JPS6334201B2 - - Google Patents

Info

Publication number
JPS6334201B2
JPS6334201B2 JP58192518A JP19251883A JPS6334201B2 JP S6334201 B2 JPS6334201 B2 JP S6334201B2 JP 58192518 A JP58192518 A JP 58192518A JP 19251883 A JP19251883 A JP 19251883A JP S6334201 B2 JPS6334201 B2 JP S6334201B2
Authority
JP
Japan
Prior art keywords
sintering
powder
compact
metal member
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58192518A
Other languages
Japanese (ja)
Other versions
JPS6086202A (en
Inventor
Tsugio Kawamura
Seiichi Oohira
Mitsuo Oohori
Toshiro Imai
Yoshikazu Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP19251883A priority Critical patent/JPS6086202A/en
Publication of JPS6086202A publication Critical patent/JPS6086202A/en
Publication of JPS6334201B2 publication Critical patent/JPS6334201B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は焼結時に液相を生じる成分からなる粉
末圧粉体を金属部材と一曲線上または直線上にお
いてのみ接触するように組みつけ、非加圧の状態
で真空中または非酸化性雰囲気中で一度の加熱に
より液相焼結と接合を同時に行わせることを特徴
とする焼結接合方法に関するものである。 一般に金属部材に焼結体を接合する方法には、
溶接法やろう付法、拡散接合法等がある。 溶接法は硬度が高く、靭性の低い焼結体の場合
には熱衝撃によりクラツクを生じ使用できない場
合がある。ろう付は銀ろうや銅ろうのろう付温度
が600〜900℃程度であり、ろう付温度は高くない
が、逆に高温耐熱部材として使用したい場合にろ
う付部から溶融剥離して使用できない。またろう
付強度が必ずしも高くなくろう付部の強度に不安
が残り、大きな荷重に耐える必要がある場合に使
用できない等の問題をもつている。 次に拡散接合法については通常の鋼材等の接合
に利用される方法であり、一般に1000〜1300℃程
度で加熱することにより拡散を行わせることによ
つて接合が行われる。しかしながらこの方法は、
焼結体と金属部材を充分に接触させるために焼結
体と金属部材の表面形状を全く一致させ、かつ接
合面の表面粗さを非常に細かくする必要があり、
未接合面をなくするため時として荷重を負荷させ
た状態でかつ長時間の加熱を必要とし、また拡散
接合時に焼結体を再加熱することによるコストア
ツプや特性の劣化等の問題がある。 このため焼結の際の収縮を利用し鋼材もしくは
超硬合金の外周に圧粉体を同軸的に配し、一回の
焼結加熱により接合させる方法が提案されている
が、これらはすべて環状に接合する場合にのみし
か利用できず、また圧粉体の内径寸法をある範囲
内にきびしくおさえないと焼結体に割れを生じる
等の問題がある。 粉末圧粉体を実質的に100%真密度の焼結体と
し、かつこれらの焼結体の形状を所期の形状に保
ち、かつ焼結体を金属部材の接合したい部分に適
格に接合させ、かつ焼結体の破断等をおこさず強
い接合強度で接合させるためには、圧粉体を単に
金属部材表面に置くだけではこれ等すべての条件
を満足させる事は困難である。この理由として、
粉末圧粉体は加熱によつて液相出現により、縦、
横、高さ全方向で大きな収縮をおこし、収縮に伴
つて焼結が進行する粉末圧粉体は金属部材上をそ
の収縮分だけ移動するために、最終焼結体が最終
の接合位置からはずれた位置となつたり、また焼
結による収縮中にある個所で母材との間で部分的
な焼結接合をおこし、この接合力が焼結体の収縮
力よりも強いと、焼結体の破断につながり、また
接合位置を狂わせる原因となる。特に焼結体寸法
が大きくなる程これらの問題が大きくなつてく
る。 本発明の目的は上記の如き問題点を解決する方
法を提案するものであり、円筒体などの全周に接
合するのではなく、必要とする部分のみに接合可
能であり、金属部材表面が二次曲面であつても接
合できる方法を提供することにある。 以下、本発明を更に詳細に説明する。 本発明で使用する粉末圧粉体の材料は1000〜
1350℃の間で共晶液相を生じるものが好ましい。
本発明者らはすでにB含有量が3〜20%でFeを
含む硼化物もしくは複硼化物系の硬質焼結合金お
よびこれらの粉末について開示しており(特公昭
54−27818、特公昭56−8904、特公昭56−15773、
特公昭56−37281、特開昭58−67842)、液相焼結
を行わせる材料であるので、これを主として以下
に詳細に説明する。 本発明に使用した硬質焼結合金および粉末はB
を3〜20%含有し、少なくとも10%以上のFeを
含む。Bは硼化物または複硼化物の硬質相を形成
して分散存在し、高い硬度と耐摩耗性を賦与す
る。また、粉末圧粉体の焼結と金属部材への強固
な接合を、非加圧のもとで行わせる重要な役割を
果す。硬質相の量は40〜95%である。 焼結体の硬度はHRA80〜93の範囲であるが、
HRA77程度まで硬度を落してもよい場合はB含
有量を2%に下げることもできる。 硬質相を形成する硼化物成分は、Mo、W、
Ti、V、Nb、Ta、Zr、Hfのa、aおよび
a族元素およびFe、Cr、Co、Ni、Mnの鉄族
金属元素である。Cまたは炭化物や窒化物を添加
した場合には、これらは主として硬質相を形成す
る。硬質相をとりまく結合相は、焼結体に強度と
靭性を賦与するものであり、Fe基の合金成分よ
りなる。Cr、Ni、Mo、W、Co、Cu、Mn等の添
加量によつて、これらは硬質相または結合相ある
いは両相に存在し焼結体に耐食性、耐熱性および
強度を賦与する役割をする。 使用する粉末の粒度は350メツシユ(44μ)以
下、好ましくは500メツシユ(25μ)以下、更に
好ましくは平均粒径0.3〜3μの範囲である。この
理由は粉末を圧粉成形した時の粉末相互の結合力
を高めて圧粉体に欠けや形くずれを起させないこ
と、更に焼結反応を円滑に行わせ、気孔の少ない
実質的に真密度の焼結体を得ること、焼結体の硬
度や抗折力、耐摩耗性などの機械的特性を高く保
つこと、金属部材との接合強度を高くし接合界面
に気孔等の欠陥を残さないようにすることのため
基本的に重要である。粉末粒度が100メツシユ
(150μ)〜325メツシユあるいは500メツシユより
も粗い粉末を含む場合には焼結体には多くの空孔
が残存し、また真密度の焼結体を得ることができ
ず抗折力等の強度は低下し、接合界面にも空孔が
残存して強力な接合体が得られない。粉末を微細
化するためにはアルコールやアセトン等の溶剤を
使用した湿式ボールミル、振動ボールミル、アト
ライターあるいはこれらに相当する粉砕手段を用
いる。微粉体となるに従つて、粉末が酸化しやす
くなるのでパラフイン、ステアリン酸、ステアリ
ン酸亜鉛等の適量を使用するのが好ましい。 上記の微粉砕した粉末を乾燥、造粒後、加圧力
100〜3000Kg/cm2、好ましくは150〜2000Kg/cm2
所望の形状に圧粉成形し、圧粉密度を3.2〜5.6
g/cm3好ましくは3.4〜5.1g/cm3の範囲とする。
これは真密度の焼結体の38〜67%、好ましくは40
〜60%の範囲である。圧粉体密度が3.2g/cm3
り小さいと圧粉体の強度が不足し、取扱いや運搬
などの作業中に圧粉体がこわれることがおこる。
また焼結中に亀裂や空孔を生じやすくなり、接合
が不充分な場合も多く安定しない。圧粉体密度が
5.6g/cm3以上になると粉末表面に少量残存して
いる酸化物や、この酸化物に起因するCOガス、
あるいは粉末粒子間に存在する空孔の逸散が困難
となり、これらが焼結体の中心部に残存しやすく
なり、焼結体の機械的特性を低下させる。 上記条件で作られた粉末圧粉体を金属部材と直
線または曲線上においてのみ接触するように静置
し焼結を行うが、この粉末圧粉体の接合される側
の曲率半径を接合せんとする部材の曲率半径より
大きくすることが重要である。どの程度大きけれ
ばよいかという点については、圧粉体が加熱を受
けて収縮しほぼ真密度に到達する間に、最初の接
触位置に近い位置から順次遠い側へ接触し、この
逆が起らないような最低限の大きさ以上であれば
接合が完全に行われ、破損やクラツク等の問題を
起すことはない。 粉末圧粉体の焼結時の収縮率をk%、粉末圧粉
体の接合される側の曲率半径をRmm、金属部材の
外径をDmmとすると R>D/2(1−K/100) の関係が保たれておれば更に好ましい。また曲率
半径Rは最大無限大(即ち直線)まで可能であ
る。(第5図参照) 更に平板に接合させる場合には曲率半径Rは負
の値をとればよい。 曲率半径が一定でない曲面の場合にも上記関係
が維持できるように最大曲率半径を基準に圧粉体
寸法を算定すればよい。 金属部材に対する粉末圧粉体の組み付けの関係
は金属部材を水平に横置きし、その上に粉末圧粉
体を乗せることを基本とする。こうすることによ
つて、粉末圧粉体は焼結と同時に自重によつて金
属部材と接触する。必要に応じて金属部材を傾斜
させて置き、その傾斜面に粉末圧粉末を乗せるこ
ともできる。この場合にも金属部材との接合に、
粉末圧粉体の自重を作用させることが必要であ
る。金属部材の傾斜角度は60゜まで好ましくは45゜
までである。 使用する金属部材については各種実験の結果、
JIS規格SS材、SC材、SB材、STB材のような普
通鋼、SUJ材、SCM材、SK材、SKS材、SKD
材、SKH材、SUS材、SUH材のような低合金
鋼、構造用鋼、工具鋼、ステンレス鋼、耐熱鋼、
高速度鋼、鋳鋼、鋳鉄等のFeベースの材料が使
用でき、いずれも剪断強度35〜50Kg/mm2、曲げ強
度で100Kg/mm2程度以上の強い接合強度が得られ
る。銀ろう付け等の接合の剪断強度は20〜25Kg/
mm2程度である。 次に接合についての加熱条件について述べる。
加熱炉雰囲気は真空、還元性または非酸化性雰囲
気が使用できるが、BやCrやTi等の少量の酸化
物の還元容易性や加熱時の酸化防止その他の作業
性から考慮して真空の方がより好ましい。 真空炉使用の場合真空度は1〜10-5torr好まし
くは10-1〜10-4torrの範囲である。真空度が1torr
以下では粉末表面にB、Cr、Ti等の酸化物が生
じるので、下限は1torr、好ましくは10-1torrで
ある。また、上記B、Cr、Ti等の酸化物の還元
は10-4torrまででほぼ行われ、また、10-5torr以
上に真空度を上げることは設備的にも高価となる
ので上限は10-5torr好ましくは10-4torrである。 還元性雰囲気または非酸化性雰囲気としては、
H2、N2、Arガスまたは少量のCOやCO2を含む
ガスまたはこれらの混合ガス雰囲気であり、B、
Cr等の酸化が進まないようまたはこれらの酸化
物の還元を行わせるため、酸素ポテンシヤルを下
げ露点を−10℃以下に保つておく。 次に加熱温度は、粉末の組成より変化するが、
1150〜1350℃、好ましくは1180〜1300℃の範囲で
ある。本発明に使用する粉末圧粉体の密度は、真
密度の38〜67%であり、焼結によつて真密度の99
%以上で、不可避的な少量の不純物を含むが実質
的に100%の真密度となる。焼結時に、粉末中に
3〜20%含有されるB、またはB化合物とFe、
Ni、Cr、Co等との間で、おおよそ1150℃以上で
共晶液相を生じて、ほぼ100%真密度の焼結体に
なるが、焼結体中のBまたはB化合物が焼結時
に、同じ焼結温度範囲内で金属部材の鉄、鋼や合
金鋼中のFe、または含有されているCr、Ni、Co
等との間でも一部共晶液相を生じるものとみら
れ、粉末圧粉体自身の焼結および焼結体と金属部
材との間の強固な接合がほぼ同時に進行するもの
と考えられる。焼結体は粉末圧粉体に対して、寸
法で12〜27%、体積で33〜62%の極めて大きな収
縮をおこすにも拘らず、上記の焼結温度と後に述
べる時間を選定することにより、形状がくずれる
こともなく、目的とする寸法と形状をもつた焼結
体が得られ、かつ、接合部材との間でも、剪断強
度が35Kg/mm2以上の強固な接合が行われる。粉末
圧粉体を丸棒や管上に直線または曲線上において
のみ接触させた場合、焼結後の正確な寸法と形状
を保ち接合位置も正確であり剪断強度も極めて高
いことから、先づ、大きな寸法収縮がおこつて焼
結が行われた後、金属部材との接合が行われてい
るものと解釈される。 例えば第1図、第2図の棒や管上への接合の場
合は、圧粉体が収縮してほぼ100%真密度の焼結
体となり、その半径を小さくしてあるいは重力の
作用により棒や管に接触し、接合が行われるもの
と考えられる。 上述したように本願発明の技術思想の第1は、
粉末圧粉体を接合金属部材である鉄、鋼または合
金鋼部材と一部分のみ接触する状態として間〓を
持たせ、かつ粉末圧粉体の自重が働くような位置
関係におくことである。第2にはB含有量3〜20
%で、しかも微粉砕した粉末を用いることにより
粉末自身がBによる100%真密度の液相焼結を行
うと同時に金属部材成分との間でも一部共晶液相
を生ずることにより、Bが金属部材表面の酸化物
の還元除去と清浄化作用を行い、拡散接合を極め
て容易にすることである。通常の拡散接合におい
ては、接合を充分行わせるために大きな加圧荷重
をかけるが、本願発明の方法においては粉末圧粉
体の自重のみでよく、加圧は必要としない。寸法
で12〜27%の極めて大きな収縮を与えるにも拘ら
ず焼結を完了する最終時期においてはじめて金属
部材表面と焼結体が全面的に接触するように配置
し、拡散接合を完成させる。 これによつて焼結中の焼結体表面が、収縮によ
る移動により、金属部材表面の所定最終位置から
ずれる現象や、部分的接合による焼結体の亀裂破
断現象などを完全に防止し、正確な位置に、目的
とする寸法と形状を維持しながら、実質的に100
%真密度の焼結と接合を同時に行わせることが可
能となるのである。 次に、加熱温度は上記の温度範囲であるが、
1150℃以下では真密度の焼結体が得られず、空孔
が多く残存し、また金属部材との接合強度が低
く、剥離を生じるようになるので下限は1150℃、
好ましくは1180℃である。逆に加熱温度が高過ぎ
ると金属部材との接合強度は充分であるが、焼結
体の形状がくずれ、目的とする形状と寸法の焼結
体が得ることができなくなるので温度の上限は
1350℃、好ましくは1300℃である。 次に1150〜1350℃での加熱時間は5〜90分であ
る。焼結と接合の反応は速く進むので上記温度に
昇温する速度を遅くすると上記均熱温度に達する
と同時に所期の目的を達成することができるが、
焼結や接合強度が、不充分な場合も生ずるので、
下限を5分とする。粉末圧粉体や金属部材が大き
い場合、更に処理量が多い場合には、部分的な昇
温の遅れや、温度の不均一を生じるので均熱時間
の上限を90分とする。 次に昇温速度は、液相出現から焼結までの温度
範囲での昇温速度が重要であり、20℃/分以下に
おさえる必要がある。昇温速度が大きいと接合位
置が不正確になつたり、曲面への接合が不十分な
ところが生じるので20℃/分以下が好ましい。 上述のように本発明の方法では、焼結接合加熱
処理に際して接合強度を高めるための荷重をかけ
る必要がなく、粉末圧粉体の自重で接触すれば充
分である。 焼結接合処理を行うに先立ち、金属部材表面は
シヨツトブラスト、旋削、研削等による黒皮の除
去処理などを行うことが望ましい。ブラスト処理
等により接合面に生じる凹凸は、接合強度に影響
を与える。 表面粗度がRmax60μ以上では、接合強度を保
つために加熱温度を上げる必要があり、加熱温度
を上げると焼結体の形状が得られなくなる。その
ため、表面粗度はRmax60μ以下で、好ましくは
30μ以下、更に好ましくは10μ以下がよい。下限
は0.2μ程度の鏡面に仕上げでも良好な接合強度が
得られるが、通常0.8μ程度まででよい。 必要に応じて金属部材表面を溶剤により脱脂
し、またはアルカリ洗浄や酸洗等の前処理を行
う。 以上に述べた製造条件によつて所望の寸法と形
状を保つた焼結体とこれの金属部材への強固な接
合を同時に完了させることができる。接合させる
面積は、必要に応じてかえることができる。 なお、加熱温度が高いために、加熱の影響を除
去するため、金属部材の調質熱処理を必要とする
場合には、使用する金属部材の材質に応じて焼結
接合後に、焼準熱処理や溶体化処理、焼入れ、焼
戻しや歪み取りや折出処理等の熱処理を行うこと
ができる。これらの熱処理は、焼結接合処理後に
同一炉内でN2ガス等により直ちに所望の加熱冷
却作業を行うことによつて1回の加熱、冷却処理
工程で極めて経済的に達せられる。また、一旦常
温まで冷却した後に別な炉で熱処理を行つてもよ
い。これらの熱処理に際しても焼結体と金属部材
の接合温度が高く、また接合強度が充分高いので
剥離等の問題は生じにくく、また焼結体の硬度や
抗折力などの機械的特性の変化はほとんど生じな
い。例えば焼準熱処理は880〜1000℃、10〜30分
N2ガス中で加熱後20〜50℃/minの冷却速度で
冷却することによつて、金属部材の結晶粒度およ
び機械的特性を復元でき、焼結体の硬度、抗折力
および組織に変化はない。ステンレス鋼の場合は
1000〜1150℃に均熱後N2ガスで急冷することを
併用してもよい。 本発明の硬質焼結合金接合金属体は、硬質焼結
合金が高い硬度と強度を持ち優れた耐摩耗性を持
つ他に、優れた耐食性および高温での耐熱性、耐
酸化性を賦与することができるために高い強度を
持つた一般耐摩材料、耐食耐摩材料、耐熱耐摩材
料用の複合体として広い用途範囲で使用すること
ができる。例えば平板や円筒、棒等の金属部材上
に1個または多数個配列し、接合させて鉄や非鉄
の板や線、棒、管が通過する部分のガイドプレー
ト、ガイド棒、土砂やシヨツトブラスト等による
耐こすり摩耗用のプレート、石炭、コークス、鉱
石、ガラス、セメント、等の輸送コンベア等輸送
手段のかき落し棒、板、耐摩部材、石炭だき、流
動床ボイラー用の炉内パイプ類のアツシユエロー
ジヨン防止ライニング、サイドポンプのケーシン
グや羽根、スクリユーコンベア羽根の耐摩ライニ
ング等や、溶融Znに対する耐摩耗部品や鉱山、
土木、建設機械、鉄鋼、非鉄金属、紙、化学、木
材用機械金属加工業等本発明の硬質合金の耐摩、
耐食、耐熱性が活用できる分野に広く用いること
ができる。 以上に述べた粉末の微粉末化、粉末の圧粉成型
圧力と圧粉体密度、加熱に伴う焼結体の収縮量に
よる実質的に100%真密度化および金属部材と粉
末圧粉体の組み付け方、金属部材表面粗度の記述
はNiやCo基のB含有粉末およびC、Si、Pを多
く含有させた液相焼結合金の場合にも同様に適用
