JPS6334205B2 - - Google Patents

Info

Publication number
JPS6334205B2
JPS6334205B2 JP54167310A JP16731079A JPS6334205B2 JP S6334205 B2 JPS6334205 B2 JP S6334205B2 JP 54167310 A JP54167310 A JP 54167310A JP 16731079 A JP16731079 A JP 16731079A JP S6334205 B2 JPS6334205 B2 JP S6334205B2
Authority
JP
Japan
Prior art keywords
less
point
temperature
steel
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54167310A
Other languages
Japanese (ja)
Other versions
JPS5690921A (en
Inventor
Chiaki Shiga
Taneo Hatomura
Akio Kamata
Nobuo Oohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16731079A priority Critical patent/JPS5690921A/en
Publication of JPS5690921A publication Critical patent/JPS5690921A/en
Publication of JPS6334205B2 publication Critical patent/JPS6334205B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、靱性と耐水素誘起割れ特性の優れ
た低温用鋼の製造法に関するものである。 最近造船業界ではLNG、LPGなど液化石油ガ
ス類の運搬船および貯蔵槽の建造が活発化してお
り、これらのタンク、二次防壁および内構部材に
用いられる低温用鋼板は、低温における優れた靱
性が要求されている。 また天然ガス用大口径ラインパイプには使用環
境の寒冷地化と高圧操業化のため、厳しい低温靱
性の要請がとくに厚肉材についてもますます強ま
る傾向にある。なかでも不安定延性破壊の伝播停
止特性を向上させるため、シヤルピー衝撃吸収エ
ネルギーの高くかつバツテル、トロツプウエイト
テイアーテスト(Drap Weight Tear Test;以
下BDWTTと略す)の破面遷移温度、(Fracture
Appearance Transition Temperature以下
FATTと略す)特性の優れたパイプ用鋼板が求
められている。 とくに最近、シヤルピー衝撃吸収エネルギー規
格は設計温度でなくして、延性破面が100%を示
す最も低い温度で規定され、その衝撃吸収エネル
ギー(Cv100と略す)が高くなつているが、一般
に広くパイプ用鋼板として用いられている制御圧
延材はセパレーシヨンが発生するため100%延性
破面を示してもその吸収エネルギーは飽和しない
ためCv100の値は小くなり、要求規格を容易に満
たすことができない。 また一方、石油や天然ガスのパイプラインなど
では腐食による材料の脆化が大きな問題になつて
いる。それは原油や天然ガス中には硫化水素を含
む場合が多く、これに起因して板厚方向に連続的
につながつた形態の水素誘起割れが起こりパイプ
の破壊につながるためである。 パイプ用鋼板の製造に際してはコスト低減のた
め大型鋼塊および連鋳スラブを用いるのが今日で
は通常であり、これらの造塊の際中心部で凝固速
度が遅いためMn、Pを主体とする偏析が生じて
いるため、圧延後にマルテンサイトおよびベーナ
イトからなるバンド状の粗い組織が現れる。この
バンド状組織は、耐水素誘起割れ特性に悪影響を
与えるばかりか、靱性をも劣化させるのでその対
策に困つていたのも実状である。その解決策の一
つとしてQT熱処理が考えられるが、BDWTT特
性を、セパレーシヨンの出る制御圧延材なみに出
すにはNi等の高価な成分を多く必要とするし、
熱処理工程でも単なる焼入れ焼戻しでは不十分
で、焼入れを2回くり返して焼戻すという複雑な
熱処理を行なわなければならず、経済面で非常に
不利であつた。 この発明は上述したような低温用鋼の使途に適
合すべくCv100と耐水素誘起割れ特性そして
BDWTT特性が同時に優れた鋼板を大型鋼塊も
しくは連鋳スラブでもつて低コストで製造する方
法を見出したものである。 すなわち、 C:0.02〜0.2wt%、 Si:0.05〜0.50wt%、 Mn:0.5〜2.0wt%、 Al:0.005〜0.1wt%及び Nb:0.01〜0.08wt%を、 S:0.006wt%以下 にて含有し、残部Fe及び不可避的不純物よりな
る鋼スラブを、900〜1200℃の温度域にて加熱し
て圧延し、 引き続き900℃以下の未再結晶オーステナイト
域、又はオーステナイト−フエライト2相域で、
減面率40%以上の累積圧下を与えてから一たん
Ar変態点以下に冷却し、その後Ac1点〜Ac3点の
温度域に再加熱し、ついで水冷処理を施し、 しかるのちAc1点以下の温度で焼戻し処理を行
う ことを特徴とする、靱性と耐水素誘起割れ特性の
優れた低温用鋼の製造法。(第1発明) C:0.02〜0.2wt%、 Si:0.05〜0.50wt%、 Mn:0.5〜2.0wt%、 Al:0.005〜0.1wt%及び Nb:0.01〜0.08wt%を、 S:0.006wt%以下 にて含有し、さらに Ti:0.003〜0.04wt%、 Ni:1.0wt%以下、 Mo:0.3wt%以下、 Cu:0.5wt%以下、 V:0.1wt%以下、 Cr:0.4wt%以下及び B:0.003wt%以下 よりなる群の中から選ばれる何れか1種または2
種以上を含有し、残部Fe及び不可避的不純物よ
りなる鋼スラブを、900〜1200℃の温度域にて加
熱して圧延し、 引き続き900℃以下の未再結晶オーステナイト
域、又はオーステナイト−フエライト2相域で、
減面率40%以上の累積圧下を与えてから一たん
Ar変態点以下に冷却し、その後Ac1点〜Ac3点の
温度域に再加熱し、ついで水冷処理を施し、 しかるのちAc1点以下の温度で焼戻し処理を行
う ことを特徴とする、靱性と耐水素誘起割れ特性の
優れた低温用鋼の製造法。(第2発明) C:0.02〜0.2wt%、 Si:0.05〜0.50wt%、 Mn:0.5〜2.0wt%、 Al:0.005〜0.1wt%及び Nb:0.01〜0.08wt%を、 S:0.006wt%以下 にて含有し、さらに Ti:0.003〜0.04wt%、 Ni:1.0wt%以下、 Mo:0.3wt%以下、 Cu:0.5wt%以下、 V:0.1wt%以下、 Cr:0.4wt%以下及び B:0.003wt%以下 よりなる群の中から選ばれる何れか1種または2
種以上、並びに Ca:0.001〜0.1wt%、 REM:0.001〜0.1wt% よりなる群の中の1種又は2種を含有し、残部
Fe及び不可避的不純物よりなる鋼スラブを、900
〜1200℃の温度域にて加熱して圧延し、 引き続き900℃以下の未再結晶オーステナイト
域、又はオーステナイト−フエライト2相域で、
減面率40%以上の累積圧下を与えてから一たん
Ar変態点以下に冷却し、その後Ac1点〜Ac3点の
温度域に再加熱し、ついで水冷処理を施し、 しかるのちAc1点以下の温度で焼戻し処理を行
う ことを特徴とする、靱性と耐水素誘起割れ特性の
優れた低温用鋼の製造法。(第3発明) 一般に鋼板の組織を細粒にすることは、その衝
撃特性すなわち破面遷移温度および吸収エネルギ
ーを同時に向上させ、なおかつ強度を増加させる
効果があることは公知のことであるが、制御圧延
で900℃以下の圧延量を増して細粒化を計ると、
同時に圧延集合組織の発達を促し、その結果セパ
レーシヨンの発生および異方性の強化が起る。そ
のため圧延に直角な方向の衝撃吸収エネルギーが
極度に低下する。 そこで制御圧延で得られた細粒組織をより微細
化して、シヤルビー衝撃吸収エネルギー、特に圧
延に直角な方向の吸収エネルギーの向上策を考え
たところ、圧延後再びAc1点とAc3点の中間温度
に加熱し、その後水中に投入して急冷し、次いで
Ac1変態点以下で焼戻すと、Cv100吸収エネルギ
ーばかりでなくBDWTT特性および耐水素誘起
割れ特性が同時に向上するとの知見を得た。 この発明の目的に適う低温用鋼を得るには、ま
ずその化学成分に関して次の限定を要する。 C;0.02〜0.2% Cは0.02%未満では鋼材の強度が低下するこ
と、そして溶接熱影響部(HAZ)の軟化が大き
いことからC含有量の下限を0.02%とし一方Cが
0.2%を越えると母材の靱性が劣化するとともに
溶接部の硬化、耐割れ性の劣化が著しいので上限
を0.2%とした。 Si;0.05〜0.50% Siは鋼精錬時に脱酸上必然的に含有される元素
であるが0.05%未満になると母材靱性が劣化する
ため下限を0.05%としこれに反してSiが多過ぎる
とその固溶硬化によつて靱性が低下するため上限
を0.50%とした。 Mn;0.5〜2.0% Mnは0.5%未満では鋼材の強度および靱性が低
下し、またHAZの軟化が大きくなるため下限を
0.5%とし、そしてMnが多過ぎるとHAZの靱性
が劣化するため上限を2.0%とした。 Al;0.005〜0.1% Alは鋼の脱酸に不可欠であり最低0.005%は必
要であるが0.1%以上ではHAZや溶接金属の靱性
の劣化のみならず表面形状も悪化するので、0.1
%を上限値とした。 Nb;0.01〜0.08% Nbは0.01%以上ないとNb(CN)析出物が不足
して細粒効果がなく、しかし0.08%超過のNbを
含有すると溶着金属およびHAZの靱性が著しく
劣化し、このため0.01〜0.08%の範囲にした。 S:0.006%以下 Sは鋼中不純物として不可避な元素であるが、
この発明に従う靱性向上並びに耐水素誘起割れ性
を確保するためには0.006%以下としなければな
らない。よつてSの上限を0.006%とした。 次にこの発明においては、(a)群元素としての、
0.003〜0.04%のTi、1.0%以下のNi、0.3%以下の
Mo、0.5%以下のCu、0.1%以下のV、0.4%以下
のCr、および0.003%以下のBのうち1種または
2種以上の元素は何れも母材の強度、靱性をさら
に向上させて製造可能な板厚の拡大を可能とする
ことで共通の目的に適合し次にのべる含有量の制
限理由の下で同効を呈するので選択成分として有
用である。 TiはTiNとしてNを固定しオーステナイト粒
の微細化と強度を出すために利用され得るが、こ
の場合最低0.003%は必要であり、一方0.04%を
こえるとTiNのみならずTiCを生成して母材なら
