from the temperature at which the binder material decomposes to the point at which the high melting point inorganic material softens, the second layer has almost no mechanical strength and easily peels off and falls off from the base material. However, as a heat-resistant insulation treatment, it was extremely incomplete.

本発明は、これらの従来技術の欠点を克服し、
高温でも良好な絶縁性を保持しうる耐熱絶縁処理
方法について検討の結果、特定の耐熱樹脂と特定
の無機物を組み合せた混合物にて電気鉄芯を被覆
することにより、高速巻線の際、作業能率が良好
であり、高負荷下で500〜600℃になつても絶縁効
果に異常をもたらさない絶縁被覆を有する電気鉄
芯が得られることを見い出し、更に鋭意研究を近
めて為すに至つたものである。
The present invention overcomes these drawbacks of the prior art and
As a result of studying heat-resistant insulation treatment methods that can maintain good insulation properties even at high temperatures, we found that by coating the electric iron core with a mixture of a specific heat-resistant resin and a specific inorganic material, work efficiency was improved during high-speed winding. We discovered that it was possible to obtain an electric iron core with an insulating coating that had good insulation properties and did not cause any abnormality in insulation effect even at temperatures of 500 to 600°C under high loads, and we conducted further intensive research. It is.

以下本発明の詳細について述べる。 The details of the present invention will be described below.

本発明は、電気鉄芯の表面に、水酸基を含有す
るエポキシ樹脂と反応しうる官能基を有する有機
シリコーン中間体によりエポキシ樹脂を10〜50重
量%の範囲で変性した融点が40℃以上、エポキシ
当量が400〜2000のシリコーン変性エポキシ樹脂
(A)と400℃〜500℃の融点を有する低融点ガラスを
10重量%以上含む無機充填剤(B)を主要構成成分と
し、重量比で(A):(B)=20:80〜60:40からなる混
合物の硬化せしめられた被覆層を有することを特
徴とする電気鉄芯及び水酸基を含有するエポキシ
樹脂と反応しうる官能基を有する有機シリコーン
中間体によりエポキシ樹脂を10〜50重量%の範囲
で変性した融点が40℃以上、エポキシ当量が400
〜2000のシリコーン変性エポキシ樹脂(A)と400〜
500℃の融点を有する低融点ガラスを10%以上含
み、平均粒径が1μから60μの無機充填剤(B)を主要
構成成分とし、重量比で(A):(B)=20:80〜60:40
からなり、且つ粒径10μ〜150μの範囲に入る粒子
の含有率が90重量%以上である粉体状組成物を電
気鉄芯の表面に付着せしめた後、これを加熱によ
る溶融、硬化させて絶縁被覆を形成することを特
徴とする高耐熱絶縁被覆を有する電気鉄芯の製造
方法に関するものである。
The present invention uses an epoxy resin with a melting point of 40°C or higher that is modified with an epoxy resin in the range of 10 to 50% by weight using an organic silicone intermediate having a functional group that can react with an epoxy resin containing a hydroxyl group on the surface of an electric iron core. Silicone modified epoxy resin with equivalent weight of 400-2000
(A) and low melting point glass with a melting point of 400℃~500℃
The main component is an inorganic filler (B) containing 10% by weight or more, and is characterized by having a hardened coating layer of a mixture consisting of (A):(B) = 20:80 to 60:40 in weight ratio. The epoxy resin is modified in the range of 10 to 50% by weight with an organic silicone intermediate having a functional group that can react with the electrical iron core and the hydroxyl group-containing epoxy resin, with a melting point of 40°C or higher and an epoxy equivalent of 400.
~2000 silicone modified epoxy resin (A) and 400~
Contains 10% or more of low melting point glass with a melting point of 500℃, the main component is an inorganic filler (B) with an average particle size of 1μ to 60μ, and the weight ratio is (A):(B) = 20:80 ~ 60:40
After adhering a powder composition consisting of 90% by weight or more of particles having a particle size of 10μ to 150μ on the surface of an electric iron core, this is melted and hardened by heating. The present invention relates to a method of manufacturing an electric iron core having a highly heat-resistant insulation coating, which is characterized by forming an insulation coating.

本発明で用いられるシリコーン変性エポキシ樹
脂(A)は、水酸基を含有するエポキシ樹脂と反応し
うる官能基を有する有機シリコーン中間体によ
り、エポキシ樹脂を10〜50重量%の範囲で変性し
た、融点が40℃以上、エポキシ当量が400〜2000
のものであり、好ましくは融点が40℃〜90℃、更
に好ましくは60℃〜75℃、数平均分子量が700〜
3000、エポキシ当量が700〜1200のものが好適に
用いられる。
The silicone-modified epoxy resin (A) used in the present invention is obtained by modifying an epoxy resin in a range of 10 to 50% by weight with an organic silicone intermediate having a functional group that can react with an epoxy resin containing a hydroxyl group. 40℃ or higher, epoxy equivalent 400-2000
preferably has a melting point of 40°C to 90°C, more preferably 60°C to 75°C, and a number average molecular weight of 700 to 75°C.
3,000, and those having an epoxy equivalent of 700 to 1,200 are preferably used.

有機シリコーン中間体による変性が、10重量%
を下廻ると耐熱性が不十分となり、50重量%を上
廻ると、他の無機充填剤あるいは鉄芯素体とのヌ
レ性が不十分となる。融点が40℃を下廻れば、フ
ローが出すぎるため、絶縁層のエツジカバー性が
極端に低くなるため絶縁不良の発生率が極端に増
加し、又粉体状組成物にした場合、室温で放置し
ても数時間以内にブロツキングが発生する。
Modification with organosilicone intermediates: 10% by weight
If it is less than 50% by weight, the heat resistance will be insufficient, and if it is more than 50% by weight, the wettability with other inorganic fillers or the iron core element will be insufficient. If the melting point is below 40°C, too much flow will occur, resulting in extremely low edge coverage of the insulating layer, resulting in an extremely high incidence of insulation defects, and if it is made into a powder composition, it will not be possible to leave it at room temperature. However, blocking occurs within a few hours.

一方、融点が90℃を上廻れば、フローが出にく
くなるため、鉄芯素体とのヌレ性、外観上の平滑
性が低下する傾向にあるため良好な外観を有する
塗装物が得られにくくなり、又絶縁層の上に巻線
を行なう際、絶縁層のワレ、ハガレが発生しやす
くなる。又、外観を向上せんとして、樹脂の配合
割合を増せば、耐熱性が不十分となる傾向にあ
る。エポキシ当量が400を下廻ると、絶縁層の架
橋密度が高くなりすぎるため、絶縁層の上に巻線
する際、絶縁層のワレ、ハガレが多発し、一方エ
ポキシ当量が2000を上廻ると、絶縁層の架橋密度
が低くなりすぎるため、絶縁層の上に巻線する
際、巻線が絶縁層にくい込み、絶縁不良の発生率
が極端に増加する。
On the other hand, if the melting point exceeds 90°C, it becomes difficult to form a flow, so the wettability with the iron core element and the smoothness of the appearance tend to decrease, making it difficult to obtain a coated product with a good appearance. Moreover, when winding is performed on the insulating layer, cracking and peeling of the insulating layer are likely to occur. Furthermore, if the blending ratio of resin is increased in an attempt to improve the appearance, the heat resistance tends to become insufficient. When the epoxy equivalent is less than 400, the crosslinking density of the insulating layer becomes too high, resulting in frequent cracking and peeling of the insulating layer when winding on the insulating layer.On the other hand, when the epoxy equivalent is more than 2000, Since the crosslinking density of the insulating layer becomes too low, when the wire is wound on the insulating layer, the winding wire sinks into the insulating layer, and the incidence of insulation defects increases extremely.

フロー特性あるいは密着性を向上するために
は、公知のエポキシ樹脂、例えばビス型エポキシ
樹脂、ノボラツク型エポキシ樹脂、グリセリント
リエーテル型エポキシ樹脂等を併用することも可
能である。
In order to improve flow characteristics or adhesion, it is also possible to use a known epoxy resin, such as a bis-type epoxy resin, a novolak-type epoxy resin, a glycerin triether-type epoxy resin, etc.

又室温から300〜400℃の温度範囲での耐熱性の
向上を図るため、ポリイミド、ポリアミドイミ
ド、ポリエステルイミド、ポリフエニレンオキシ
ド、ポリスルホン、ポリベンズイミダゾール等の
高耐熱性樹脂を併用することも可能である。
Also, in order to improve heat resistance in the temperature range from room temperature to 300-400℃, it is also possible to use high heat-resistant resins such as polyimide, polyamideimide, polyesterimide, polyphenylene oxide, polysulfone, and polybenzimidazole. It is.

本発明のシリコーン変性エポキシ樹脂(A)を得る
のに用いられる有機シリコーン中間体としては、
水酸基を含有するエポキシ樹脂と反応しうる官能
基を有するもの、すなわち、ケイ素原子に直結し
た水酸基、塩素、臭素等のハロゲン基、メトキシ
基、エトキシ基等のアルコキシ基、アセトキシ基
等を有するもので、その中でもアルコキシ基を有
するものが容易にエポキシ樹脂との反応が行なえ
るため最も好ましい。
The organic silicone intermediate used to obtain the silicone-modified epoxy resin (A) of the present invention includes:
Those that have functional groups that can react with epoxy resins containing hydroxyl groups, that is, those that have hydroxyl groups directly bonded to silicon atoms, halogen groups such as chlorine and bromine, alkoxy groups such as methoxy groups and ethoxy groups, and acetoxy groups. Among these, those having an alkoxy group are most preferred because they can easily react with the epoxy resin.

ケイ素に直結するその他の置換基については、
例えば、メチル基、フエニル基等分解温度の異な
る2種以上の基を有するものが、高温での分解が
段階的に起こるため好ましい。
For other substituents directly bonded to silicon,
For example, those having two or more types of groups having different decomposition temperatures, such as a methyl group and a phenyl group, are preferable because decomposition occurs in stages at high temperatures.