し得る。 Ni基合金でBやSi、Cを2〜4%と多く含有
する粉末の場合には液相出現温度は1050℃程度ま
で低下する。液相焼結温度が1350℃を越えると加
熱時に金属部材の変形等を生じやすくなるので、
液相焼結温度が1350℃を越える粉末への適用は困
難である。 なお前述したように、通常のFe基合金やNi基
合金等一般の焼結用に用いられるような−100メ
ツシユ程度の粉末を用いる場合には99%以上で、
実質的に100%真密度の焼結体は得られず、より
低密度焼結体となり、空孔が残存し、更に金属部
材との接合界面の空孔も増加し、接合強度も低下
するが、目的によつては使用可能である。 以下、本願発明の実施例を示す。 実施例 1 10%B、13%Cr、FeBal.の粉末にMo粉末44
%、Ni粉末3%、Fe粉末6%、黒鉛粉末0.3%と
パラフイン6%を混合し、振動ボールミルで平均
粒径1.5μmに湿式粉砕し、乾燥後、密度比51%の
半円筒圧粉体(外面半径44mm、内面半径40mm)に
プレスで成形し、この圧粉体をRmax6μmの表面
粗度をもつ外径60mmのSS41およびSUS405の丸棒
の上に置き(第1図A)全体を3×10-3torrの真
空中で1275℃、20分焼結接合した。(第1図B)
焼結体の密度は8.2g/cm3で空孔は認められず実
質的にほぼ100%真密度であつた。 これより試片を切り出し、JIS G061クラツド
鋼の剪断強さ試験に準じた方法で剪断強さを測定
した結果、第1表に示す接合強度が得られた。焼
結体の硬度はHRA87であり接合界面は拡散層を
ともなつた強固なものであつた。
The present invention involves assembling a powder compact made of a component that produces a liquid phase during sintering so that it contacts a metal member only on a curved line or a straight line, and placing it in a vacuum or non-oxidizing atmosphere without applying pressure. The present invention relates to a sintering and joining method characterized in that liquid phase sintering and joining are performed simultaneously by heating once. Generally, methods for joining sintered bodies to metal members include:
There are welding methods, brazing methods, diffusion bonding methods, etc. The welding method requires high hardness, and in the case of a sintered body with low toughness, cracks may occur due to thermal shock, making it unusable. The brazing temperature of silver solder and copper solder is about 600 to 900°C, and although the brazing temperature is not high, on the other hand, when you want to use it as a high-temperature heat-resistant member, it melts and peels off from the brazed part and cannot be used. In addition, the brazing strength is not necessarily high, and there are concerns about the strength of the brazed portion, so there is a problem that it cannot be used in cases where it is necessary to withstand a large load. Next, the diffusion bonding method is a method commonly used for bonding steel materials, etc., and bonding is generally performed by heating at about 1000 to 1300° C. to cause diffusion. However, this method
In order to make sufficient contact between the sintered body and the metal member, it is necessary to match the surface shapes of the sintered body and the metal member, and to make the surface roughness of the joint surface extremely fine.
In order to eliminate unbonded surfaces, heating is sometimes required under a load for a long time, and there are also problems such as increased cost and deterioration of properties due to reheating of the sintered body during diffusion bonding. For this reason, methods have been proposed that take advantage of shrinkage during sintering and place a green compact coaxially around the outer periphery of steel or cemented carbide, and then join them by a single sintering heating process, but all of these methods have an annular shape. It can only be used when joining the powder compact, and there are problems such as cracking of the sintered compact unless the inner diameter of the green compact is strictly controlled within a certain range. The powder green compact is made into a sintered compact with substantially 100% true density, the shape of these sintered compacts is maintained in the desired shape, and the sintered compact is properly joined to the part of the metal member to be joined. , and in order to bond the sintered body with strong bonding strength without causing breakage or the like, it is difficult to satisfy all these conditions simply by placing the green compact on the surface of the metal member. The reason for this is
Due to the appearance of a liquid phase when the powder compact is heated, it becomes vertical,
The powder compact, which undergoes large contraction in all horizontal and height directions and progresses in sintering as it shrinks, moves on the metal member by the amount of contraction, causing the final sintered compact to move away from the final joining position. If a partial sintering bond occurs between the base material and the base material at a certain point during shrinkage due to sintering, and this bonding force is stronger than the shrinkage force of the sintered compact, the sintered compact will shrink. This may lead to breakage and cause the joint position to be misaligned. In particular, these problems become more serious as the size of the sintered body becomes larger. The purpose of the present invention is to propose a method for solving the above-mentioned problems, and it is possible to join only the necessary parts instead of the entire circumference of a cylindrical body, etc., and the surface of the metal member can be The object of the present invention is to provide a method that can join even curved surfaces. The present invention will be explained in more detail below. The material of the powder compact used in the present invention is 1000~
It is preferable to use one that produces a eutectic liquid phase at a temperature of 1350°C.
The present inventors have already disclosed a boride or complex boride-based hard sintered alloy containing Fe and a B content of 3 to 20% (Tokuko Sho
54-27818, Special Publication Showa 56-8904, Special Publication Showa 56-15773,
Since it is a material that undergoes liquid phase sintering (Japanese Patent Publication No. 56-37281, Japanese Patent Application Laid-Open No. 58-67842), it will mainly be explained in detail below. The hard sintered alloy and powder used in the present invention are B
Contains 3 to 20% of Fe, and at least 10% of Fe. B forms a hard phase of boride or complex boride and is dispersed therein, imparting high hardness and wear resistance. It also plays an important role in sintering the powder compact and firmly bonding it to the metal member without applying pressure. The amount of hard phase is 40-95%. The hardness of the sintered body ranges from HR A 80 to 93,
If the hardness can be lowered to around HR A 77, the B content can be lowered to 2%. The boride components forming the hard phase are Mo, W,
These are group a, a, and a group elements such as Ti, V, Nb, Ta, Zr, and Hf, and iron group metal elements such as Fe, Cr, Co, Ni, and Mn. When C or carbides or nitrides are added, they mainly form a hard phase. The binder phase surrounding the hard phase provides strength and toughness to the sintered body, and is made of an Fe-based alloy component. Depending on the amount of Cr, Ni, Mo, W, Co, Cu, Mn, etc. added, these may exist in the hard phase, the binder phase, or both phases, and play a role in imparting corrosion resistance, heat resistance, and strength to the sintered body. . The particle size of the powder used is 350 meshes (44μ) or less, preferably 500 meshes (25μ) or less, and more preferably an average particle size in the range of 0.3 to 3μ. The reason for this is to increase the bonding force between the powders when compacting the powder so that the powder compact does not chip or lose its shape, and also to allow the sintering reaction to occur smoothly, resulting in a virtually true density with fewer pores. To obtain a sintered body, to maintain high mechanical properties of the sintered body such as hardness, transverse rupture strength, and wear resistance, and to increase the bonding strength with metal parts and not leave defects such as pores at the bonding interface. It is of fundamental importance to ensure that If the powder particle size is 100 mesh (150 μ) to 325 mesh or coarser than 500 mesh, many pores remain in the sintered body, and it is not possible to obtain a sintered body with true density, resulting in resistance. Strength such as rupture strength decreases, and pores remain at the bonding interface, making it impossible to obtain a strong bonded body. In order to make the powder fine, a wet ball mill, a vibrating ball mill, an attritor, or an equivalent grinding means using a solvent such as alcohol or acetone is used. As the powder becomes finer, it becomes more susceptible to oxidation, so it is preferable to use appropriate amounts of paraffin, stearic acid, zinc stearate, etc. After drying and granulating the finely pulverized powder above, pressure is applied.
The powder is compacted into the desired shape at 100 to 3000Kg/cm 2 , preferably 150 to 2000Kg/cm 2 , and the density of the powder is 3.2 to 5.6.
g/cm 3 is preferably in the range of 3.4 to 5.1 g/cm 3 .