びに溶接部の靱性が劣化する。よつて0.003〜
0.04%の範囲とした。 NiはHAZの硬化性と靱性に悪い影響を与える
ことなく、母材の強度、靱性を向上させるが、こ
の発明の主題に対しては1.0%を起えて添加する
必要はなく、それ以上は製造コストの上昇を招く
のみ故上限を1.0%とした。 Moは圧延時のγ粒を整粒となし、さらに焼入
時には微細なベイトライトを生成するので、強
度、靱性の向上に有用であるが、0.3%を超えて
添加する必要はなく、それ以上は製造コストの上
昇を招くのみ故上限を0.3%とした。 またCuはNiとほぼ同様の効果があるだけでな
く耐食性も向上させるが、0.50%を越えると熱間
圧延中にクラツクが発生しやすくなり鋼板の表面
形状が劣化するので上限を0.50%とした。 Cr、Vはそれぞれ0.40%、0.1%を超えると鋼
材の靱性ばかりか、また溶接部の靱性も害するの
でそれぞれの値に上限を限定すべきである。 そしてBについては焼入性を高めることのほか
に母材の靱性を高める効果をもたらす0.003%以
下の添加が有利である。 上記(a)群選択成分のほかにこの発明では必要に
応じて(b)群元素のCaまたはREM(希土類元素)
のうち少くとも一種を、0.001〜0.1%の範囲(二
種の場合は合計量)で含有させることにより鋼板
の圧延直角方向の靱性を向上させることができ
る。この範囲の限定理由は0.001%に満たないと
Ca、REMによつて、圧延中に伸延して有害作用
を及ぼすMnSの減少効果が充分でないことから
不利であり、また0.1%を超えると酸化物生成が
過大となつて鋼の内部性状をそこなうためであ
る。 上記のようにして、 (i) (a)群元素は母材の強度、靱性の向上のため、
また板厚の拡大のため、 (ii) (b)群元素は鋼板の圧延直角方向の靱性を向上
させるためにそれぞれ同一の効果をもたらす。 つぎに以上のように化学成分の特定の下でこの
発明に従う処理を加えて目的に適合するような諸
特性の向上がもたらされるのは以下の技術的意義
に由来する。 この発明の最枢要点は、900〜1200℃以上の温
度にスラブを加熱して圧延し引続き900℃以下の
未再結晶オーステナイト域またはオーステナイト
−フエライト(以下γ+αと略す)2組域で減面
率40%以上の累積圧下を与えてからAr変態点以
下に冷却し、その後Ac1点〜Ac3点の温度域に再
加熱を行つてから水冷処理を施すところにあるが
このように(γ+α)、2相域に再加熱すると、
圧延組織中のフエライト粒界の一部がオーステナ
イト粒になり、この再加熱後に水中投入を行う
と、それがマルテンサイト化するため、フエライ
トとマルテンサイトの微細な混合二相組織にな
る。すなわちマルテンサイトはもとのフエライト
粒を分割する形で生成されるので、混合組織の平
均粒径は圧延のまゝのフエライト粒径より細かく
なる。またこの(γ+α)2相域での再加熱によ
つてセパレーシヨン数は減少するがAr3点以上の
再加熱と違つて零にはならない。 すなわち(γ+α)2相温度域での再加熱によ
つて、適度なセパレーシヨン効果と混合二相組織
の微細化効果が組み合わされるためBDWTT特
性は著しく向上すると考えられる。この水冷処理
および焼戻し熱処理によつてセパレーシヨンの緩
和と焼戻し効果のためシヤルピー衝撃吸収エネル
ギーは向上するし、また、伸展したMnS等の介
在物近傍およびマルテンサイトやベーナイト組織
の歪解消作用のため耐水素誘起割れ特性も良好に
なると考えられる。 この発明では、上にのべたように化学成分を限
定した制御圧延鋼板を特定温度に再加熱してから
施す水冷および焼戻し処理によつて、セパレーシ
ヨン数を調整し衝撃吸収エネルギーを向上させ、
なおかつBDWTT特性の向上に積極的に利用し
たものであるともいえる。 つぎにこの発明の構成要件についての限定理由
を述べる。 まずスラブ加熱温度を900〜1200℃の範囲とす
る理由は、スラブ加熱温度を900℃未満にすると
(γ+α)2相域加熱となり、900℃以下の未再結
晶γ域での圧延が困難となるため、900℃以上と
する。またスラブ加熱温度を1200℃越とすると加
熱時のγ粒径が著しく粗大化するため、この後実
施する900℃以下での未再結晶γ域での圧延を行
つても結晶粒の微細化が困難となりBDWTT特
性が劣化する。よつてスラブ加熱温度として900
〜1200℃の範囲とする。 次に900℃以下の未再結晶γ域および(γ+α)
2相域での累積圧下を与えるのであるが、その圧
下量は多いほど好ましく、BDWTTの85%
SATTが−30℃(板厚20mm)以下を示すところ
の40%累積圧下率をもつて下限値とした。 圧延後Ar1変態点以下に一たん冷却するのは、
Ar1以下に冷却しないと細粒効果が十分に得られ
ないためである。 この発明の大きな特徴は圧延冷却後(γ+α)
2相域に加熱して水冷処理をしその後通常の温度
域で焼戻しを行うことにあるがその理由について
は前述した通りである。 次に本発明の実施例を説明する。 大型スラブおよび連鋳スラブから製造された鋼
A、B1、B2の化学成分を表1−1に、またこれ
らの鋼につき、圧延条件や熱処理条件を変えて製
造したときの圧延方向に直角な方向の諸特性の調
査結果を表1−2に示す。 表1 実施例 1
The present invention relates to a method for producing low temperature steel having excellent toughness and hydrogen-induced cracking resistance. Recently, in the shipbuilding industry, construction of carrier vessels and storage tanks for liquefied petroleum gases such as LNG and LPG has become active, and the low-temperature steel plates used for these tanks, secondary barriers, and internal structural members have excellent toughness at low temperatures. requested. Furthermore, as large-diameter line pipes for natural gas are used in colder regions and are operated at higher pressures, there is an increasing demand for strict low-temperature toughness, especially for thick-walled materials. In particular, in order to improve the propagation arresting characteristics of unstable ductile fractures, we have developed a method that has a high shear pie impact absorption energy and a fracture surface transition temperature of Drap Weight Tear Test (hereinafter abbreviated as BDWTT).
Below Appearance Transition Temperature
There is a demand for steel sheets for pipes with excellent properties (abbreviated as FATT). In particular, recently, the Shalpy impact absorption energy standard is not based on the design temperature, but is specified at the lowest temperature at which the ductile fracture surface shows 100%, and the impact absorption energy (abbreviated as Cv100) has become higher. Separation occurs in control-rolled materials used as steel plates, so even if they show a 100% ductile fracture surface, the absorbed energy is not saturated, resulting in a small Cv100 value, making it difficult to meet the required standards. On the other hand, embrittlement of materials due to corrosion has become a major problem in oil and natural gas pipelines. This is because crude oil and natural gas often contain hydrogen sulfide, which causes hydrogen-induced cracking to occur in a continuous manner in the thickness direction, leading to pipe failure. Today, it is common to use large steel ingots and continuously cast slabs to reduce costs when manufacturing steel plates for pipes.When forming these ingots, the solidification rate is slow in the center, resulting in segregation mainly consisting of Mn and P. As a result, a rough band-like structure consisting of martensite and bainite appears after rolling. This band-like structure not only adversely affects the hydrogen-induced cracking resistance but also deteriorates the toughness, so it has been difficult to take countermeasures against this problem. QT heat treatment can be considered as one solution to this problem, but in order to achieve BDWTT properties comparable to those of control-rolled materials that exhibit separation, it requires a large amount of expensive components such as Ni.