又、本発明のシリコーン変性エポキシ樹脂(A)を
得るのに用いられるエポキシ樹脂は、分子内に2
個以上のエポキシ基を有するもので、例えばビス
フエノール型エポキシ樹脂、ハロゲン化ビスフエ
ノール型エポキシ樹脂、ノボラツク型エポキシ樹
脂、レゾルシン型エポキシ樹脂、テトラヒドロキ
シジフエニルエタン型エポキシ樹脂、ポリアルコ
ール型エポキシ樹脂、ポリグリコール型エポキシ
樹脂、グリセリントリエーテル型エポキシ樹脂、
ポリオレフイン型エポキシ樹脂、脂環型エポキシ
樹脂等特に限定するものではなく、これらのエポ
キシ樹脂が単独又は併用して用いられる。
Furthermore, the epoxy resin used to obtain the silicone-modified epoxy resin (A) of the present invention has 2
Examples include bisphenol-type epoxy resins, halogenated bisphenol-type epoxy resins, novolac-type epoxy resins, resorcinol-type epoxy resins, tetrahydroxydiphenylethane-type epoxy resins, polyalcohol-type epoxy resins, Polyglycol type epoxy resin, glycerin triether type epoxy resin,
Polyolefin type epoxy resins, alicyclic type epoxy resins, etc. are not particularly limited, and these epoxy resins can be used alone or in combination.

本発明において用いられる無機充填剤(B)は、平
均粒径1μから60μで、400℃〜500℃の融点を有す
る低融点ガラス粉末を10重量%以上含有するもの
である。
The inorganic filler (B) used in the present invention has an average particle size of 1 μ to 60 μ and contains 10% by weight or more of a low melting point glass powder having a melting point of 400° C. to 500° C.

該低融点ガラス粉末と併用して用いられる無機
粉末としては、特に限定するものでなくシリカ、
クレー、マイカ、炭酸カルシウム、アルミナ、水
酸化アルミニウム、高融点ガラス等の無機粉末の
1種、又は2種以上が用いられ、これらの中でシ
リカ、アルミナを用いることが最も好ましい。
The inorganic powder used in combination with the low melting point glass powder is not particularly limited, and examples include silica,
One or more types of inorganic powders such as clay, mica, calcium carbonate, alumina, aluminum hydroxide, and high melting point glass are used, and among these, silica and alumina are most preferably used.

すなわち、本発明において用いられる無機充填
剤(B)は、400℃〜500℃の融点を有する低融点ガラ
スとシリカ、アルミナ等の無機粉末を混合したも
ので、低融点ガラスを10重量%含有するものが好
ましく、最も好ましい無機充填剤(B)としては、低
融点ガラス粉末20〜60重量%、アルミナ粉末5〜
30重量%及びシリカ粉末25〜75重量%を主要成分
とするものが用いられる。
That is, the inorganic filler (B) used in the present invention is a mixture of low melting point glass having a melting point of 400°C to 500°C and inorganic powders such as silica and alumina, and contains 10% by weight of low melting point glass. The most preferable inorganic filler (B) is 20 to 60% by weight of low melting point glass powder, 5 to 60% by weight of alumina powder.
30% by weight and 25 to 75% by weight of silica powder as main components.

低融点ガラスの融点が400℃より低いガラスフ
リツトは、高温での皮膜形成には有利であるが、
組成中に多量鉛化合物を含んでいるため衛生上好
ましくなく、又400℃〜500℃での軟化が著しいた
め、高温時の絶縁層の強度が不十分となる。又融
点が500℃よりも高いガラスフリツトでは、高温
での皮膜形成が不十分となる。
Glass frits with a melting point of lower than 400°C are advantageous for film formation at high temperatures, but
Since the composition contains a large amount of lead compounds, it is unfavorable from a sanitary standpoint, and since it softens significantly at 400°C to 500°C, the strength of the insulating layer at high temperatures becomes insufficient. Furthermore, if the glass frit has a melting point higher than 500°C, film formation at high temperatures will be insufficient.

上記の低融点ガラスが軟化溶融する350℃〜600
℃での絶縁層の硬度を向上するには、350℃〜600
℃でも軟化溶融、分解しない、シリカ、アルミナ
等無機粉末を併用することが好ましく、低融点ガ
ラス粉末20〜60重量%、アルミナ粉末5〜30重量
%シリカ粉末25〜75重量%を主要成分とする配合
比率で絶縁層の硬度が最も向上するため、この範
囲での併用が好ましい。
350℃~600℃ where the above low melting point glass softens and melts
To improve the hardness of the insulation layer at 350℃~600℃
It is preferable to use inorganic powders such as silica and alumina that do not soften, melt, or decompose even at ℃, and the main components are 20 to 60% by weight of low melting point glass powder, 5 to 30% by weight of alumina powder, and 25 to 75% by weight of silica powder. Since the hardness of the insulating layer is improved most depending on the mixing ratio, it is preferable to use them together within this range.

本発明で用いられる無機充填剤(B)は平均粒径
1μから60μを有するもので、好ましくは20μから
40μのものが用いられる。平均粒径が60μより大
きいと、平滑面が得られず、1μより小さいと、
粉末の吸油量が増加し、充分なフローが得られな
い。
The inorganic filler (B) used in the present invention has an average particle size of
1μ to 60μ, preferably 20μ to
40μ is used. If the average particle size is larger than 60μ, a smooth surface cannot be obtained, and if it is smaller than 1μ,
The amount of oil absorbed by the powder increases, making it impossible to obtain sufficient flow.

本発明において用いられるシリコーン変性エポ
キシ樹脂(A)と低融点ガラス粉末含有無機充填剤(B)
を主要構成成分とする混合物としては、シリコー
ン変性エポキシ樹脂(A)と低融点ガラス粉末含有無
機充填剤(B)の配合割合が、重量比で20:80〜60:
40の範囲のものが用いられる。シリコーン変性エ
ポキシ樹脂(A)の配合比率が20重量%を下廻ると、
良好なフロー特性が得られず、60重量%を上廻る
と、耐熱性が不十分となる。
Silicone modified epoxy resin (A) and low melting point glass powder-containing inorganic filler (B) used in the present invention
As a mixture having as main constituents, the blending ratio of silicone-modified epoxy resin (A) and inorganic filler containing low melting point glass powder (B) is 20:80 to 60:
A range of 40 is used. When the blending ratio of silicone-modified epoxy resin (A) is less than 20% by weight,
Good flow characteristics cannot be obtained, and if the content exceeds 60% by weight, heat resistance becomes insufficient.

本発明に係わるシリコーン変性エポキシ樹脂の
硬化剤としては、エポキシ樹脂用として一般に使
用されている硬化剤がそのまま使用できる。すな
わち、カルボン酸無水物基、アミノ基、カルボキ
シル基、カルボン酸ヒドラジド基、ヒドロシル
基、−SH基、CONH−基、−NCO基、−NCS基を
有する有機化合物、有機鉱酸エステル、有機金属
化合物ルイス酸、有機基を含有するチタン、亜
鉛、ホウ素又はアルミニウム化合物、その他の酸
性あるいは塩基性化合物等の従来公知の硬化剤が
使用される。例えば、エチレンジアミン、トリエ
チレンテトラミン等の脂肪族ポリアミン、モノエ
タノールアミン、プロパノールアミン等の脂肪族
ヒドロキミルアミン、メタフエニレンジアミン、
4,4′−ジアミノジフエニルメタン等の芳香族ア
ミン、ピペラジン、トリエチレンジアミン等の環
状構造を有する脂肪族アミン、2−エチル4−メ
チルイミダゾール、2−フエニルイミダゾール等
のイミダゾール、その他窒素含有の硬化剤として
は、シシアンジアミドカルボン酸ジヒドラジド等
が例示される。又酸硬化剤としては、フタール
酸、マレイン酸、テトラヒドロフタール酸、トリ
メリツト酸、アゼライン酸、ベンゾフエノンテト
ラカルボン酸、アジピン酸等の多価カルボン酸及
びその無水物が例示される。
As the curing agent for the silicone-modified epoxy resin according to the present invention, curing agents commonly used for epoxy resins can be used as they are. That is, organic compounds, organic mineral acid esters, and organic metal compounds having a carboxylic acid anhydride group, an amino group, a carboxyl group, a carboxylic acid hydrazide group, a hydrosyl group, a -SH group, a CONH group, a -NCO group, and a -NCS group. Conventionally known hardening agents such as Lewis acids, titanium, zinc, boron or aluminum compounds containing organic groups, and other acidic or basic compounds are used. For example, aliphatic polyamines such as ethylenediamine and triethylenetetramine, aliphatic hydroxylamines such as monoethanolamine and propanolamine, metaphenylenediamine,
Aromatic amines such as 4,4'-diaminodiphenylmethane, aliphatic amines with a cyclic structure such as piperazine and triethylenediamine, imidazoles such as 2-ethyl 4-methylimidazole and 2-phenylimidazole, and other nitrogen-containing Examples of the curing agent include cycyandiamide carboxylic acid dihydrazide. Examples of acid curing agents include polyhydric carboxylic acids such as phthalic acid, maleic acid, tetrahydrophthalic acid, trimellitic acid, azelaic acid, benzophenonetetracarboxylic acid, and adipic acid, and their anhydrides.

その他、ポリウレタン樹脂の−NCO基含有プ
レポリマー、テトラブチルチタネート、亜鉛オク
トエート等有機基を含むチタン、亜鉛化合物等が
例示される。又、これらの硬化剤の中には、第三
アミン、イミダゾール、有機酸金属塩、ルイス
酸、アミン錯塩等の硬化促進剤を少量併用するこ
とにより速硬化を図ることができるものもあり、
必要に応じ適宜配合される。これらの硬化剤の中
で、とくにイミダゾール、ジシアンジアミド、カ
ルボン酸ジヒドラジドが貯蔵安定性等の理由から
好適に使用される。
Other examples include -NCO group-containing prepolymers of polyurethane resins, titanium and zinc compounds containing organic groups such as tetrabutyl titanate and zinc octoate. In addition, some of these curing agents can achieve rapid curing by using a small amount of a curing accelerator such as tertiary amine, imidazole, organic acid metal salt, Lewis acid, or amine complex salt.
It is blended as needed. Among these curing agents, imidazole, dicyandiamide, and carboxylic acid dihydrazide are particularly preferably used for reasons such as storage stability.