This is 38-67% of the true density sintered body, preferably 40
In the range of ~60%. If the density of the green compact is less than 3.2 g/cm 3 , the strength of the green compact will be insufficient, and the green compact may break during operations such as handling and transportation.
In addition, cracks and holes are likely to occur during sintering, and the bonding is often insufficient and unstable. Green density is
When it exceeds 5.6g/ cm3 , a small amount of oxide remains on the powder surface, CO gas caused by this oxide,
Alternatively, it becomes difficult for the pores existing between the powder particles to escape, and these tend to remain in the center of the sintered body, degrading the mechanical properties of the sintered body. The powder compact made under the above conditions is left standing and sintered so that it contacts the metal member only on a straight line or curved line, but the radius of curvature on the side of the powder compact to be joined is not bonded. It is important that the radius of curvature be larger than the radius of curvature of the member being used. Regarding how large it should be, it is important that while the green compact is heated and shrinks and reaches almost true density, contact starts from a position closer to the first contact point to a farther side, and vice versa. If the size is at least the minimum size, the bonding will be complete and no problems such as breakage or cracks will occur. If the shrinkage rate of the powder compact during sintering is k%, the radius of curvature of the joined side of the powder compact is Rmm, and the outer diameter of the metal member is Dmm, then R>D/2 (1-K/100 ) It is more preferable if the following relationship is maintained. Further, the radius of curvature R can be up to infinity (that is, a straight line). (See FIG. 5) Furthermore, when joining to a flat plate, the radius of curvature R may take a negative value. Even in the case of a curved surface whose radius of curvature is not constant, the compact size may be calculated based on the maximum radius of curvature so that the above relationship can be maintained. The basic method of assembling the powder compact to the metal member is to lay the metal member horizontally and place the powder compact on top of it. By doing so, the powder compact comes into contact with the metal member under its own weight at the same time as sintering. If necessary, the metal member can be placed on an inclined surface and the powder compact can be placed on the inclined surface. In this case as well, for joining with metal parts,
It is necessary to apply the weight of the powder compact. The angle of inclination of the metal part is up to 60°, preferably up to 45°. As a result of various experiments regarding the metal parts used,
Ordinary steel such as JIS standard SS material, SC material, SB material, STB material, SUJ material, SCM material, SK material, SKS material, SKD
low-alloy steel such as SKH material, SUS material, SUH material, structural steel, tool steel, stainless steel, heat-resistant steel,
Fe-based materials such as high-speed steel, cast steel, and cast iron can be used, and all of them can provide strong bonding strength with a shear strength of 35 to 50 Kg/mm 2 and a bending strength of about 100 Kg/mm 2 or more. The shear strength of connections such as silver brazing is 20 to 25 kg/
It is about mm2 . Next, the heating conditions for bonding will be described.
Vacuum, reducing or non-oxidizing atmosphere can be used as the heating furnace atmosphere, but vacuum is preferable in consideration of ease of reducing small amounts of oxides such as B, Cr, and Ti, prevention of oxidation during heating, and other workability. is more preferable. When using a vacuum furnace, the degree of vacuum is in the range of 1 to 10 -5 torr, preferably 10 -1 to 10 -4 torr. Vacuum degree is 1torr
In the following, oxides such as B, Cr, and Ti are generated on the powder surface, so the lower limit is 1 torr, preferably 10 -1 torr. In addition, the reduction of the above-mentioned oxides such as B, Cr, and Ti is almost done at temperatures up to 10 -4 torr, and raising the degree of vacuum above 10 -5 torr is expensive in terms of equipment, so the upper limit is 10 -4 torr. -5 torr preferably 10 -4 torr. Reducing atmosphere or non-oxidizing atmosphere is
H 2 , N 2 , Ar gas, a gas containing a small amount of CO or CO 2 , or a mixed gas atmosphere thereof;
In order to prevent oxidation of Cr etc. or to reduce these oxides, lower the oxygen potential and keep the dew point below -10°C. Next, the heating temperature varies depending on the powder composition, but
It is in the range of 1150-1350°C, preferably 1180-1300°C. The density of the powder compact used in the present invention is 38 to 67% of the true density, and the density is 99% of the true density by sintering.
% or more, the true density is essentially 100%, although it contains a small amount of unavoidable impurities. B or B compound and Fe contained in the powder at 3 to 20% during sintering,
A eutectic liquid phase occurs between Ni, Cr, Co, etc. at temperatures above 1150°C, resulting in a sintered body with almost 100% true density, but B or B compounds in the sintered body are removed during sintering. , Fe or contained Cr, Ni, Co in iron, steel or alloy steel of metal parts within the same sintering temperature range.
It appears that a eutectic liquid phase is partially formed between the powder compact and the like, and it is thought that the sintering of the powder compact itself and the strong bonding between the sintered compact and the metal member proceed almost simultaneously. Although the sintered compact shrinks significantly compared to the powder compact by 12 to 27% in size and 33 to 62% in volume, by selecting the above sintering temperature and the time described later, A sintered body having the desired size and shape is obtained without deformation, and a strong bond with a shear strength of 35 kg/mm 2 or more is achieved with the bonding member. When a powder compact is brought into contact with a round bar or tube only in a straight line or curved line, it maintains accurate dimensions and shape after sintering, the joining position is accurate, and the shear strength is extremely high. It is interpreted that the bonding with the metal member is performed after sintering occurs with large dimensional shrinkage. For example, in the case of joining onto a rod or tube as shown in Figures 1 and 2, the green compact shrinks and becomes a sintered body with almost 100% true density, and the radius is reduced or the rod or tube is joined by the action of gravity. It is thought that the bonding occurs when the material comes into contact with the pipe or pipe. As mentioned above, the first technical idea of the present invention is
The powder compact is placed in a positional relationship such that only a portion of the powder compact is in contact with the iron, steel, or alloy steel member that is the joining metal member, with a gap, and the powder compact's own weight acts on it. Second, the B content is 3-20
%, and by using finely pulverized powder, the powder itself undergoes liquid phase sintering with 100% true density due to B, while at the same time partially forming a eutectic liquid phase with the metal components, B The purpose of this method is to reduce and remove oxides on the surface of metal members and perform a cleaning action, thereby making diffusion bonding extremely easy. In normal diffusion bonding, a large pressurizing load is applied to ensure sufficient bonding, but in the method of the present invention, only the weight of the powder compact is sufficient, and no pressurizing is necessary. Despite the extremely large dimensional shrinkage of 12 to 27%, only at the final stage of completion of sintering is the metal member surface and sintered body placed in full contact with each other to complete diffusion bonding. This completely prevents the surface of the sintered body during sintering from shifting from its final position on the surface of the metal component due to movement due to contraction, and the phenomenon of cracks and ruptures in the sintered body due to partial bonding. virtually 100 mm in position while maintaining the desired dimensions and shape.
% true density and bonding can be performed simultaneously. Next, the heating temperature is within the above temperature range,