Even in the heat treatment process, simple quenching and tempering is not sufficient, and a complicated heat treatment of repeating quenching and tempering twice has to be performed, which is extremely disadvantageous from an economic standpoint. This invention has Cv100, hydrogen-induced cracking resistance, and
We have discovered a method to produce steel plates with excellent BDWTT characteristics at low cost using large steel ingots or continuously cast slabs. That is, C: 0.02 to 0.2 wt%, Si: 0.05 to 0.50 wt%, Mn: 0.5 to 2.0 wt%, Al: 0.005 to 0.1 wt% and Nb: 0.01 to 0.08 wt%, and S: 0.006 wt% or less. A steel slab containing iron with the balance Fe and unavoidable impurities is heated and rolled in a temperature range of 900 to 1200℃, and then rolled in an unrecrystallized austenite region or an austenite-ferrite two-phase region at a temperature of 900℃ or less. ,
Immediately after applying a cumulative reduction of 40% or more
Toughness characterized by being cooled to below the Ar transformation point, then reheated to a temperature range of A c1 point to A c3 point, then water-cooled, and then tempered at a temperature below A c1 point. and a method for producing low-temperature steel with excellent hydrogen-induced cracking resistance. (First invention) C: 0.02-0.2wt%, Si: 0.05-0.50wt%, Mn: 0.5-2.0wt%, Al: 0.005-0.1wt% and Nb: 0.01-0.08wt%, S: 0.006wt% % or less, and further contains Ti: 0.003 to 0.04wt%, Ni: 1.0wt% or less, Mo: 0.3wt% or less, Cu: 0.5wt% or less, V: 0.1wt% or less, Cr: 0.4wt% or less. and B: any one or two selected from the group consisting of 0.003wt% or less
A steel slab containing Fe and unavoidable impurities is heated and rolled in a temperature range of 900 to 1200℃, and then the steel slab is rolled into an unrecrystallized austenite region or austenite-ferrite two phase below 900℃. In the area,
Immediately after applying a cumulative reduction of 40% or more
Toughness characterized by being cooled to below the Ar transformation point, then reheated to a temperature range of A c1 point to A c3 point, then water-cooled, and then tempered at a temperature below A c1 point. and a method for producing low-temperature steel with excellent hydrogen-induced cracking resistance. (Second invention) C: 0.02 to 0.2 wt%, Si: 0.05 to 0.50 wt%, Mn: 0.5 to 2.0 wt%, Al: 0.005 to 0.1 wt% and Nb: 0.01 to 0.08 wt%, S: 0.006 wt% % or less, and further contains Ti: 0.003 to 0.04wt%, Ni: 1.0wt% or less, Mo: 0.3wt% or less, Cu: 0.5wt% or less, V: 0.1wt% or less, Cr: 0.4wt% or less. and B: any one or two selected from the group consisting of 0.003wt% or less
Contains one or two of the following groups: Ca: 0.001 to 0.1 wt%, REM: 0.001 to 0.1 wt%, and the remainder
A steel slab made of Fe and unavoidable impurities is
Heating and rolling in a temperature range of ~1200℃, followed by rolling in an unrecrystallized austenite region or austenite-ferrite two-phase region below 900℃,
Immediately after applying a cumulative reduction of 40% or more
Toughness characterized by being cooled to below the Ar transformation point, then reheated to a temperature range of A c1 point to A c3 point, then water-cooled, and then tempered at a temperature below A c1 point. and a method for producing low-temperature steel with excellent hydrogen-induced cracking resistance. (Third invention) It is generally known that making the structure of a steel plate finer has the effect of simultaneously improving its impact properties, that is, fracture surface transition temperature and absorbed energy, and increasing its strength. If controlled rolling is used to increase the rolling amount below 900°C to make grains finer,
At the same time, it promotes the development of rolling texture, resulting in generation of separation and enhancement of anisotropy. Therefore, the impact absorption energy in the direction perpendicular to the rolling direction is extremely reduced. Therefore, we considered a method to improve the absorbed energy of Shalby impact, especially the absorbed energy in the direction perpendicular to the rolling direction, by making the fine grain structure obtained by controlled rolling even finer. After rolling, we found that the result was that after rolling, it was again between the Ac 1 point and the Ac 3 point. heated to a temperature, then put into water to quench, then