本発明において用いられるシリコーン変性エポ
キシ樹脂(A)と低融点ガラス粉末含有無機充填剤(B)
を主要成分とする混合物には、上記した樹脂、無
機充填剤、硬化剤、硬化促進剤の他の必要に応じ
て種々の添加剤を加えることが出来る。
Silicone modified epoxy resin (A) and low melting point glass powder-containing inorganic filler (B) used in the present invention
In addition to the above-described resin, inorganic filler, curing agent, and curing accelerator, various additives can be added to the mixture containing as the main components as necessary.

このような添加剤としては、例えば無機顔料、
有機顔料、難燃剤、難燃助剤、シランカツプリン
グ剤、消泡剤、離型剤、チクソ性向上剤、表面平
滑性向上剤、流動性向上剤等が上げられる。
Examples of such additives include inorganic pigments,
Examples include organic pigments, flame retardants, flame retardant aids, silane coupling agents, antifoaming agents, mold release agents, thixotropy improvers, surface smoothness improvers, fluidity improvers, and the like.

本発明でいう電気鉄芯とは、回転電機の回転子
又は固定子あるいはトランスの鉄芯コア等で、必
ずしもスロツト部を有している必要はなく、コア
レスモーターの回転子等も含まれる。
The electric iron core referred to in the present invention refers to a rotor or stator of a rotating electric machine, an iron core of a transformer, etc., and does not necessarily have a slot portion, and also includes a rotor of a coreless motor.

本混合物により電気鉄芯表面に形成された被覆
層は、通常100μ〜500μの厚みを有し、加熱する
ことにより、溶融硬化せしめられ、三次元に架橋
した強固な絶縁被覆層である。
The coating layer formed on the surface of the electric iron core with this mixture usually has a thickness of 100 to 500 microns, is melted and hardened by heating, and is a strong three-dimensionally crosslinked insulating coating layer.

本発明における高耐熱絶縁被覆を有する電気鉄
芯の製造方法としては、前記シリコーン変性エポ
キシ樹脂(A)と低融点ガラス粉末含有無機充填剤(B)
を主要構成成分とする混合物を粉体状組成物と
し、これを電気鉄芯の表面に付着せしめた後、加
熱、溶融、硬化させて絶縁被覆を形成することに
より行なわれる。
The method for producing an electric iron core having a high heat-resistant insulation coating in the present invention includes the silicone-modified epoxy resin (A) and the inorganic filler containing low melting point glass powder (B).
This is done by making a powder composition out of a mixture whose main constituents are, adhering it to the surface of an electric iron core, and then heating, melting and curing it to form an insulating coating.

電気鉄芯の表面に該粉体状組成物を付着させる
方法としては、該粉体状組成物を圧縮空気により
浮遊させ、流動状態に保つた層の中に該粉体状組
成物の融点以上に加熱した電気鉄芯を浸漬し、鉄
芯表面に粉体組成物を融着させその後加熱するこ
とにより、硬化せしめられた絶縁被覆を形成する
流動浸漬法及び該粉体状組成物を圧縮空気により
流動状態とし、該粉体状組成物を圧縮した空気と
ともにスプレーノズルから、回転している熱せら
れた電気鉄芯表面に吹きつけ、鉄芯表面に該粉体
状組成物を融着させ、その後、加熱することによ
り、硬化せしめられた絶縁被覆を形成するホツト
スプレー法が用いられる。
As a method for attaching the powder composition to the surface of an electric iron core, the powder composition is suspended with compressed air and placed in a layer kept in a fluid state at a temperature higher than the melting point of the powder composition. A fluidized dipping method in which a heated electric iron core is immersed in water, the powder composition is fused to the surface of the iron core, and then heated to form a hardened insulating coating.The powder composition is immersed in compressed air. The powdered composition is made into a fluid state by spraying the powdered composition together with compressed air from a spray nozzle onto the surface of a rotating heated electric iron core to fuse the powdered composition to the surface of the iron core, Thereafter, a hot spray method is used in which a hardened insulating coating is formed by heating.

又、高電圧電極により帯電せられた流動状態の
該粉体組成物を接地された電気鉄芯表面に静電気
力により付着させ、その後加熱し、溶融、硬化さ
せることにより絶縁被覆を形成する静電流動浸漬
法及び、該粉体状組成物を圧縮空気とともに高電
圧電極を具備したスプレーノズルから接地された
電気鉄芯に吹き付け、静電力により鉄芯表面に付
着させ、その後加熱し、溶融、硬化させることに
より絶縁被覆を形成する静電スプレー法も用いら
れる。
In addition, the powder composition in a fluid state charged by a high-voltage electrode is attached to the surface of a grounded electric iron core by electrostatic force, and then heated, melted, and hardened to form an insulating coating. Fluidized dipping method, in which the powder composition is sprayed with compressed air from a spray nozzle equipped with a high voltage electrode onto a grounded electric iron core, adhered to the surface of the iron core by electrostatic force, and then heated, melted, and hardened. An electrostatic spray method is also used in which an insulating coating is formed by spraying.

本発明の方法において用いられる粉体状組成物
は、前記シリコーン変性エポキシ樹脂(A)と低融点
ガラス粉末含有無機充填剤(B)を主要構成成分と
し、重量比で(A):(B)=20:80〜60:40からなり、
且つ粒径10μ〜150μの範囲に入る粒子の含有率が
90重量%以上であるような粒度分布を有するもの
である。
The powder composition used in the method of the present invention contains the silicone-modified epoxy resin (A) and the inorganic filler containing low melting point glass powder (B) as main components, and has a weight ratio of (A):(B). = Consists of 20:80 to 60:40,
And the content of particles with a particle size in the range of 10μ to 150μ is
It has a particle size distribution of 90% by weight or more.

粒径10μを下廻る粒子が多くなり、粒径10μ〜
150μの範囲に入る粒子の含有率が90重量%を下
廻ると、流動浸漬法、ホツトスプレー法の場合
は、圧縮空気により該粉体状組成物を流動させる
際、粒子同志が密に充填されるため空気が抜けに
くくなり、突沸を起こして周囲に飛散するため好
ましくなく、又、静電流動浸漬法、静電スプレー
法等の場合は、高電圧を印加した際、粒子表面に
蓄えられる静電気量は、粒子の容積の比例するた
め、静電気力が弱くなり接地した電気鉄芯に付着
しにくくなるため、好ましくない。
There are many particles with a particle size of less than 10μ, and the particle size is 10μ or more.
If the content of particles in the 150μ range is less than 90% by weight, the particles will become densely packed together when the powder composition is fluidized with compressed air in the fluidized dipping method or hot spray method. This is undesirable because it makes it difficult for air to escape, causing bumping and scattering to the surroundings.Also, in the case of electrostatic dynamic immersion method, electrostatic spray method, etc., when high voltage is applied, static electricity accumulates on the particle surface. Since the amount is proportional to the volume of the particles, the electrostatic force becomes weaker and it becomes difficult to adhere to the grounded electric iron core, which is not preferable.

又、粒径150μを上廻る粒子が多くなり、粒径
10μ〜150μに入る粒子の含有率が90重量%を下廻
ると、流動浸漬法、ホツトスプレー法の場合は、
圧縮空気により該粉体状組成物を流動させる際、
粒子が重くなるため、流動しづらくなり、特にホ
ツトスプレー法の場合は、スプレーガンのノズル
の目づまりの原因になるため好ましくなく、又静
電流動浸漬法、静電スプレー法の場合は、粒子が
重くなるため、静電気力により電気鉄芯表面に該
粉体状組成物を付着させた後粒子の自重により該
粉体状組成物が鉄芯表面より脱落しやすくなるた
め好ましくない。
In addition, there are many particles with a particle size of over 150μ, and the particle size
When the content of particles between 10μ and 150μ is less than 90% by weight, in the case of fluidized dipping method and hot spray method,
When fluidizing the powder composition with compressed air,
As the particles become heavier, they become difficult to flow, which is particularly undesirable in the case of the hot spray method, as this can cause clogging of the nozzle of the spray gun, and in the case of the electrostatic dynamic dipping method and electrostatic spray method, the particles become difficult to flow. This is undesirable because it becomes heavy, and after the powder composition is adhered to the surface of the electric iron core by electrostatic force, the powder composition tends to fall off from the surface of the iron core due to the weight of the particles.

なお、該粉体状組成物を製造する方法の一例を
述べれば、上記したシリコーン変性エポキシ樹脂
(A)、低融点ガラス粉末含有無機充填剤(B)、硬化
剤、硬化促進剤、添加剤等の原料を、ロール、2
軸のスクリユーエクストルーダー、ブスコニーダ
ー等で溶融混練し、次いで粉砕機にて粉砕し、そ
の後ふるい等で粗粒を除去する方法が例示され
る。
An example of a method for producing the powder composition is to use the above-mentioned silicone-modified epoxy resin.
Raw materials such as (A), inorganic filler containing low melting point glass powder (B), hardening agent, hardening accelerator, additives, etc. are rolled,
Examples include a method of melt-kneading with a screw extruder, Busco kneader, etc., then crushing with a crusher, and then removing coarse particles with a sieve or the like.

次に、該粉体状組成物により、高耐熱絶縁被覆
を有する電気鉄芯を製造する方法について更に具
体的に説明する。
Next, a method for manufacturing an electric iron core having a highly heat-resistant insulation coating using the powder composition will be described in more detail.