Below 1150℃, a sintered body with true density cannot be obtained, many pores remain, and the bonding strength with metal parts is low, causing peeling, so the lower limit is 1150℃,
Preferably it is 1180°C. On the other hand, if the heating temperature is too high, the bonding strength with the metal member will be sufficient, but the shape of the sintered body will collapse, making it impossible to obtain a sintered body with the desired shape and dimensions, so the upper limit of the temperature is
The temperature is 1350°C, preferably 1300°C. Next, the heating time at 1150-1350°C is 5-90 minutes. Sintering and bonding reactions proceed quickly, so if you slow down the rate of heating to the above temperature, you can reach the above soaking temperature and achieve the desired purpose at the same time.
There may be cases where the sintering or bonding strength is insufficient, so
The lower limit is set to 5 minutes. If the powder compact or metal member is large, or if the amount to be processed is large, there may be a delay in local temperature rise or uneven temperature, so the upper limit of the soaking time is set at 90 minutes. Next, the rate of temperature increase in the temperature range from the appearance of a liquid phase to sintering is important, and must be kept below 20°C/min. If the temperature increase rate is too high, the bonding position may become inaccurate or the bonding to a curved surface may be insufficient, so the temperature is preferably 20° C./min or less. As described above, in the method of the present invention, there is no need to apply a load to increase the bonding strength during the sintering and bonding heat treatment, and contact with the powder green body's own weight is sufficient. Prior to performing the sintering and joining process, it is desirable that the surface of the metal member be subjected to a process such as shot blasting, turning, grinding, etc. to remove black scale. Irregularities created on the bonding surface due to blasting or the like affect the bonding strength. If the surface roughness is Rmax60μ or more, it is necessary to increase the heating temperature to maintain bonding strength, and if the heating temperature is increased, the shape of the sintered body cannot be obtained. Therefore, the surface roughness is Rmax60μ or less, preferably
The thickness is preferably 30μ or less, more preferably 10μ or less. Good bonding strength can be obtained even with a mirror finish with a lower limit of about 0.2μ, but usually up to about 0.8μ is sufficient. If necessary, the surface of the metal member is degreased with a solvent, or pretreatment such as alkaline cleaning or pickling is performed. By using the manufacturing conditions described above, it is possible to simultaneously complete a sintered body that maintains desired dimensions and shape, and a strong bonding of the sintered body to a metal member. The area to be bonded can be changed as necessary. If the heating temperature is high and the metal parts require tempering heat treatment to remove the effects of heating, semi-sintering heat treatment or solution heat treatment may be applied after sintering and joining, depending on the material of the metal parts used. Heat treatments such as chemical treatment, quenching, tempering, distortion removal, and depositing treatment can be performed. These heat treatments can be accomplished extremely economically in a single heating and cooling process by immediately performing the desired heating and cooling operations using N2 gas or the like in the same furnace after the sintering and bonding process. Alternatively, heat treatment may be performed in a separate furnace after cooling to room temperature. During these heat treatments, the bonding temperature between the sintered body and the metal member is high and the bonding strength is sufficiently high, so problems such as peeling are unlikely to occur, and changes in mechanical properties such as hardness and transverse rupture strength of the sintered body are avoided. Almost never occurs. For example, semi-hardening heat treatment is performed at 880 to 1000℃ for 10 to 30 minutes.
By heating in N2 gas and cooling at a cooling rate of 20 to 50°C/min, the crystal grain size and mechanical properties of the metal member can be restored, and the hardness, transverse rupture strength, and structure of the sintered body change. There isn't. For stainless steel
It may be combined with soaking at 1000 to 1150°C followed by quenching with N2 gas. The hard sintered alloy bonded metal body of the present invention not only has high hardness and strength as a hard sintered alloy and has excellent wear resistance, but also has excellent corrosion resistance, heat resistance at high temperatures, and oxidation resistance. Because of its high strength, it can be used in a wide range of applications as a composite material for general wear-resistant materials, corrosion-resistant wear-resistant materials, and heat-resistant wear-resistant materials. For example, one or many pieces are arranged on a metal member such as a flat plate, cylinder, or rod, and are joined together to form guide plates, guide rods, earth, sand, or shot blasts for the parts through which ferrous or non-ferrous plates, wires, rods, or pipes pass. Scraping plates, plates, and wear-resistant members for transportation means such as conveyors for conveying coal, coke, ore, glass, cement, etc., attachments for furnace pipes for coal ovens, fluidized bed boilers, etc. Yuerosion prevention linings, side pump casings and blades, screw conveyor blade wear-resistant linings, wear-resistant parts against molten Zn, mines, etc.
Wear resistance of the hard alloy of the present invention for civil engineering, construction machinery, steel, non-ferrous metals, paper, chemicals, wood machinery and metal processing industries, etc.
It can be widely used in fields where corrosion resistance and heat resistance can be utilized. The above-mentioned pulverization of the powder, virtually 100% true densification based on the compacting pressure of the powder, the density of the powder compact, and the amount of shrinkage of the sintered compact due to heating, and the assembly of the metal member and the powder compact On the other hand, the description of the surface roughness of a metal member can be similarly applied to Ni- and Co-based B-containing powders and liquid-phase sintered alloys containing a large amount of C, Si, and P. In the case of a Ni-based alloy powder containing as much as 2 to 4% of B, Si, or C, the liquid phase appearance temperature decreases to about 1050°C. If the liquid phase sintering temperature exceeds 1350℃, the metal parts are likely to deform during heating.
It is difficult to apply this method to powders whose liquid phase sintering temperature exceeds 1350°C. As mentioned above, when using powder of about -100 mesh, such as those used for general sintering such as normal Fe-based alloys and Ni-based alloys, it is 99% or more,
A sintered body with substantially 100% true density cannot be obtained, but a sintered body with a lower density remains, and pores remain, and the number of pores at the bonding interface with the metal member increases, and the bonding strength decreases. , can be used depending on the purpose. Examples of the present invention will be shown below. Example 1 Mo powder 44 in 10% B, 13% Cr, FeBal. powder
%, Ni powder 3%, Fe powder 6%, graphite powder 0.3%, and paraffin 6% are mixed, wet-pulverized in a vibrating ball mill to an average particle size of 1.5 μm, and after drying, a semi-cylindrical green compact with a density ratio of 51% is obtained. (outer surface radius 44 mm, inner radius 40 mm), and this compact was placed on a round bar of SS41 and SUS405 with an outer diameter of 60 mm and a surface roughness of Rmax 6 μm (Fig. 1 A). Sintering and bonding was carried out at 1275°C for 20 minutes in a vacuum of ×10 -3 torr. (Figure 1B)
The density of the sintered body was 8.2 g/cm 3 , with no pores observed and substantially 100% true density. A specimen was cut out from this, and the shear strength was measured using a method similar to the JIS G061 clad steel shear strength test. As a result, the joint strengths shown in Table 1 were obtained. The hardness of the sintered body was H R A87, and the bonding interface was strong with a diffusion layer.