It was found that tempering below the Ac 1 transformation point not only improves Cv100 absorbed energy but also improves BDWTT properties and hydrogen-induced cracking resistance. In order to obtain a low-temperature steel suitable for the purpose of this invention, the following limitations must first be made regarding its chemical composition. C; 0.02 to 0.2% If C is less than 0.02%, the strength of the steel material will decrease, and the weld heat affected zone (HAZ) will be greatly softened, so the lower limit of C content is set to 0.02%, while C
If it exceeds 0.2%, the toughness of the base metal deteriorates, hardening of the welded part, and deterioration of cracking resistance are significant, so the upper limit was set at 0.2%. Si: 0.05-0.50% Si is an element that is inevitably included for deoxidation during steel refining, but if it is less than 0.05%, the toughness of the base material will deteriorate, so the lower limit is set at 0.05%. Since toughness decreases due to solid solution hardening, the upper limit was set at 0.50%. Mn: 0.5-2.0% If Mn is less than 0.5%, the strength and toughness of the steel will decrease, and the softening of the HAZ will increase, so the lower limit must be set.
The upper limit was set at 0.5%, and since too much Mn deteriorates the toughness of the HAZ. Al; 0.005-0.1% Al is essential for deoxidizing steel and requires a minimum of 0.005%, but if it exceeds 0.1%, it will not only deteriorate the toughness of the HAZ and weld metal but also the surface shape, so 0.1%
% was set as the upper limit. Nb: 0.01-0.08% If Nb is less than 0.01%, there will be a lack of Nb (CN) precipitates and there will be no fine grain effect. However, if Nb is contained in excess of 0.08%, the toughness of the weld metal and HAZ will deteriorate significantly, and this Therefore, it was set in the range of 0.01 to 0.08%. S: 0.006% or less S is an unavoidable element as an impurity in steel,
In order to improve toughness and ensure hydrogen-induced cracking resistance according to the present invention, the content must be 0.006% or less. Therefore, the upper limit of S was set at 0.006%. Next, in this invention, as a group (a) element,
0.003~0.04% Ti, 1.0% or less Ni, 0.3% or less
One or more elements among Mo, 0.5% or less Cu, 0.1% or less V, 0.4% or less Cr, and 0.003% or less B all further improve the strength and toughness of the base material. It is useful as a selective component because it satisfies a common purpose by making it possible to expand the thickness of the plate that can be manufactured, and exhibits the same effect under the reason for restricting the content described below. Ti can be used to fix N in the form of TiN to refine the austenite grains and provide strength, but in this case, a minimum of 0.003% is required; on the other hand, if it exceeds 0.04%, not only TiN but also TiC is generated. The toughness of the material and welded parts deteriorates. Yotsute 0.003~
The range was set at 0.04%. Ni improves the strength and toughness of the base material without adversely affecting the hardenability and toughness of HAZ, but for the subject of this invention, it is not necessary to add 1.0%, and no more than 1.0% is required for manufacturing. The upper limit was set at 1.0% because it would lead to an increase in costs. Mo makes the γ grains regular during rolling, and also produces fine baitite during quenching, so it is useful for improving strength and toughness, but it is not necessary to add more than 0.3%. The upper limit was set at 0.3% because it would only lead to an increase in manufacturing costs. In addition, Cu not only has almost the same effect as Ni but also improves corrosion resistance, but if it exceeds 0.50%, cracks are likely to occur during hot rolling and the surface shape of the steel sheet deteriorates, so the upper limit was set at 0.50%. . If Cr and V exceed 0.40% and 0.1%, respectively, they will impair not only the toughness of the steel material but also the toughness of the welded part, so upper limits should be set for each value. It is advantageous to add B in an amount of 0.003% or less, which has the effect of increasing the toughness of the base metal in addition to increasing the hardenability. In addition to the above-mentioned group (a) selection component, in this invention, the group (b) element Ca or REM (rare earth element) is optionally added.
By containing at least one of these in the range of 0.001 to 0.1% (in the case of two types, the total amount), the toughness of the steel plate in the direction perpendicular to rolling can be improved. The reason for this range limitation is that it is less than 0.001%.