該粉体状組成物により、流動浸漬法ないしホツ
トスプレー法にて電気鉄芯に高耐熱絶縁被覆を行
なう場合は、電気鉄芯を120℃〜240℃の温度範
囲、特に好ましくは、170℃〜200℃の温度範囲で
予熱を行なう。
When applying a highly heat-resistant insulation coating to an electric iron core using the powder composition by a fluidized dipping method or a hot spray method, the electric iron core is heated in a temperature range of 120°C to 240°C, particularly preferably 170°C to 240°C. Preheat in the temperature range of 200℃.

流動浸漬法では、流動浸漬槽に仕込んだ該粉体
状組成物を多孔板で仕切られた槽下部から圧縮空
気を送つて浮遊させ、該粉体状組成物と空気とが
容量比で95:5〜10:90となる混合比率の範囲内
で流動状態を保ち、その層内に予熱した電気鉄芯
を浸漬することにより、その表面に該粉体状組成
物を融着させる。
In the fluidized dipping method, the powder composition charged in a fluidized dipping tank is suspended by sending compressed air from the bottom of the tank partitioned by a perforated plate, so that the powder composition and air are mixed in a volume ratio of 95: The powder composition is maintained in a fluid state within a mixing ratio of 5 to 10:90, and a preheated electric iron core is immersed in the layer to fuse the powder composition to the surface thereof.

ホツトスプレー法では、該粉体状組成物と圧縮
空気との混合比が容量比で95:5〜10:90となる
範囲でスプレー状とし、スプレーノズルから回転
している予熱された電気鉄芯の表面に吹き付ける
ことにより、その表面に該粉体状組成物を融着さ
せる。
In the hot spray method, the powder composition and compressed air are sprayed at a mixing ratio of 95:5 to 10:90 by volume, and a preheated electric iron core rotating from a spray nozzle is used. By spraying the powder composition onto the surface of the powder, the powder composition is fused onto the surface of the powder composition.

その後、これらを150℃〜230℃の温度範囲で加
熱し、該粉体状組成物を硬化させ絶縁被覆を形成
する。
Thereafter, these are heated in a temperature range of 150° C. to 230° C. to harden the powder composition and form an insulating coating.

電気鉄芯の予熱を行なう装置としては、オーブ
ン炉、遠赤外炉等の加熱炉、あるいは高周波加熱
装置のいずれでも良い。予熱温度が120℃を下廻
ると、該粉体状組成物が鉄芯表面に融着しづらく
なるため生産性が悪くなり、240℃を上廻ると融
着した該粉体状組成物が急速硬化し発泡するため
好ましくない。予熱温度を170℃〜200℃の範囲に
すれば、生産性塗装外観ともに良好で、最も好ま
しい。
The device for preheating the electric iron core may be a heating furnace such as an oven, a far-infrared furnace, or a high-frequency heating device. If the preheating temperature is below 120°C, it becomes difficult for the powdery composition to adhere to the surface of the iron core, resulting in poor productivity.If the preheating temperature is above 240°C, the fused powdery composition rapidly Unfavorable because it hardens and foams. Setting the preheating temperature to a range of 170°C to 200°C is most preferable since both productivity and coating appearance are good.

該粉体状組成物と空気との混合比は、流動浸漬
法、ホツトスプレー法、いずれの場合も、容量比
で95:5から10:90の比率で行なうのが好まし
い。
The mixing ratio of the powder composition and air is preferably 95:5 to 10:90 by volume in both the fluidized dipping method and the hot spray method.

該粉体状組成物の混合比が95容量%を上廻る
と、流動浸漬法では、該粉体状組成物がほとんど
流動せず、又ホツトスプレー法では、空気の量が
足りず該粉体状組成物が完全にはスプレー状にな
らないため、いずれの場合も塗装が不均一となり
易い。該粉体状組成物の混合比が10容量%を下廻
ると、流動浸漬法では空気量が多すぎるため該粉
体状組成物が周囲に飛散するため好ましくなく、
又ホツトスプレー法では、空気量が多すぎるた
め、熱せられた鉄芯が急速にさめ、該粉体状組成
物が鉄芯表面に融着しなくなるため好ましくな
い。
When the mixing ratio of the powder composition exceeds 95% by volume, the powder composition hardly flows in the fluidized dipping method, and the powder composition hardly flows in the hot spray method due to an insufficient amount of air. In either case, the coating tends to be uneven because the composition does not completely form into a spray. If the mixing ratio of the powder composition is less than 10% by volume, the fluidized dipping method is not preferred because the amount of air is too large and the powder composition scatters around.
In addition, the hot spray method is not preferred because the amount of air is too large and the heated iron core cools down rapidly, making it impossible for the powder composition to fuse to the surface of the iron core.

流動浸漬法での浸漬時間、ホツトスプレー法で
のスプレー時間は、鉄芯表面に形成される絶縁層
の膜厚により決まり、通常は膜厚が100μ〜500μ
の範囲にはいる条件に設定される。
The immersion time in the fluidized immersion method and the spray time in the hot spray method are determined by the thickness of the insulating layer formed on the surface of the iron core, and the film thickness is usually 100μ to 500μ.
The conditions are set to fall within the range.

膜厚が100μを下廻ると、絶縁層が薄すぎるた
め、絶縁が不十分となり易く又、膜厚が500μを
上廻ると、鉄芯スロツトの空間が狭くなり、所定
回数の巻線を施すことが出来なくなる等、スペー
スフアクターが低下する傾向にあり好ましくな
い。
If the film thickness is less than 100μ, the insulation layer is too thin and insulation tends to be insufficient.If the film thickness is more than 500μ, the space in the iron core slot becomes narrow, making it difficult to wind the wire a specified number of times. This is not preferable because the space factor tends to decrease, such as not being able to do so.

鉄芯表面に融着した該粉体状組成物の硬化は、
流動浸漬法、ホツトスプレー法いずれの場合も、
好ましくは150℃〜230℃の温度範囲、特に好まし
くは、180℃〜200℃の温度範囲で行なわれ、加熱
時間は、絶縁被覆層に要求される実用特性に応じ
て適宜選定される。
The curing of the powder composition fused to the surface of the iron core is as follows:
In both the fluidized immersion method and the hot spray method,
The heating is preferably carried out in a temperature range of 150°C to 230°C, particularly preferably in a temperature range of 180°C to 200°C, and the heating time is appropriately selected depending on the practical characteristics required of the insulating coating layer.

加熱方法としては、オーブン炉、遠赤外炉等の
加熱炉、高周波加熱装置等が用いられる。又、用
いられる電気鉄芯が、大きな熱容量を有し、且つ
該粉体状組成物が速硬化性を有するものである場
合には、鉄芯の冷却が遅いため、塗装後の鉄芯の
加熱を行なわず、自然放冷することにより、該粉
体状組成物を硬化せしめることが可能である。す
なわち、塗装直後から3〜4分以内に鉄芯の温度
が150℃以下に下がらず、該粉体状組成物の165℃
の熱板におけるゲル化時間が100秒以下の場合に
は、塗装後の加熱を行なう必要がなく、自然放冷
するのみで硬化可能である。
As a heating method, a heating furnace such as an oven furnace or a far-infrared furnace, a high frequency heating device, etc. are used. In addition, if the electric iron core used has a large heat capacity and the powder composition has fast curing properties, cooling of the iron core is slow, so heating of the iron core after painting is difficult. It is possible to harden the powder composition by allowing it to cool naturally without carrying out. That is, the temperature of the iron core does not fall below 150°C within 3 to 4 minutes immediately after coating, and the temperature of the powdered composition does not fall below 165°C.
If the gelation time on a hot plate is 100 seconds or less, there is no need to heat the coating after coating, and the coating can be cured by simply letting it cool naturally.

該粉体状組成物により、静電流動浸漬法ないし
静電スプレー法にて電気鉄芯に高耐熱絶縁被覆を
行なう場合は、いずれの場合も好ましくは高電圧
電極に10KV以上の電圧を発生させて、該粉体状
組成物表面に静電気を帯電させ、該粉体状組成物
と空気との混合比を容量比で95:5〜5:95とし
て接地された電気鉄芯に接触させ、静電気力によ
り、その表面に該粉体状組成物を付着させる。そ
の後これを150℃〜230℃の範囲で加熱し、該粉体
状組成物を溶融、硬化させて、鉄芯表面に絶縁被
覆を形成するのが好ましい。
When applying a highly heat-resistant insulation coating to an electric iron core using the powder composition by an electrostatic dynamic dipping method or an electrostatic spray method, in either case, it is preferable to generate a voltage of 10 KV or more at a high voltage electrode. Then, static electricity is charged on the surface of the powder composition, and the mixture ratio of the powder composition and air is set to 95:5 to 5:95 by volume, and the powder composition is brought into contact with a grounded electric iron core to remove the static electricity. The powdered composition is applied to the surface by force. Preferably, this is then heated in a range of 150°C to 230°C to melt and harden the powder composition to form an insulating coating on the surface of the iron core.

電圧が10KVを下廻ると該粉体状組成物の粒子
表面に蓄えられる静電気量が小さくなり、該粉体
状組成物が接地された鉄芯表面に付着しづらくな
る。又、該粉体状組成物の混合比が95容量%を上
廻ると、いずれの塗装法の場合も、帯電せられた
該粉体状組成物の粒子が、接地された電気鉄芯表
面にいちどきに付着するため、極めて短時間で塗
装されるので、塗装が不均一となり易い。
When the voltage is less than 10 KV, the amount of static electricity stored on the particle surface of the powder composition becomes small, making it difficult for the powder composition to adhere to the surface of the grounded iron core. Furthermore, if the mixing ratio of the powder composition exceeds 95% by volume, in any coating method, the charged particles of the powder composition will fall onto the surface of the grounded electric iron core. Since the paint is applied all at once, the paint is applied in an extremely short period of time, so the paint tends to be uneven.