【表】 実施例 2 13%B、5%Cr、FeBal。の粉末にMo粉末50
%、Ni粉末3%、Fe粉末4%、黒鉛粉末0.4%と
パラフイン5%を混合し、ボールミルで平均粒径
1.3μmに湿式粉砕し、乾燥後、密度比48%の半円
筒圧粉体(外面半径51mm、内面半径47mm)にプレ
スで成形し、この圧粉体を平面に横置きした外径
76mmの鋼管(表面粗度Rmax10〜30μm)上に静
置し、(第2図A)全体を4.5×10-2torrの真空中
で1250℃、20分焼結接合した。(第2図B)焼結
接合後、焼結体は金属部材と完全に接合しており
接合面の顕微鏡観察においても界面に空孔は存在
しないことが確認された。また焼結体にも空孔は
認められず硬度はHRA90であつた。接合強度は
46Kg/mm2であつた。 実施例 3 実施例2と同様の粉末を用い、密度比45%の筒
面かく圧粉体(外面半径46.5mm、内面半径31.5
mm)に成形し、この圧粉体をRmax10μの表面粗
度をもつ外径50.5mmのSUS410の丸棒の上に置き
(第3図A)、全体を2×10-3torrの真空中で1250
℃、20分焼結接合した。(第3図B) この焼結接合体より8mm×4mm×25mmの直方体
を切り出し接合面を荷重負荷点とする3点曲げ試
験を行つた。その結果第2表に示す接合強度が得
られた。
[Table] Example 2 13% B, 5% Cr, FeBal. Mo powder 50 to powder
%, Ni powder 3%, Fe powder 4%, graphite powder 0.4% and paraffin 5% were mixed and the average particle size was determined using a ball mill.
Wet-pulverize to 1.3 μm, dry, and press to form a semi-cylindrical compact with a density ratio of 48% (outer surface radius 51 mm, inner radius 47 mm).The outer diameter of this compact is placed horizontally on a flat surface.
It was placed on a 76 mm steel pipe (surface roughness Rmax 10-30 μm), and the whole (Fig. 2A) was sintered and bonded in a vacuum of 4.5×10 −2 torr at 1250° C. for 20 minutes. (FIG. 2B) After sintering and bonding, the sintered body was completely bonded to the metal member, and microscopic observation of the bonded surface confirmed that there were no pores at the interface. In addition, no pores were observed in the sintered body, and the hardness was H R A90. The bonding strength is
It was 46Kg/ mm2 . Example 3 Using the same powder as in Example 2, a cylindrical powder compact with a density ratio of 45% (outer radius 46.5 mm, inner radius 31.5
mm), and the green compact was placed on a SUS410 round bar with an outer diameter of 50.5 mm and a surface roughness of Rmax 10μ (Fig. 3A), and the whole body was placed in a vacuum of 2 × 10 -3 torr. 1250
Sinter bonding was performed at ℃ for 20 minutes. (Figure 3B) A rectangular parallelepiped of 8 mm x 4 mm x 25 mm was cut out from this sintered joint and a three-point bending test was conducted using the joint surface as the load point. As a result, the bonding strengths shown in Table 2 were obtained.