Ca and REM are disadvantageous because they do not sufficiently reduce MnS, which is elongated during rolling and has harmful effects, and if it exceeds 0.1%, oxide formation becomes excessive, damaging the internal properties of the steel. It's for a reason. As mentioned above, (i) Group (a) elements are used to improve the strength and toughness of the base material.
Furthermore, in order to increase the plate thickness, (ii) (b) group elements each have the same effect in improving the toughness of the steel plate in the direction perpendicular to the rolling direction. Next, the reason why the treatment according to the present invention is added under the specified chemical components as described above to improve various properties suitable for the purpose is derived from the following technical significance. The most important point of this invention is that the slab is heated to a temperature of 900 to 1200°C or higher, then rolled, and then the area reduction is achieved in the unrecrystallized austenite region or austenite-ferrite (hereinafter abbreviated as γ+α) two-pair region at a temperature of 900°C or lower. After applying a cumulative pressure of 40% or more, it is cooled to below the Ar transformation point, then reheated to a temperature range of Ac 1 to Ac 3 , and then water-cooled (γ + α). , when reheated to the two-phase region,
Some of the ferrite grain boundaries in the rolled structure become austenite grains, and when the material is poured into water after reheating, it becomes martensite, resulting in a fine mixed two-phase structure of ferrite and martensite. That is, since martensite is generated by dividing the original ferrite grains, the average grain size of the mixed structure is smaller than the ferrite grain size as rolled. Also, although the separation number decreases by reheating in this (γ+α) two-phase region, it does not become zero unlike reheating at three or more Ar points. In other words, it is thought that reheating in the (γ+α) two-phase temperature range combines a moderate separation effect and a refinement effect of the mixed two-phase structure, thereby significantly improving the BDWTT characteristics. This water cooling treatment and tempering heat treatment improve the shear pie impact absorption energy due to the relaxation of separation and the tempering effect, and the strain relief effect of the martensite and bainite structures near the expanded inclusions such as MnS and the like improves the resistance. It is thought that the hydrogen-induced cracking properties will also be improved. In this invention, as described above, a controlled rolled steel plate with limited chemical composition is reheated to a specific temperature and then subjected to water cooling and tempering treatment to adjust the number of separations and improve impact absorption energy.
Furthermore, it can be said that this was actively used to improve the BDWTT characteristics. Next, the reasons for limiting the constituent elements of this invention will be described. First of all, the reason why the slab heating temperature is set in the range of 900 to 1200℃ is that if the slab heating temperature is lower than 900℃, heating will occur in the (γ + α) two-phase region, making it difficult to roll in the unrecrystallized γ region below 900℃. Therefore, the temperature should be 900℃ or higher. In addition, if the slab heating temperature exceeds 1200℃, the γ grain size during heating will become significantly coarsened, so even if rolling is performed in the non-recrystallized γ region at 900℃ or less, the grains will not be refined. It becomes difficult and the BDWTT characteristics deteriorate. 900 as the slab heating temperature
-1200℃ range. Next, the unrecrystallized γ region below 900℃ and (γ + α)
The cumulative reduction in the two-phase region is given, and the larger the reduction, the better; 85% of the BDWTT.
The lower limit was set at a cumulative reduction rate of 40% at which SATT was below -30°C (plate thickness 20mm). After rolling, the material is cooled once below the Ar 1 transformation point.
This is because a sufficient fine grain effect cannot be obtained unless the temperature is cooled to Ar 1 or less. The major feature of this invention is that after rolling cooling (γ + α)
The reason for this is that the material is heated to a two-phase region, water-cooled, and then tempered in a normal temperature region. Next, embodiments of the present invention will be described. Table 1-1 shows the chemical composition of steels A, B1, and B2 manufactured from large slabs and continuous cast slabs, and the chemical composition of these steels in the direction perpendicular to the rolling direction when manufactured under different rolling and heat treatment conditions. Table 1-2 shows the results of the investigation of various characteristics. Table 1 Example 1