又該粉体状組成物の混合比が5容量%を下廻る
と、上記のいずれの塗装法の場合も、帯電せられ
た該粉体状組成物の粒子が接地された電気鉄芯表
面に所定量付着するのに長時間を要し、生産性が
悪くなる傾向がある。
In addition, if the mixing ratio of the powder composition is less than 5% by volume, in any of the above coating methods, the charged particles of the powder composition will be deposited on the surface of the grounded electric iron core. It takes a long time to adhere a predetermined amount, which tends to reduce productivity.

上記した塗装法での塗装時間は、鉄芯表面に形
成される絶縁層の膜厚によつて決まり、流動浸漬
法、ホツトスプレー法の場合と同様の理由から膜
厚が100μ〜500μの範囲にはいる条件に設定する
のが好ましい。
The coating time for the above coating method is determined by the thickness of the insulating layer formed on the surface of the iron core, and for the same reason as the fluidized dip method and hot spray method, the film thickness is in the range of 100μ to 500μ. It is preferable to set the condition to be yes.

膜厚が100μを下廻ると、絶縁層が薄すぎるた
め絶縁が不十分となり易く、又膜厚が500μを上
廻ると、スロツトの空間が狭くなり所定回数の巻
線を施こすことが困難となり易い。
If the film thickness is less than 100μ, the insulating layer is too thin and insulation tends to be insufficient.If the film thickness is more than 500μ, the slot space becomes narrow and it becomes difficult to wind the wire the specified number of times. easy.

鉄芯表面に付着した該粉体状組成物の加熱、溶
融、硬化は、静電流動浸漬法、静電スプレー法、
いずれの場合も、好ましくは、150℃〜230℃の温
度範囲、特に好ましくは180℃〜200℃の温度範囲
で行なわれ、加熱時間は、絶縁層に要求される実
用特性に応じて適宜選定される。
Heating, melting, and hardening of the powdery composition adhered to the surface of the iron core can be carried out by electrostatic dynamic dipping, electrostatic spraying,
In either case, heating is preferably carried out in a temperature range of 150°C to 230°C, particularly preferably in a temperature range of 180°C to 200°C, and the heating time is appropriately selected depending on the practical properties required of the insulating layer. Ru.

加熱装置としては、オーブン炉、遠赤外炉等の
加熱炉、高周波加熱装置等が用いられる。又、用
いられる電気鉄芯が大きな熱容量を有し、且つ、
該粉体状組成物が、速硬化性を有する場合には、
鉄芯の冷却が遅いため、高周波加熱装置等で鉄芯
を瞬時加熱して鉄芯温度を180℃〜200℃に上げ、
その後自然放冷することにより、該粉体状組成物
硬化せしめることが可能である。
As the heating device, a heating furnace such as an oven furnace or a far-infrared furnace, a high frequency heating device, etc. are used. In addition, the electric iron core used has a large heat capacity, and
When the powder composition has fast curing properties,
Since the iron core cools slowly, the iron core is instantaneously heated using a high-frequency heating device, etc. to raise the iron core temperature to 180℃~200℃,
The powder composition can then be cured by allowing it to cool naturally.

すなわち、鉄芯温度を180℃〜200℃に上げた直
後から3〜4分以内に鉄芯の温度が150℃以下に
下がらず、該粉体状組成物の165℃の熱板におけ
るゲル化時間が100秒以内の場合には、高周波加
熱装置等が瞬時加熱を行ない、その後、自然放冷
するのみで硬化可能である。
That is, the temperature of the iron core does not fall below 150°C within 3 to 4 minutes immediately after raising the iron core temperature to 180°C to 200°C, and the gelation time of the powder composition on a hot plate at 165°C is If the time is less than 100 seconds, it can be cured simply by instantaneous heating using a high-frequency heating device or the like, and then allowing it to cool naturally.

本発明により得られる、シリコーン変性エポキ
シ樹脂(A)と低融点ガラス粉体含有無機充填剤(B)を
主要構成成分とする混合物の硬化せしめられた絶
縁被覆層を有する 電気鉄芯は、巻線時の作業能率が非常に良好で
あり、又、高負荷下で500〜600℃になつても長時
間絶縁の劣化が見られないという優れた特徴を有
している。
The electric iron core has an insulating coating layer made of a hardened mixture of a silicone-modified epoxy resin (A) and an inorganic filler containing low melting point glass powder (B) as main components obtained by the present invention. It has the excellent feature that it has very good working efficiency and that the insulation does not deteriorate for a long time even at temperatures of 500 to 600°C under high load.

すなわち、本発明において用いられるシリコー
ン変性エポキシ樹脂(A)と低融点ガラス粉末含有無
機充填剤(B)を主要構成成分とする混合物は、樹脂
として、密着性、及び溶融時のフロー特性良好な
エポキシ樹脂を、良好な耐熱性を有する有機シリ
コーン中間体により一部変性したシリコーン変性
エポキシ樹脂を用いているため、得られる絶縁被
覆層は、エポキシ樹脂の特徴である密着性、良好
なフロー特性等により、その表面が平滑で、且つ
鉄芯との密着が良好であるため、絶縁被覆層の上
に巻線する際、巻線のすべりが良く、高速巻線が
可能となり、又鉄芯との密着が良好であるため、
巻線時のテンシヨンにより、絶縁被覆層のワレ、
ハガレが発生せず、巻線時の作業能率が良好であ
る。
That is, the mixture containing the silicone-modified epoxy resin (A) and the inorganic filler containing low melting point glass powder (B) as the main components used in the present invention is an epoxy resin with good adhesiveness and flow characteristics when melted. Because we use a silicone-modified epoxy resin that is partially modified with an organic silicone intermediate that has good heat resistance, the resulting insulating coating layer has good adhesion and good flow characteristics, which are the characteristics of epoxy resin. , its surface is smooth and it has good adhesion to the iron core, so when it is wound on the insulating coating layer, the winding slips easily and high-speed winding is possible, and it also has good adhesion to the iron core. is good, so
Due to the tension during winding, cracks in the insulation coating layer,
No peeling occurs, and work efficiency during winding is good.

又、該混合物により得られた絶縁被覆層は、有
機シリコーン中間体の特徴である良好な耐熱性に
より、室温から350℃近辺の温度域では長時間良
好な耐熱性を有し、又350℃近辺から500〜600℃
の温度域では、有機シリコーンが熱分解した後残
存するケイ素−酸素結合を有する無機物質、無機
粉末及び軟化溶融をはじめる低融点ガラスが一体
となりホウロウ化するため、室温から500℃〜600
℃という広範囲の温度で良好な耐熱性を有する。
すなわち、有機シリコーンが熱分解し、ケイ素−
酸素結合を有する無機物質として残存する350℃
近辺から500〜600℃の温度域では、ケイ素−酸素
結合の骨格は残存するもののこの無機物質のみ、
ないしこの無機物質と無機粉末のみでは絶縁層の
機械的強度は極めて弱いが、350℃近辺から500〜
650℃の温度域で軟化溶融する低融点ガラス粉末
が存在すればこれが、上記無機物質、無機粉末と
の結合剤として働き、これらが一体となりホウロ
ウ化してはじめて、高温での耐熱性を有するよう
になるのである。
In addition, the insulating coating layer obtained from the mixture has good heat resistance for a long time in the temperature range from room temperature to around 350°C, due to the good heat resistance that is a characteristic of organic silicone intermediates, and has good heat resistance for a long time in the temperature range from room temperature to around 350°C. From 500 to 600℃
In the temperature range of 500℃ to 600℃ from room temperature, the inorganic substance with silicon-oxygen bonds that remains after the organic silicone is thermally decomposed, the inorganic powder, and the low melting glass that begins to soften and melt become enameled.
It has good heat resistance over a wide temperature range of ℃.
In other words, organic silicone thermally decomposes and silicon-
350℃ remaining as an inorganic substance with oxygen bonds
In the temperature range of 500 to 600℃, only this inorganic substance remains, although the silicon-oxygen bond skeleton remains.
The mechanical strength of the insulating layer is extremely weak if only this inorganic substance and inorganic powder are used, but it
If there is a low-melting point glass powder that softens and melts in the temperature range of 650℃, it will act as a binder with the inorganic substance and inorganic powder, and only when these are integrated into enamel will it have heat resistance at high temperatures. It will become.

又、本発明においては、シリコーン変性エポキ
シ樹脂(A)と低融点ガラス粉末含有無機充填剤(B)を
主要構成成分とする粉体状組成物を、流動浸漬
法、ホツトスプレー法、静電流動浸漬法、静電ス
プレー法等の粉体塗装法により特定の条件にて、
電気鉄芯表面に付着させ、これを加熱により溶
融、硬化させて絶縁被覆層を形成するが、本発明
の製造方法によると、簡単に絶縁処理が行なえ、
又生産性が良いため製品コストを安く出来るとい
う粉体塗装法の長所は何ら減殺されず、むしろ助
長される。
In addition, in the present invention, a powder composition containing a silicone-modified epoxy resin (A) and an inorganic filler containing low melting point glass powder (B) as main components is prepared by a fluidized dipping method, a hot spray method, or an electrostatic movement method. Under specific conditions using powder coating methods such as dipping and electrostatic spraying,
The insulating coating layer is formed by attaching it to the surface of the electric iron core and melting and hardening it by heating. According to the manufacturing method of the present invention, the insulating treatment can be easily performed.
Moreover, the advantage of powder coating method, which is high productivity and low product cost, is not diminished in any way, but rather is enhanced.

すなわち、粉体塗装法は、溶剤を用いワニスの
形で絶縁被覆を行なう方法に較べ、有害な有機溶
剤を用いないため、衛生上及び安全上好ましく、
又、絶縁層に溶剤等の揮発物がほとんど存在しな
いため、高温時にも絶縁層の発泡等の劣下が生じ
にくく、すりすぐれた耐熱性を有する絶縁層が得
られるため好ましい。
In other words, the powder coating method is preferable in terms of hygiene and safety because it does not use harmful organic solvents, compared to the method of applying insulation coating in the form of varnish using a solvent.
Further, since volatile matters such as solvents are hardly present in the insulating layer, deterioration such as foaming of the insulating layer is less likely to occur even at high temperatures, and an insulating layer having excellent heat resistance can be obtained, which is preferable.