【表】 実施例 4 実施例2と同様の粉末を用い、筒面かく型圧粉
体(外面半径35mm、内面半径31.5mm、第4図A)
を外径50.5mmの45゜ベンド管上に管軸方向にすき
まなく配置し、(第4図B)全体を4.5×10-2torr
の真空中で1250℃、20分焼結接合した。焼結接合
後は第4図Cに示すごとく焼結体は相互の間に間
隔をあけた状態で金属部材と完全に接合したもの
が得られた。 実施例 5 実施例2と同様の粉末を用い巾15mm、長さ100
mm、厚さ3mmの板状の圧粉体を成形し、この圧粉
体をRmax15μの表面粗度をもつ外径76mmの鋼管
上に静置し(第5図A)全体を2×10-3torrの真
空中で1250℃、20分焼結接合した。(第5図B)
焼結接合後、焼結体は金属部材と完全に接合して
おり、圧環試験により変形を加えても接合部は剥
離しないことが確認された。 実施例 6 実施例1と同様の粉末を用い密度比50%の半円
筒圧粉成形体(外面半径35mm、内面半径31.5mm、
巾15mm)をプレスにて成形し、この圧粉体を
Rmax10μmの表面粗度をもつ外径50.5mmの鋼管
(炭素量0.09%)上に静置し全体を3.5×10-3torr
の真空中で1250℃、20分焼結接合した。焼結接合
後、圧環試験により焼結金属を破断させるまで変
形させても焼結体は金属部材と分離せず完全に接
合していることが確認された。 また、この接合金属体よりJIS12号試験片を切
り出し引張試験を行つたところ、降伏点15Kg/
mm2、抗張力35Kg/mm2、伸び44%で金属部材結晶粒
が粗大化していた。950℃、20分N2ガス中で加熱
した後、40℃/minで冷却した焼準熱処理試験片
は降伏点26Kg/mm2、抗張力39Kg/mm2、伸び43%で
あり、焼結接合処理前の金属部材の機械的特性に
復元でき、結晶粒も処理前の状態に復元された。
焼結体の硬度はHRA87で変化がなかつた。
[Table] Example 4 Using the same powder as in Example 2, a cylindrical shaped powder compact (outer radius 35 mm, inner radius 31.5 mm, Fig. 4A)
is placed on a 45° bent pipe with an outer diameter of 50.5 mm without any gaps in the pipe axial direction (Fig. 4B), and the overall temperature is 4.5 × 10 -2 torr.
Sinter bonding was carried out in a vacuum at 1250℃ for 20 minutes. After sintering and joining, as shown in FIG. 4C, the sintered bodies were completely joined to the metal member with spaces between them. Example 5 Using the same powder as in Example 2, the width was 15 mm and the length was 100 mm.
A plate-shaped green compact with a thickness of 3 mm and a thickness of 3 mm was molded, and this green compact was placed on a steel pipe with an outer diameter of 76 mm and a surface roughness of Rmax 15μ (Fig. 5A) . Sinter bonding was performed at 1250°C for 20 minutes in a vacuum of 3 torr. (Figure 5B)
After sintering and joining, the sintered body was completely joined to the metal member, and it was confirmed that the joint did not separate even if deformed by a radial crushing test. Example 6 Using the same powder as in Example 1, a semi-cylindrical powder compact with a density ratio of 50% (outer surface radius 35 mm, inner radius 31.5 mm,
15mm width) using a press, and this green compact is
Placed on a steel pipe (carbon content 0.09%) with an outer diameter of 50.5 mm and a surface roughness of Rmax 10 μm, and the overall temperature was 3.5 × 10 -3 torr.
Sinter bonding was carried out in a vacuum at 1250℃ for 20 minutes. After sintering and joining, it was confirmed that the sintered body did not separate from the metal member and was completely joined to the metal member even when the sintered metal was deformed to the point of rupture through a radial crushing test. In addition, when a JIS No. 12 test piece was cut out from this bonded metal body and a tensile test was performed, the yield point was 15 kg/
mm 2 , tensile strength of 35 Kg/mm 2 , and elongation of 44%, the crystal grains of the metal member were coarsened. The normalized heat-treated specimen heated at 950℃ for 20 minutes in N 2 gas and then cooled at 40℃/min had a yield point of 26Kg/mm 2 , a tensile strength of 39Kg/mm 2 , and an elongation of 43%. The mechanical properties of the previous metal part were restored, and the crystal grains were also restored to their pre-treatment state.
The hardness of the sintered body did not change at H R A87.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図および第5図
は何れも本発明の実施例を示す図面であり、第1
図A、第2図A、第3図A、第4図Bおよび第5
図Aは圧粉体と金属部材との組みつけ方を示す図
面である。第1図B、第2図B、第3図B、第4
図Cおよび第5図Bは焼結接合された状態を示す
図面である。 1……圧粉体、2……金属部材、3……焼結
体。
1, 2, 3, 4, and 5 are drawings showing embodiments of the present invention.
Figure A, Figure 2 A, Figure 3 A, Figure 4 B and Figure 5
Figure A is a diagram showing how to assemble the compact and the metal member. Figure 1B, Figure 2B, Figure 3B, Figure 4
FIG. C and FIG. 5B are drawings showing the sintered and joined state. 1...Powder compact, 2...Metal member, 3...Sintered compact.