【表】【table】

【表】 ** 割れの評価 ○:割れなし、△:割れ小、×
:割れ大
*** セパレーシヨンの有無 ○:有、×:無
Nbの含有していない比較鋼Aはもちろんのこ
と、Nbを含有しその他この発明の成分範囲を充
足する供試鋼B1、B2も、通常のAC3点以上の温
度における焼入れ処理を行つた場合には
BDWTT試験の85%SATTを−30℃未満にする
ことができないし、一方圧延のままでは衝撃吸収
エネルギーが極端に低く、また耐水素誘起割れ特
性が悪い。 表1−2においてこれらの諸特性を同時に満た
しているのは発明鋼B1、B2に900℃以下での累
積圧下率を40%以上与えてから一たんAr変態点
以下に冷却し、その後Ac1点〜Ac3点の温度に再
加熱し水冷処理をしたものだけである。 次に表2−1には、成分を変えた鋼の実施例を
示し、これらについてこの発明に従う熱処理を行
なつた種々の成績を表2−2に掲げた。
[Table] ** Evaluation of cracks ○: No cracks, △: Small cracks, ×
: Large crack *** Presence or absence of separation ○: Yes, ×: No
Not only comparative steel A, which does not contain Nb, but also test steels B1 and B2, which contain Nb and satisfy the composition range of this invention, were quenched at a temperature of 3 points or more of normal AC. for
It is not possible to reduce the 85% SATT of the BDWTT test to less than -30°C, and on the other hand, if rolled, the impact absorption energy is extremely low and the hydrogen-induced cracking resistance is poor. In Table 1-2, the invention steels B1 and B2 that simultaneously satisfy these characteristics are given a cumulative reduction rate of 40% or more at 900°C or less, then cooled once to below the Ar transformation point, and then subjected to Ac 1 Only those that have been reheated to a temperature of 3 to 3 Ac and then water-cooled. Next, Table 2-1 shows examples of steels with different compositions, and Table 2-2 lists various results obtained by subjecting these steels to heat treatment according to the present invention.