以下実施例によつて本発明を説明する。 The present invention will be explained below with reference to Examples.

製造例 1 粉体状組成物を次のように製造した。Manufacturing example 1 A powder composition was produced as follows.

処 方 シリコーン変性エポキシ樹脂〔メトキシ基含有シ
リコーン中間体によりビスフエノール型エポキシ
樹脂を25重量%変性したもの。融点70℃ エポキ
シ当量1300〜1350〕 45部 低融点ガラス粉末(融点410゜〜430℃) 30部 シリカ粉末 15部 アルミナ粉末 9部 無機顔料(ベンガラ) 1部 ジシアンジアミド(エピキユアー108FFシエル化
学(株)製) 3部 上記混合物をロールして混練した後、粉砕機で
粉砕し、ふるいにて粗粒を除去し、粉粒10μから
粒径150μの範囲に入る粒子の含有率が93重量%
の粒度分布を有する低融点ガラス粉末含有シリコ
ーン変性エポキシ樹脂粉体状組成物を得た。
Prescription Silicone-modified epoxy resin [25% by weight of bisphenol-type epoxy resin modified with a methoxy group-containing silicone intermediate. Melting point: 70°C Epoxy equivalent: 1300-1350〕 45 parts Low melting point glass powder (melting point: 410°-430°C) 30 parts Silica powder 15 parts Alumina powder 9 parts Inorganic pigment (red iron) 1 part Dicyandiamide (Epicure 108FF manufactured by Ciel Chemical Co., Ltd.) ) 3 parts After rolling and kneading the above mixture, pulverizing it with a pulverizer and removing coarse particles with a sieve, the content of particles with a particle size in the range of 10μ to 150μ is 93% by weight.
A silicone-modified epoxy resin powder composition containing low melting point glass powder was obtained having a particle size distribution of .

製造例 2 粉体状組成物を次のように製造した。Manufacturing example 2 A powder composition was produced as follows.

処 方 シリコーン変性エポキシ樹脂〔水酸基含有シリコ
ーン中間体によりビスフエノール型エポキシ樹脂
とノボラツク型エポキシ樹脂の混合物を35重量%
変性したもの。融点58℃、エポキシ当量850〜
870〕 35部 低融点ガラス粉末(融点450゜〜470℃) 25部 シリカ粉末 34部 アルミナ粉末 5部 無機顔料(ベンガラ) 1部 イミダゾール(2−フエニルイミダゾール四国化
成(株)製) 0.7部 上記混合物を、二軸のスクリユーエクストルー
ダーにて混練した後、粉砕機で粉砕し、その後ふ
るいにて粗粒を除去し、粒径10μから150μの範囲
に入る粒子の含有率が95重量%の粒度分布を有す
る低融点ガラス粉末含有シリコーン変性エポキシ
樹脂粉体状組成物を得た。
Prescription: Silicone-modified epoxy resin [35% by weight of a mixture of bisphenol-type epoxy resin and novolac-type epoxy resin using a hydroxyl group-containing silicone intermediate.
degenerated. Melting point 58℃, epoxy equivalent 850~
870] 35 parts low melting point glass powder (melting point 450° to 470°C) 25 parts silica powder 34 parts alumina powder 5 parts inorganic pigment (red iron) 1 part imidazole (2-phenylimidazole manufactured by Shikoku Kasei Co., Ltd.) 0.7 parts Above The mixture was kneaded using a twin-screw extruder, pulverized using a pulverizer, and coarse particles were removed using a sieve. A silicone-modified epoxy resin powder composition containing a low melting point glass powder having a particle size distribution was obtained.

製造例 3 粉体状組成物を次のように製造した。Manufacturing example 3 A powder composition was produced as follows.

処 方 ビスフエノール型エポキシ樹脂(融点96℃、エポ
キシ当量900〜950) 30部 ノボラツク型エポキシ樹脂(融点80℃、エポキシ
当量170〜180) 20部 炭酸カルシウム粉末 49部 無機顔料(ベンガラ) 1部 イミダゾール(2−フエニルイミダゾール、四国
化成(株)製) 2部 上記混合物をブスコニーダーで混練した後、粉
砕機にて粉砕し、ふるいに粗粒を除去し、粒径
10μから150μの範囲に入る粒子の含有率が93重量
%の粒度分布を有する低融点ガラス粉末含有シリ
コーン変性エポキシ樹脂粉体状組成物を得た。
Prescription Bisphenol type epoxy resin (melting point 96℃, epoxy equivalent weight 900-950) 30 parts Novolac type epoxy resin (melting point 80℃, epoxy equivalent weight 170-180) 20 parts calcium carbonate powder 49 parts inorganic pigment (red iron) 1 part imidazole (2-Phenylimidazole, manufactured by Shikoku Kasei Co., Ltd.) 2 parts After kneading the above mixture in a Busco kneader, pulverize it in a pulverizer, remove coarse particles with a sieve, and
A silicone-modified epoxy resin powder composition containing low melting point glass powder was obtained, having a particle size distribution in which the content of particles in the range of 10μ to 150μ was 93% by weight.

製造例 4 粉体状組成物を次のように製造した。Manufacturing example 4 A powder composition was produced as follows.

処 方 シリコーン変性エポキシ樹脂〔メトキシ基含有シ
リコーン中間体によりビスフエノール型エポキシ
樹脂とノボラツク型エポキシ樹脂の混合物を40重
量%変性したもの。融点62℃、エポキシ当量900
〜940〕 40部 高融点ガラス粉末(融点550℃〜580℃) 27部 シリカ粉末 16部 アルミナ粉末 10部 無機顔料(ベンガラ) 1部 イミダゾール(2−フエニルイミダゾール、四国
化成(株)製) 1部 上記混合物をブスコニーダーで混練したのち、
粉砕機で粉砕し、ふるいにて粗粒を除去し、粒径
10μから粒径150μの範囲に入る粒子の含有率が95
重量%の粒度分布を有する、高融点ガラス粉末含
有シリコーン変性エポキシ樹脂粉体状組成物を得
た。
Prescription Silicone-modified epoxy resin [40% by weight of a mixture of bisphenol-type epoxy resin and novolak-type epoxy resin modified with a methoxy group-containing silicone intermediate. Melting point 62℃, epoxy equivalent 900
~940] 40 parts high melting point glass powder (melting point 550°C to 580°C) 27 parts silica powder 16 parts alumina powder 10 parts inorganic pigment (red iron) 1 part imidazole (2-phenylimidazole, manufactured by Shikoku Kasei Co., Ltd.) 1 After kneading the above mixture in a Busco kneader,
Grind with a grinder, remove coarse particles with a sieve, and check the particle size.
The content of particles in the range of 10μ to 150μ is 95%.
A silicone-modified epoxy resin powder composition containing high melting point glass powder was obtained having a particle size distribution of % by weight.

実施例 1 製造例1にて得られた粉体状組成物により、流
動浸漬法にて、電気鉄芯表面の絶縁処理を行ない
平滑性良好な絶縁層を得た。
Example 1 The powder composition obtained in Production Example 1 was used to insulate the surface of an electric iron core by a fluidized dipping method to obtain an insulating layer with good smoothness.

その塗装条件、付着膜厚は次の通りである。 The coating conditions and deposited film thickness are as follows.

電気鉄芯の予熱はオーブン炉で200℃、30分間
行ない、上記の粉体状組成物を仕込だ流動浸漬層
に3秒間浸漬し、鉄芯表面に粉体状組成物を融着
させた。
The electric iron core was preheated in an oven at 200° C. for 30 minutes, and was immersed for 3 seconds in a fluidized immersion bed containing the above powder composition to fuse the powder composition to the surface of the iron core.

次いでこれをオーブン炉で200℃、20分間加熱
し、粉体状組成物を溶融硬化させ、鉄芯表面に
300μの厚さの絶縁層を形成させた。
Next, this is heated in an oven at 200℃ for 20 minutes to melt and harden the powder composition, and it is applied to the surface of the iron core.
An insulating layer with a thickness of 300μ was formed.

この絶縁層の上に高速にて巻線を施こし、その
後、他の部品とアツセンブリして回転電機を作成
した。
Winding was performed on this insulating layer at high speed, and then assembled with other parts to create a rotating electrical machine.

粉体塗装にて得られた絶縁層は平滑であつたた
め、巻線のすべりが良好で、高速巻線が可能であ
り、又巻線時絶縁層のワレ、ハガレは全く見られ
ず、巻線時の作業能率は非常に良好であつた。
Since the insulating layer obtained by powder coating was smooth, the winding had good sliding and high-speed winding was possible, and there was no cracking or peeling of the insulating layer during winding. The work efficiency was very good.

回転電機を作動させ、その後回転軸を動かない
ように固定して、いわゆるロツク状態に保ち、約
2〜3分で回転電機の内部温度を500℃〜600℃に
上げ、そのままの状態で100時間保持したが、絶
縁不良は全く発生しなかつた。
The rotating electrical machine is operated, and then the rotating shaft is fixed so that it does not move, keeping it in a so-called locked state, and the internal temperature of the rotating electrical machine is raised to 500°C to 600°C in about 2 to 3 minutes, and it is kept in that state for 100 hours. Although the temperature was maintained, no insulation failure occurred at all.

その後回転電機を分解し、絶縁層の状態を調べ
た所、ホウロウ化して強固な塗膜となつていた。
After disassembling the rotating electric machine and examining the condition of the insulating layer, it was found that it had become enameled and had become a strong coating.

その状況は第4図に示すとおりであつた。 The situation was as shown in Figure 4.

実施例 2 製造例2にて得られた粉体状組成物により、ホ
ツトスプレー法にて電気鉄芯の絶縁処理を行ない
平滑性良好な絶縁層を得た。
Example 2 Using the powder composition obtained in Production Example 2, an electric iron core was insulated by a hot spray method to obtain an insulating layer with good smoothness.

その塗装条件、付着膜厚は次の通りである。 The coating conditions and deposited film thickness are as follows.

電気鉄芯の予熱は高周波加熱装置で鉄芯の温度
が230℃になるまで行ない、鉄芯を3秒に1回の
割合で回転させながら鉄芯表面にスプレー状にし
た粉体をノズルから10秒間吹き付け、鉄芯表面に
粉体状組成物を融着させた。
The electric iron core is preheated using a high-frequency heating device until the temperature of the iron core reaches 230℃, and while the iron core is rotated once every 3 seconds, sprayed powder is sprayed onto the surface of the iron core from a nozzle for 10 minutes. The powder composition was sprayed for seconds to fuse the powder composition to the surface of the iron core.

その後これを加熱せず、自然放冷することによ
つて粉体状組成物を溶融、硬化させ、鉄芯表面に
350μの厚さの絶縁層を形成させた。
After that, the powder composition is melted and hardened by allowing it to cool naturally without heating, and it forms on the surface of the iron core.
An insulating layer with a thickness of 350μ was formed.

実施例1と同様にモーターを組み立て、同様の
方法でテストした結果、回転電機の内部温度を
500℃〜600℃に上げた状態で100時間保持しても
絶縁不良は全く発生せず、その後回転電機を分解
絶縁層の状態を調べた所、ホウロウ化して強固な
塗膜となつていた。
As a result of assembling the motor in the same manner as in Example 1 and testing it in the same manner, the internal temperature of the rotating electrical machine was
Even when the temperature was raised to 500°C to 600°C and held for 100 hours, no insulation defects occurred at all, and when the rotating electric machine was subsequently disassembled and the condition of the insulating layer was examined, it was found that it had become enameled and had become a strong coating film.

その状況は第4図と同様であつた。 The situation was similar to that shown in Figure 4.

実施例 3 製造例1にて得られた粉体状組成物により、静
電流動浸漬法にて電気鉄芯表面の絶縁処理を行な
い平滑性良好な絶縁電気鉄芯表面の層を得た。
Example 3 The powder composition obtained in Production Example 1 was used to insulate the surface of an electric iron core by an electrostatic dynamic dipping method to obtain a layer on the surface of an insulated electric iron core with good smoothness.

上記の粉体状組成物を静電流動浸漬槽に仕込ん
で、0.5Kg/cm2の圧縮空気により粉体状組成物を
流動状態とし、静電流動浸漬槽内にある高電圧電
極に50KVの高電圧を印加し、上記の粉体状組成
物の粒子を帯電させた。
The above powder composition was charged into an electrostatic dynamic dipping bath, and the powder composition was brought into a fluid state with compressed air of 0.5 Kg/ cm2 , and 50 KV was applied to the high voltage electrode in the electrostatic dynamic dipping bath. A high voltage was applied to charge the particles of the above powder composition.

その後接地された電気鉄芯を50秒間、静電流動
浸漬槽上部に保持して鉄芯表面に粉体状組成物を
付着させた。
Thereafter, the grounded electric iron core was held above the electrostatic dynamic dipping tank for 50 seconds to adhere the powder composition to the surface of the iron core.

次いでこれをオーブン炉で200℃、20分間加熱
し、粉体状組成物を溶融、硬化させ、鉄芯表面に
300μの厚さの絶縁層を形成させた。
This is then heated in an oven at 200°C for 20 minutes to melt and harden the powder composition, which is then applied to the surface of the iron core.
An insulating layer with a thickness of 300μ was formed.

この絶縁層の上に高速にて巻線を施こし、その
後、他の部品とアツセンブリして回転電機を作成
した。
Winding was performed on this insulating layer at high speed, and then assembled with other parts to create a rotating electrical machine.

粉体塗装にて得られた絶縁層は平滑であつたた
め、巻線のすべりが良好で、高速巻線が可能であ
り、又巻線時絶縁層のワレ、ハガレは全く見られ
ず、巻線時の作業性は非常に良好であつた。
Since the insulating layer obtained by powder coating was smooth, the winding had good sliding and high-speed winding was possible, and there was no cracking or peeling of the insulating layer during winding. The workability was very good.

回転電機を作動させ、その後回転軸を動かない
ように固定して、いわゆるロツク状態に保ち、約
2〜3分で回転電機の内部温度を500℃〜600℃に
上げそのままの状態で100時間保持したが、絶縁
不良は全く発生しなかつた。
The rotating electrical machine is operated, and then the rotating shaft is fixed so that it does not move, keeping it in a so-called locked state, and the internal temperature of the rotating electrical machine is raised to 500°C to 600°C in about 2 to 3 minutes and maintained in that state for 100 hours. However, no insulation defects occurred at all.

その後回転電機を分解し、絶縁層の状態を調べ
た所、ホウロウ化して強固な塗膜となつていた。
After disassembling the rotating electric machine and examining the condition of the insulating layer, it was found that it had become enameled and had become a strong coating.

その状況は第4図に示すとおりであつた。 The situation was as shown in Figure 4.

実施例 4 製造例2にて得られた粉体状組成物により、静
電スプレー法にて電気鉄芯表面の絶縁処理を行な
い平滑性良好な絶縁層を得た。その塗装条件、付
着膜厚は次の通りである。
Example 4 The powder composition obtained in Production Example 2 was used to insulate the surface of an electric iron core by electrostatic spraying to obtain an insulating layer with good smoothness. The coating conditions and deposited film thickness are as follows.

上記粉体状組成物を静電スプレー槽に仕込み、
0.5Kg/cm2の圧縮空気により流動状態とし、槽上
部にあるスプレーノズルから吹き付ける際、スプ
レーノズル先端にある高電圧電極に70KVの高電
圧を印加し、上記の粉体状組成物粒子を帯電させ
た。
The above powder composition is charged into an electrostatic spray tank,
Compressed air of 0.5Kg/ cm2 is brought into a fluid state, and when spraying from the spray nozzle at the top of the tank, a high voltage of 70KV is applied to the high voltage electrode at the tip of the spray nozzle to charge the powder composition particles. I let it happen.

その後、接地された電気鉄芯を70秒間静電スプ
レー槽内に保持し、鉄芯表面に粉体を付着させ
た。
Thereafter, the grounded electric iron core was held in an electrostatic spray tank for 70 seconds to allow powder to adhere to the surface of the iron core.

その後、これを高周波加熱装置にて60秒間で鉄
芯温度を230℃に上昇させ、その後これを加熱せ
ず自然放冷することにより粉体状組成物を溶融、
硬化させスロツト表面に350μの厚さの絶縁層を
形成させた。
After that, the temperature of the iron core was raised to 230°C in 60 seconds using a high-frequency heating device, and then the powder composition was melted by allowing it to cool naturally without heating.
It was cured to form an insulating layer with a thickness of 350μ on the slot surface.

実施例1と同様にモーターを組み立て、同様の
方法でテストした結果、回転電機の内部温度を
500℃〜600℃に上げた状態で100時間保持しても
絶縁不良は全く発生せず、その後回転電機を分解
し絶縁層の状態を調べた所、ホウロウ化して強固
な塗膜となつていた。
As a result of assembling the motor in the same manner as in Example 1 and testing it in the same manner, the internal temperature of the rotating electrical machine was
Even when the temperature was raised to 500°C to 600°C and held for 100 hours, no insulation failure occurred at all, and when the rotating electric machine was then disassembled and the condition of the insulating layer was examined, it was found that it had become enameled and had become a strong coating film. .

その状況は第4図と同様であつた。 The situation was similar to that shown in Figure 4.

比較例 1 製造例3にて得られた粉体状組成物を用い、実
施例1と全く同一条件にて粉体塗装を行なつた。
Comparative Example 1 Using the powder composition obtained in Production Example 3, powder coating was performed under exactly the same conditions as in Example 1.

このようにして得られた鉄芯表面の絶縁層の上
に巻線を施こし、その後他の部品とアツセンブリ
して回転電機を作成した。
Windings were formed on the insulating layer on the surface of the iron core obtained in this way, and then assembled with other parts to create a rotating electric machine.

得られた絶縁層は、平滑で巻線のすべりは良好
であつたが、高速で巻線すると絶縁層が硬すぎる
ため、ワレ、ハガレが発生したので巻線時絶縁層
にかかる衝撃力を弱めるため極めて低速で巻線す
る必要があり、巻線時の作業能率が極めて悪かつ
た。
The resulting insulating layer was smooth and the winding slid smoothly, but when winding was done at high speeds, the insulating layer was too hard and cracked and peeled, so the impact force applied to the insulating layer during winding was weakened. Therefore, it was necessary to wind the wire at an extremely low speed, and the work efficiency during winding was extremely poor.

又回転電機を作動させその後回転軸を動かない
ように固定していわゆるロツク状態に保ち、回転
電機内部温度を急速に上昇させた所、約3分後
(回転電機の内部温度約500℃)に絶縁不良を起こ
した。
In addition, when a rotating electric machine was started, the rotating shaft was fixed so that it would not move, and the rotating electric machine was kept in a so-called locked state, and the internal temperature of the rotating electric machine was rapidly raised, about 3 minutes later (the internal temperature of the rotating electric machine was about 500℃). Insulation failure occurred.

その後回転電機を分解し、絶縁層の状態を調べ
たところ、灰分の粉が残つているのみであつた。
After disassembling the rotating electric machine and examining the condition of the insulating layer, only ash powder remained.

又巻線がスロツトに直接触れて、絶縁処理が不
完全になつているところがいたるところに点在し
ていた。
In addition, there were many places where the windings were in direct contact with the slots, resulting in incomplete insulation.

その状態は第3図に示すとおりであつた。 The condition was as shown in Figure 3.

比較例 2 製造例4にて得られた粉体塗料を用い、実施例
3と全く同一条件にて粉体塗装を行なつた。
Comparative Example 2 Using the powder coating obtained in Production Example 4, powder coating was performed under exactly the same conditions as in Example 3.

このようにして得られた鉄芯表面の絶縁層の上
に巻線を施こし、その後他の部品とアツセンブリ
して回転電機を作成した。
Winding wires were formed on the insulating layer on the surface of the iron core obtained in this way, and then assembled with other parts to create a rotating electric machine.

粉体塗装にて得られた絶縁層は平滑であつたた
め、巻線のすべりが良好で高速巻線が可能であ
り、又巻線時、絶縁層のワレ、ハガレは全く見ら
れず巻線時の作業性は非常に良好であつた。
Since the insulating layer obtained by powder coating was smooth, the winding had good sliding properties and high-speed winding was possible, and there was no cracking or peeling of the insulating layer during winding. The workability was very good.

しかし、回転電機を作動させその後回転軸を動
かないように固定していわゆるロツク状態に保
ち、回転電機内部温度を急速に上昇させた所、約
30分後(回転電機の内部温度約500℃)に絶縁不
良を起こした。
However, when a rotating electric machine is started and the rotating shaft is fixed so that it does not move and kept in a so-called locked state, the internal temperature of the rotating electric machine rapidly rises.
After 30 minutes (the internal temperature of the rotating electric machine was about 500℃), an insulation failure occurred.

その後回転電機を分解し、絶縁層の状態を調べ
たところ、灰分の粉が残つているのみであつた。
After disassembling the rotating electric machine and examining the condition of the insulating layer, only ash powder remained.

又巻線がスロツトに直接触れて絶縁処理が不完
全になつているところがいたるところに点在して
いた。
In addition, there were many places where the windings were in direct contact with the slots, resulting in incomplete insulation.

その状況は第3図に示すとおりであつた。 The situation was as shown in Figure 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はインシユレーター法による回転電機の
電気鉄芯の絶縁処理状況を示す図である。第2図
はエポキシ樹脂粉体塗料を加熱溶融させることに
より形成された絶縁処理状況を示す図である。第
3図は比較例1、2の耐熱性試験後の状況を示す
図である。第4図は本発明の実施による絶縁処理
を行ない、これの耐熱性試験後の状況を示す図で
ある。第5図は本発明に用いる電気鉄芯の一例を
示す概略図である。 図中、1は電気鉄芯、2はシヤフト、3は巻線
されている銅線、4はインシユレーター、5はエ
ポキシ粉体塗料を加熱、溶融させることにより形
成された絶縁層、6は灰状の粉、7はホウロウ化
した塗膜を示す。
FIG. 1 is a diagram showing the state of insulation treatment of an electric iron core of a rotating electrical machine using the insulator method. FIG. 2 is a diagram showing an insulation treatment state formed by heating and melting an epoxy resin powder coating. FIG. 3 is a diagram showing the situation after the heat resistance test of Comparative Examples 1 and 2. FIG. 4 is a diagram showing the situation after a heat resistance test after insulation treatment according to the present invention. FIG. 5 is a schematic diagram showing an example of an electric iron core used in the present invention. In the figure, 1 is an electric iron core, 2 is a shaft, 3 is a wound copper wire, 4 is an insulator, 5 is an insulating layer formed by heating and melting epoxy powder paint, and 6 is an insulating layer formed by heating and melting epoxy powder paint. Ashy powder, 7 indicates an enameled coating film.

Claims (1)

【特許請求の範囲】 1 電気鉄芯の表面に水酸基を含有するエポキシ
樹脂と反応しうる官能基を有する有機シリコーン
中間体によりエポキシ樹脂を10〜50重量%の範囲
で変性した融点が40℃以上、エポキシ当量が400
〜2000のシリコーン変性エポキシ樹脂(A)と400℃
〜500℃の融点を有する低融点ガラスを10重量%
以上含む無機充填剤(B)を主要構成成分とし、重量
比で(A):(B)=20:80〜60:40からなる混合物の硬
化せしめられた被覆層を有することを特徴とする
電気鉄芯。 2 水酸基を含有するエポキシ樹脂と反応しうる
官能基を有する有機シリコーン中間体によりエポ
キシ樹脂を10〜50重量%の範囲で変性した融点が
40℃以上、エポキシ当量が400〜2000のシリコー
ン変性エポキシ樹脂(A)と400℃〜500℃の融点を有
する低融点ガラスを10%以上含み、平均粒径が
1μから60μの無機充填剤(B)を主要構成成分とし、
重量比で(A):(B)=20:80〜60:40からなり、且つ
粒径10μ〜150μの範囲に入る粒子の含有率が90重
量%以上である粉体状組成物を電気鉄芯の表面に
付着せしめた後、これを加熱により溶融、硬化さ
せて絶縁被覆を形成することを特徴とする高耐熱
絶縁被覆を有する電気鉄芯の製造方法。 3 粉体状組成物の付着方法が、流動浸漬法また
はホツトスプレー法である特許請求の範囲第2項
記載の電気鉄芯の製造方法。 4 粉体状組成物の付着方法が静電流動浸漬法ま
たは静電スプレー法である特許請求の範囲第2項
記載の電気鉄芯の製造方法。
[Scope of Claims] 1. An epoxy resin modified with an organic silicone intermediate having a functional group capable of reacting with an epoxy resin containing a hydroxyl group on the surface of an electric iron core in a range of 10 to 50% by weight and having a melting point of 40°C or higher. , the epoxy equivalent is 400
~2000 silicone-modified epoxy resin (A) and 400℃
10% by weight low melting glass with melting point of ~500℃
An electrical appliance characterized by having a coating layer made of a hardened mixture of (A):(B)=20:80 to 60:40 in a weight ratio of (A):(B)=20:80 to 60:40, the main component being an inorganic filler (B) containing the above. Iron core. 2 A melting point obtained by modifying an epoxy resin in a range of 10 to 50% by weight with an organosilicone intermediate having a functional group that can react with an epoxy resin containing a hydroxyl group.
40℃ or higher, contains silicone-modified epoxy resin (A) with an epoxy equivalent of 400 to 2000 and 10% or more of low melting point glass with a melting point of 400℃ to 500℃, and has an average particle size of
The main component is an inorganic filler (B) of 1μ to 60μ,
A powder composition having a weight ratio of (A):(B) = 20:80 to 60:40 and containing 90% by weight or more of particles with a particle size of 10μ to 150μ is used as an electric iron. A method for manufacturing an electric iron core having a highly heat-resistant insulation coating, which comprises adhering it to the surface of the core and then melting and hardening it by heating to form an insulation coating. 3. The method for manufacturing an electric iron core according to claim 2, wherein the method for applying the powder composition is a fluidized dipping method or a hot spray method. 4. The method for manufacturing an electric iron core according to claim 2, wherein the method for applying the powder composition is an electrostatic dynamic dipping method or an electrostatic spray method.
JP48083A 1983-01-07 1983-01-07 Electric core with high heat-resistant insulating coating and manufacture thereof Granted JPS59125606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48083A JPS59125606A (en) 1983-01-07 1983-01-07 Electric core with high heat-resistant insulating coating and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48083A JPS59125606A (en) 1983-01-07 1983-01-07 Electric core with high heat-resistant insulating coating and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59125606A JPS59125606A (en) 1984-07-20
JPS6334611B2 true JPS6334611B2 (en) 1988-07-11

Family

ID=11474931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48083A Granted JPS59125606A (en) 1983-01-07 1983-01-07 Electric core with high heat-resistant insulating coating and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59125606A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10257727A (en) * 1997-03-13 1998-09-25 Sankyo Seiki Mfg Co Ltd Powder coating method, and manufacturing method of armature core
JP3620404B2 (en) * 1999-12-14 2005-02-16 株式会社村田製作所 Method for forming glass film, method for forming metal film, and method for manufacturing electronic component
JP4665319B2 (en) * 2001-02-26 2011-04-06 住友ベークライト株式会社 One-pack type epoxy resin composition
JP4576732B2 (en) * 2001-03-23 2010-11-10 住友ベークライト株式会社 One-part epoxy resin composition
JP2007012969A (en) * 2005-07-01 2007-01-18 Shinji Kudo Laminated coil and method for manufacturing the same
JP6807022B2 (en) * 2016-12-28 2021-01-06 日立金属株式会社 Manufacturing method of resin-coated magnetic core and resin-coated magnetic core
JP2021005734A (en) * 2020-10-12 2021-01-14 日立金属株式会社 Magnetic core with resin coating

Also Published As

Publication number Publication date
JPS59125606A (en) 1984-07-20

Similar Documents

Publication Publication Date Title
US4040993A (en) Low dissipation factor electrostatic epoxy wire coating powder
JPS585903A (en) Heat dissipating insulator used for electric coil unit
JP2003518906A (en) Method for producing high quality insulator of electric conductor or conductor bundle of rotary electric machine using spray sintering method
JP2003518907A (en) Method for high-quality insulation of rotating electrical machine conductors or conductor bundles by fluidized bed sintering
JPS6334611B2 (en)
JP2003520664A (en) Method for producing conductor insulator by powder coating
JP2001512888A (en) Partial discharge resistant coating for enameled wire
JPS6260425B2 (en)
JP2013203764A (en) Epoxy resin powder coating material and article coated by using the same
JPH0313684B2 (en)
JP5832402B2 (en) Insulating film, stator coil and gas insulated switchgear
JPH08311157A (en) Curable electroconductive composition
JPH10180184A (en) Coating method of article by thermosetting powdery coating material and the article
JPS61232504A (en) Powder composition for insulation cover
JPS626594B2 (en)
JPH0136509B2 (en)
JPS59189173A (en) Heat-resistant electrical insulating paint composition
JPWO2020059689A1 (en) Electrodeposition paint and insulating coating
JPS6358192B2 (en)
JP4005183B2 (en) Powder coating and film forming method using the powder coating
WO2019044886A1 (en) Composition for powder coating materials and coated article
JPS6028464A (en) Highly heat-resistant electrical insulating powder coating composition
WO2022201279A1 (en) Semiconductive member, stator coil, and rotating electric machine
JPS61151274A (en) Powder coating
JP5434715B2 (en) Epoxy resin powder coating