Claims (1)

【特許請求の範囲】 1 焼結時に液相を生じる成分からなる粉末圧粉
体を用い、該粉末圧粉体の接合される側の曲率半
径を接合せんとする金属部材の曲率半径より大き
くし、かつ該粉末圧粉体が金属部材と直線または
曲線上においてのみ接触するように組みつけた状
態で、真空中または非酸化性雰囲気中で加熱し、
該粉末圧粉体を液相焼結すると同時に金属部材と
の間の共晶液相を利用して拡散接合を行なわせる
ことを特徴とする焼結接合方法。 2 金属部材が円柱状、円筒状、半円筒状や楕円
状等のような円弧からなる曲面をもつた物体で、
かつ長手方向が直線もしくは曲線状である特許請
求範囲第1項記載の焼結接合方法。 3 金属部材が鉄、炭素鋼、合金鋼、工具鋼であ
る特許請求の範囲第1〜2項から選ばれる1つの
項に記載の焼結接合方法。 4 粉末圧粉体がB、Sl、P、およびCの1種以
上を含有し、かつ焼結温度が1000℃〜1350℃であ
る特許請求の範囲第1〜3項から選ばれる1つの
項に記載の焼結接合方法。 5 粉末圧粉体がB含有量3〜20%で少なくとも
10%以上のFeを含み、焼結後に主として硼化物
もしくは複硼化物よりなる硬質相を40〜95%と、
該硬質相を結合する結合相よりなる硬質焼結合金
となる粉末の粒度を350メツシユ(44μ)以下と
し、該粉末を圧粉成型して圧粉体密度を38〜67%
とした粉末圧粉体であり、該粉末圧粉体を金属部
材である鉄、鋼または合金鋼に一部を接触させた
状態で1〜10-5torrの真空加熱炉で1150〜1350℃
に加熱した後、冷却することによつて12〜27%の
寸法収縮率を与え99%以上実質的に100%真密度
の焼結体とし、同時に該金属部材との強固な接合
を行う特許請求の範囲第1〜4項から選ばれる1
つの項に記載の焼結接合方法。 6 焼結接合後の冷却過程または一旦冷却後、再
加熱により接合部材の調質熱処理を行う特許請求
の範囲第1〜5項から選ばれる1つの項に記載の
焼結接合方法。
[Scope of Claims] 1. A powder green body made of a component that generates a liquid phase during sintering is used, and the radius of curvature of the side to be joined of the powder green body is made larger than the radius of curvature of the metal members to be bonded. , and heated in vacuum or in a non-oxidizing atmosphere in a state in which the powder compact is assembled so that it contacts the metal member only in a straight line or a curved line,
A sintering and joining method characterized by performing liquid phase sintering of the powder compact and at the same time performing diffusion joining using a eutectic liquid phase between the powder compact and a metal member. 2 An object whose metal member has a curved surface consisting of an arc such as a cylinder, a cylinder, a semi-cylindrical shape, an ellipse, etc.
The sintering and joining method according to claim 1, wherein the longitudinal direction is straight or curved. 3. The sintering and joining method according to one of claims 1 to 2, wherein the metal member is iron, carbon steel, alloy steel, or tool steel. 4. In one claim selected from claims 1 to 3, wherein the powder green compact contains one or more of B, Sl, P, and C, and the sintering temperature is 1000°C to 1350°C. The described sinter bonding method. 5 The powder compact has a B content of 3 to 20% and at least
Contains 10% or more of Fe, and after sintering has a hard phase of 40 to 95% mainly composed of boride or complex boride,
The particle size of the powder that becomes the hard sintered alloy consisting of the binder phase that binds the hard phases is set to 350 mesh (44μ) or less, and the powder is compacted to have a compact density of 38 to 67%.
The powder compact is heated to 1150 to 1350°C in a vacuum heating furnace at 1 to 10 -5 torr with a part of the powder compact in contact with a metal member such as iron, steel, or alloy steel.
A patent claim that provides a sintered body with a dimensional shrinkage rate of 12 to 27% by heating and cooling to a sintered body with a true density of 99% or more and substantially 100%, and at the same time provides a strong bond with the metal member. 1 selected from the range 1 to 4 of
The sintering joining method described in paragraph 1. 6. The sintering and joining method according to one of claims 1 to 5, wherein the joining member is subjected to tempering heat treatment in a cooling process after sintering or once cooled and then reheated.
JP19251883A 1983-10-17 1983-10-17 Sintering connection of green compact to metal member Granted JPS6086202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19251883A JPS6086202A (en) 1983-10-17 1983-10-17 Sintering connection of green compact to metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19251883A JPS6086202A (en) 1983-10-17 1983-10-17 Sintering connection of green compact to metal member