【表】【table】

【表】【table】

【表】 ** 割れの評価 ○:割れなし
*** セパレーシヨンの有無 ○:有り、×:無
なお表1−2、2−2における耐水素誘起割れ
試験は75×75mm形状の試片を、H2Sを飽和させた
人工海水中に96時間浸積した後、割れの大きさを
判定した。 以上のべたようにしてこの発明によれば、低温
用鋼の使途におけるか酷な要請を、従来の一般的
なQT処理では2.5%Niを必要とし、またさらに
は繰返し焼入れすなわちQQ′T処理を要していた
のを、単純なQ′T処理によつて1.0%以下に低減
したNi低率含有の下で、有利に充足することが
でき、またいわゆる制御圧延ではBDWTT特性
が良好であつても吸収エネルギおよび耐水素誘起
割れ特性に不満があり、これにQT処理を加えて
吸収エネルギの改善を図ると結晶粒粗大化のため
にBDWTTの劣化を伴つた欠点を有利に回避し
て、低温用鋼の靱性と耐水素誘起割れ特性の顕著
な改善を遂げることができる。
[Table] ** Evaluation of cracking ○: No cracking *** Presence or absence of separation ○: Yes, ×: No In addition, the hydrogen-induced cracking test in Tables 1-2 and 2-2 was conducted using a 75 x 75 mm specimen. The size of the cracks was determined after immersion in artificial seawater saturated with H 2 S for 96 hours. As described above, according to the present invention, the severe requirements in the use of low-temperature steel can be met by requiring 2.5% Ni in the conventional general QT treatment, and in addition, repeated quenching, or QQ'T treatment, is required. This requirement can be advantageously met with a low Ni content reduced to 1.0% or less by simple Q'T treatment, and the BDWTT properties are good in so-called controlled rolling. BDWTT is also dissatisfied with absorbed energy and hydrogen-induced cracking resistance, and adding QT treatment to improve absorbed energy can advantageously avoid the disadvantages associated with BDWTT deterioration due to grain coarsening, and Significant improvements in the toughness and hydrogen-induced cracking resistance of the steel can be achieved.

Claims (1)

【特許請求の範囲】 1 C:0.02〜0.2wt%、 Si:0.05〜0.50wt%、 Mn:0.5〜2.0wt%、 Al:0.005〜0.1wt%及び Nb:0.01〜0.08wt%を、 S:0.006wt%以下 にて含有し、残部Fe及び不可避的不純物よりな
る鋼スラブを、900〜1200℃の温度域にて加熱し
て圧延し、 引き続き900℃以下の未再結晶オーステナイト
域、又はオーステナイト−フエライト2相域で、
減面率40%以上の累積圧下を与えてから一たん
Ar変態点以下に冷却し、 その後Ac1点〜Ac3点の温度域に再加熱し、つ
いで水冷処理を施し、 しかるのちAc1点以下の温度で焼戻し処理を行
う ことを特徴とする、靱性と耐水素誘起割れ特性の
優れた低温用鋼の製造法。 2 C:0.02〜0.2wt%、 Si:0.05〜0.50wt%、 Mn:0.5〜2.0wt%、 Al:0.005〜0.1wt%及び Nb:0.01〜0.08wt%を、 S:0.006wt%以下 にて含有し、さらに Ti:0.003〜0.04wt%、 Ni:1.0wt%以下、 Mo:0.3wt%以下、 Cu:0.5wt%以下、 V:0.1wt%以下、 Cr:0.4wt%以下及び B:0.003wt%以下 よりなる群の中から選ばれる何れか1種または2
種以上を含有し、残部Fe及び不可避的不純物よ
りなる鋼スラブを、900〜1200℃の温度域にて加
熱して圧延し、 引き続き900℃以下の未再結晶オーステナイト
域、又はオーステナイト−フエライト2相域で、
減面率40%以上の累積圧下を与えてから一たん
Ar変態点以下に冷却し、 その後Ac1点〜Ac3点の温度域に再加熱し、つ
いで水冷処理を施し、 しかるのちAc1点以下の温度で焼戻し処理を行
う ことを特徴とする、靱性と耐水素誘起割れ特性の
優れた低温用鋼の製造法。 3 C:0.02〜0.2wt%、 Si:0.05〜0.50wt%、 Mn:0.5〜2.0wt%、 Al:0.005〜0.1wt%及び Nb:0.01〜0.08wt%を、 S:0.006wt%以下 にて含有し、さらに Ti:0.003〜0.04wt%、 Ni:1.0wt%以下、 Mo:0.3wt%以下、 Cu:0.5wt%以下、 V:0.1wt%以下、 Cr:0.4wt%以下及び B:0.003wt%以下 よりなる群の中から選ばれる何れか1種または2
種以上、並びに Ca:0.001〜0.1wt%、 REM:0.001〜0.1wt% よりなる群の中の1種又は2種を含有し、残部
Fe及び不可避的不純物よりなる鋼スラブを、900
〜1200℃の温度域にて加熱して圧延し、 引き続き900℃以下の未再結晶オーステナイト
域、又はオーステナイト−フエライト2相域で、
減面率40%以上の累積圧下を与えてから一たん
Ar変態点以下に冷却し、 その後Ac1点〜Ac3点の温度域に再加熱し、つ
いで水冷処理を施し、 しかるのちAc1点以下の温度で焼戻し処理を行
う ことを特徴とする、靱性と耐水素誘起割れ特性の
優れた低温用鋼の製造法。
[Claims] 1 C: 0.02-0.2wt%, Si: 0.05-0.50wt%, Mn: 0.5-2.0wt%, Al: 0.005-0.1wt% and Nb: 0.01-0.08wt%, S: A steel slab containing 0.006wt% or less with the remainder Fe and unavoidable impurities is heated and rolled in a temperature range of 900 to 1200℃, and then the unrecrystallized austenite region or austenite- In the ferrite two-phase region,
Immediately after applying a cumulative reduction of 40% or more
Toughness characterized by being cooled to below the Ar transformation point, then reheated to a temperature range of A c1 point to A c3 point, then water-cooled, and then tempered at a temperature below A c1 point. and a method for producing low-temperature steel with excellent hydrogen-induced cracking resistance. 2 C: 0.02-0.2wt%, Si: 0.05-0.50wt%, Mn: 0.5-2.0wt%, Al: 0.005-0.1wt% and Nb: 0.01-0.08wt%, S: 0.006wt% or less Contains Ti: 0.003 to 0.04wt%, Ni: 1.0wt% or less, Mo: 0.3wt% or less, Cu: 0.5wt% or less, V: 0.1wt% or less, Cr: 0.4wt% or less, and B: 0.003. Any one or two selected from the group consisting of wt% or less
A steel slab containing Fe and unavoidable impurities is heated and rolled in a temperature range of 900 to 1200℃, and then the steel slab is rolled into an unrecrystallized austenite region or austenite-ferrite two phase below 900℃. In the area,
Immediately after applying a cumulative reduction of 40% or more
Toughness characterized by being cooled to below the Ar transformation point, then reheated to a temperature range of A c1 point to A c3 point, then water-cooled, and then tempered at a temperature below A c1 point. and a method for producing low-temperature steel with excellent hydrogen-induced cracking resistance. 3 C: 0.02-0.2wt%, Si: 0.05-0.50wt%, Mn: 0.5-2.0wt%, Al: 0.005-0.1wt% and Nb: 0.01-0.08wt%, S: 0.006wt% or less Contains Ti: 0.003 to 0.04wt%, Ni: 1.0wt% or less, Mo: 0.3wt% or less, Cu: 0.5wt% or less, V: 0.1wt% or less, Cr: 0.4wt% or less, and B: 0.003. Any one or two selected from the group consisting of wt% or less
Contains one or two of the following groups: Ca: 0.001 to 0.1 wt%, REM: 0.001 to 0.1 wt%, and the remainder
A steel slab made of Fe and unavoidable impurities is
Heating and rolling in a temperature range of ~1200℃, followed by rolling in an unrecrystallized austenite region or austenite-ferrite two-phase region below 900℃,
Immediately after applying a cumulative reduction of 40% or more
Toughness characterized by being cooled to below the Ar transformation point, then reheated to a temperature range of A c1 point to A c3 point, then water-cooled, and then tempered at a temperature below A c1 point. and a method for producing low-temperature steel with excellent hydrogen-induced cracking resistance.
JP16731079A 1979-12-22 1979-12-22 Production of low temperature steel having superior toughness and hydrogen induced crack resistance characteristic Granted JPS5690921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16731079A JPS5690921A (en) 1979-12-22 1979-12-22 Production of low temperature steel having superior toughness and hydrogen induced crack resistance characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16731079A JPS5690921A (en) 1979-12-22 1979-12-22 Production of low temperature steel having superior toughness and hydrogen induced crack resistance characteristic

Publications (2)

Publication Number Publication Date
JPS5690921A JPS5690921A (en) 1981-07-23
JPS6334205B2 true JPS6334205B2 (en) 1988-07-08

Family

ID=15847368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16731079A Granted JPS5690921A (en) 1979-12-22 1979-12-22 Production of low temperature steel having superior toughness and hydrogen induced crack resistance characteristic

Country Status (1)

Country Link
JP (1) JPS5690921A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117803U (en) * 1981-01-14 1982-07-21
JPS6217127A (en) * 1985-07-17 1987-01-26 Nippon Steel Corp Manufacture of deformed pipe having superior toughness at low temperature
KR100815717B1 (en) 2006-11-02 2008-03-20 주식회사 포스코 High strength linepipe steel plate for large diameter pipe with high low-temperature ductility and hic resistance at the h2s containing environment and manufacturing method thereof
CN100463978C (en) * 2007-05-25 2009-02-25 山西太钢不锈钢股份有限公司 Method for increasing toughness of low temperature steel plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114815A (en) * 1974-07-27 1976-02-05 Nippon Steel Corp Koenseio jusuru kojinseichoshitsukono seizoho
JPS5457418A (en) * 1977-10-18 1979-05-09 Nippon Kokan Kk <Nkk> Manufacture of high toughness, refined steel
JPS5597425A (en) * 1979-01-19 1980-07-24 Nippon Kokan Kk <Nkk> Preparation of high-tensile steel with low yield ratio, low carbon and low alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114815A (en) * 1974-07-27 1976-02-05 Nippon Steel Corp Koenseio jusuru kojinseichoshitsukono seizoho
JPS5457418A (en) * 1977-10-18 1979-05-09 Nippon Kokan Kk <Nkk> Manufacture of high toughness, refined steel
JPS5597425A (en) * 1979-01-19 1980-07-24 Nippon Kokan Kk <Nkk> Preparation of high-tensile steel with low yield ratio, low carbon and low alloy

Also Published As

Publication number Publication date
JPS5690921A (en) 1981-07-23

Similar Documents

Publication Publication Date Title
KR100206151B1 (en) Weldable high tensile steel excellent in low-temperatur toughness
KR100222302B1 (en) High strength line pipe steel having low yield ratio and excellent low temperature
CA1208106A (en) Method of making wrought high tension steel having superior low temperature toughness
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP2024500851A (en) Extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP3612115B2 (en) Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness
JP3502691B2 (en) Fitting material excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance and method for producing the same
JPH0413406B2 (en)
KR20200047926A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JPS6334205B2 (en)
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
CN112912532B (en) High-strength steel material having excellent sulfide stress corrosion cracking resistance and method for producing same
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JPH08209239A (en) Production of thick steel for low temperature use having brittle fracture propagation stop characteristic at lower than-50×c
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JP3329578B2 (en) Method for producing high-strength Ni steel plate having excellent low-temperature toughness
JPH08311550A (en) Production of steel sheet for ultrahigh strength steel pipe
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
JP3393314B2 (en) Manufacturing method of sour resistant high strength steel sheet with excellent low temperature toughness
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JP3752078B2 (en) High strength steel plate excellent in sour resistance and manufacturing method thereof