Publications (2)

Publication Number Publication Date
JPS6086202A JPS6086202A (en) 1985-05-15
JPS6334201B2 true JPS6334201B2 (en) 1988-07-08

Family

ID=16292613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19251883A Granted JPS6086202A (en) 1983-10-17 1983-10-17 Sintering connection of green compact to metal member

Country Status (1)

Country Link
JP (1) JPS6086202A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2014999C (en) * 1989-04-24 1999-09-07 Kenneth William Bates Gas injector
JP7182323B2 (en) * 2021-03-19 2022-12-02 冨士ダイス株式会社 Method for manufacturing hard alloy composite member and method for manufacturing vacuum suction device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070104A (en) * 1983-09-28 1985-04-20 Nippon Piston Ring Co Ltd Production of cam shaft

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070104A (en) * 1983-09-28 1985-04-20 Nippon Piston Ring Co Ltd Production of cam shaft

Also Published As

Publication number Publication date
JPS6086202A (en) 1985-05-15

Similar Documents

Publication Publication Date Title
US10272497B2 (en) Cladded articles and methods of making the same
EP1465205B1 (en) Joining piece for fusion reactor
JP4304245B2 (en) Powder metallurgy object with a molded surface
JPH0347903A (en) Density increase of powder aluminum and aluminum alloy
JP2005526178A (en) Method for producing a sintered part from a sinterable material
EP2776204B1 (en) Friction stir welding tool made of cemented tungsten carbid with nickel and with a al2o3 surface coating
US3279049A (en) Method for bonding a sintered refractory carbide body to a metalliferous surface
US4587096A (en) Canless method for hot working gas atomized powders
JPS6334201B2 (en)
EP3630398B1 (en) Hot isostatic pressed article comprising a body of a cemented carbide and a body of a metal alloy or of a metal matrix composite
JPH073306A (en) High-strength sintered hard alloy composite material and production thereof
JPS628496B2 (en)
US6821313B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
CN1632340A (en) Steel-copper bimetallic axle sleeve and process for producing same
CA1136445A (en) Method for producing hot forged material from powder
US3450511A (en) Sintered carbide hard alloy
JP4221703B2 (en) Cemented carbide roll composite roll manufacturing method and roll
US7270782B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JPH115191A (en) Cermet cladding metal parts and manufacture thereof
JP2802768B2 (en) Composite sintered alloy and steel support in heating furnace
EP0533745B1 (en) Method of manufacturing compound products
Gurwell et al. Fabrication and properties of tungsten heavy metal alloys containing 30% to 90% tungsten
Maslyuk et al. Layered powder metallurgy wear-and corrosion-resistant materials for tool and tribological applications. Structure and properties
JPH0455571B2 (en)
JPH0297614A (en) Steel material transferring member in heating furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees