JPS6086202A - Sintering connection of green compact to metal member - Google Patents

Sintering connection of green compact to metal member

Info

Publication number
JPS6086202A
JPS6086202A JP19251883A JP19251883A JPS6086202A JP S6086202 A JPS6086202 A JP S6086202A JP 19251883 A JP19251883 A JP 19251883A JP 19251883 A JP19251883 A JP 19251883A JP S6086202 A JPS6086202 A JP S6086202A
Authority
JP
Japan
Prior art keywords
sintering
powder
metal member
liquid phase
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19251883A
Other languages
Japanese (ja)
Other versions
JPS6334201B2 (en
Inventor
Tsugio Kawamura
次男 河村
Seiichi Ohira
大平 成一
Mitsuo Ohori
大堀 光夫
Toshiro Imai
今井 斗志郎
Yoshikazu Kondo
近藤 嘉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP19251883A priority Critical patent/JPS6086202A/en
Publication of JPS6086202A publication Critical patent/JPS6086202A/en
Publication of JPS6334201B2 publication Critical patent/JPS6334201B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To connect a green compact only to the necessary part of a metal member, by bring the green compact comprising components generating a liquid phase during sintering into contact with the metal member on a straight line and heating both of them under vacuum to simultaneously perform liquid phase sintering and connection. CONSTITUTION:A green compact 1 comprising components generating a liquid phase during sintering is formed so as to make the radius of curvature thereof larger than that of a metal member 2 and assembled to the metal member 2 so as to be contacted therewith body 2 comprises a steel material such as carbon steel or alloyed steel and the green compact 1 contains one or more of B, Si, P and C, and a sintering temp. is set to 1,000-1,350 deg.C. Subsequently, the sintered one is heated under vacuum or in a non-oxidative atmosphere and the green compact 1 is subjected to liquid phase sintering and, at the same time, subjected to diffusion connection by utilizing the eutectic liquid phase between the green compact 1 and the metal member 2 to form a sintered body 3.

Description

【発明の詳細な説明】 本発明、は焼結時に液相な生じる成分からなる粉末圧粉
体を金属部材と一曲線上または直線上においてのみ接触
するように組みつけ、非加圧の状態で真空中または非酸
化性雰囲気中で一度の加熱により液相焼結と接合を同時
に行わせることをq、1−徴とする焼結接合方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves assembling a powder compact made of components that are in a liquid phase during sintering so that it contacts a metal member only on a curved line or a straight line, and in a non-pressurized state. The present invention relates to a sintering and joining method in which liquid phase sintering and joining are performed simultaneously in vacuum or in a non-oxidizing atmosphere by a single heating operation.

一般に金属部材に焼結体を接合する方法には、溶接法や
◇ライ11法、拡散接合法等がある。
Generally, methods for joining a sintered body to a metal member include a welding method, a ◇Lye 11 method, a diffusion bonding method, and the like.

溶接法は硬度が西(、靭性の低い焼結体の場合には熱(
向撃によりクラックを生し使用できない場合がある。ろ
うト1は銀ろうや銅ろうのろう伺d1λ度が600〜9
00℃程度であり、ろう刊温度は高くないが、逆に高温
耐熱部材として使用したい場合にろう何部から溶融9.
11離して使用できない。またろう伺強度が必ずしも高
々なくろう何部の強度に不安が残り、大きな荷重に耐え
る必要がある場合に使用できない等の問題をもっている
The welding method uses heat (for sintered bodies with low hardness) and low toughness (
It may crack due to counter attack and cannot be used. Wax 1 is made of silver wax or copper wax and has a d1λ degree of 600 to 9.
00℃, and the waxing temperature is not high, but on the other hand, if you want to use it as a high-temperature heat-resistant member, you can melt some parts of the wax.
11 cannot be used apart from each other. In addition, the strength of the soldering part is not necessarily high enough, and there is still concern about the strength of the soldering part, so there is a problem that it cannot be used when it is necessary to withstand a large load.

次に拡散接合法については通常の鋼材等の接合に利用さ
れる方法であり、一般に1,000〜1,300℃程度
で加熱することにより拡散を行わせることによって接合
が行わ゛れる。しかしながらこの方法は、焼結体と金属
部材な充分に接触させるために焼結体と金属部材の表面
形状を全く一致させ、かつ接合面の表面粗さを非常に細
かくする必要があり、未接合面をな(するため時として
荷重を負荷させた状態でかつ長時間の加熱を必要とし、
また拡散接合時に焼結体を再加熱することによるコスト
アップやa性の劣化等の問題がある。
Next, the diffusion bonding method is a method commonly used for bonding steel materials, etc., and bonding is generally performed by heating at about 1,000 to 1,300° C. to cause diffusion. However, in this method, in order to make sufficient contact between the sintered body and the metal part, it is necessary to match the surface shapes of the sintered body and the metal part, and to make the surface roughness of the joint surface very fine. In order to smooth the surface, it sometimes requires heating under a load and for a long time.
Further, there are problems such as increased cost and deterioration of a-property due to reheating of the sintered body during diffusion bonding.

このため焼結の際の収縮を利用し銅相もしくは超硬合金
の外周に圧粉体を同軸的に配し、−回の焼結加熱により
接合させる方法が提案されてしするが、これらはすべて
環状に接合する場合にのみしか利用できず、また圧粉体
の内径寸法をある範囲内にきびしくおさえないと焼結体
に割れを生じる等の問題がある。
For this reason, a method has been proposed in which a green compact is placed coaxially around the outer periphery of a copper phase or cemented carbide by utilizing the shrinkage during sintering, and the bonding is performed by -times of sintering heating. This method can only be used when joining everything in an annular shape, and there are problems such as cracking of the sintered body unless the inner diameter of the green compact is strictly controlled within a certain range.

粉末圧粉体を実質的に100%真密度の焼結体とし、か
つこれらの焼結体の形状を所期の形状に保ち、かつ焼結
体を金属部材の接合したい部分に適格に接合させ、かつ
焼結体の破断等をおこさず’iaiい接合強度で接合さ
せるためには、圧粉体をll’tに金属部材表面に置く
だけではとれ等ずへての条件を満足させる事は困難であ
る。この理由として、粉末圧粉体は加熱によって液相出
現により、縦。
Making the powder green compact into a sintered compact with substantially 100% true density, maintaining the shape of these sintered compacts in the desired shape, and properly joining the sintered compact to the part of the metal member to be joined. In order to bond the sintered body with a high bonding strength without causing breakage, etc., it is impossible to satisfy the following conditions simply by placing the green compact on the surface of the metal member. Have difficulty. The reason for this is that the powder compact becomes vertical due to the appearance of a liquid phase when heated.

+l’l g I団さ全方向で大きな収縮をおこし、収
縮に伴って焼結が進行する粉末圧粉体は金属部材」二を
その収縮分だけ移動するために、最終焼結体が最終の接
合位置からはずれた位11°・11となったり、また焼
結による収縮中にある個所で9祠との間で部分的な焼結
接合をおこし、この接合力が焼結体の収縮力よりも強い
と、焼結体の破断につながり、また接合位置を狂わせる
原因となる。特に焼結体寸法が大きくなる程これらの問
題が太き(なってくる。
+l'l g I A powder green compact that undergoes large contraction in all directions, and sintering progresses as it shrinks, moves the metal member by the amount of contraction, so that the final sintered compact The angle becomes 11°・11 at the point where it deviates from the bonding position, and a partial sintering bond occurs with the 9th shrine at a certain point during shrinkage due to sintering, and this bonding force is greater than the shrinkage force of the sintered body. If it is too strong, it will lead to breakage of the sintered body and cause the joining position to be distorted. In particular, these problems become more serious as the size of the sintered body becomes larger.

本発明の目的は上述の如き間匙点を解決する方法を提案
するものであり、円筒体などの全周に接合するのではな
く、必要とする部分のみに接合可能であり、金属部材表
面が二次曲面であっても接合できる方法を提供すること
にある。
The purpose of the present invention is to propose a method for solving the above-mentioned problem, and it is possible to join only the necessary parts instead of the entire circumference of a cylindrical body, etc., and the surface of the metal member is The object of the present invention is to provide a method that can join even quadratic curved surfaces.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明で使用する粉末圧粉体の材料は1,000〜1.
350℃の間で共晶液相を生じるものが好ましい。
The material of the powder compact used in the present invention is 1,000 to 1.
It is preferable that a eutectic liquid phase occurs between 350°C and 350°C.

木発明者らはすてにB含有量が3〜20%でFeを含む
硼化物もしくは複硼化物系の硬質焼結合金およびこれら
の粉末についてIJII示しており(特公昭54−27
818.特公昭56−8904.局−公明56−157
73. !1.5公昭56−37281゜特開昭58−
671342)、液相焼結を行わせるオ」料であるので
、これを主として以下に詳細に説明する。
Wood inventors have already shown IJII about boride or complex boride hard sintered alloys containing Fe with a B content of 3 to 20% (Japanese Patent Publication No. 54-27).
818. Tokuko Sho 56-8904. Bureau - Komei 56-157
73. ! 1.5 Publication No. 56-37281° Unexamined Publication No. 58-
671342), which is an ingredient for liquid phase sintering, will be mainly described in detail below.

本発明に使用した硬質焼結合金および粉末はBを3〜2
0%含有し、少なくとも10%以上のFeを含む。Bは
硼化物または複硼化物の硬質相を形成して分子it存在
し、高い硬度と耐摩耗性を賦与する。また、粉末圧粉体
の焼結と金属部材への強固な接合を、非加圧のもとで行
わせる重要な役割を果ず。硬質相の量は40〜95%で
ある。
The hard sintered alloy and powder used in the present invention have a B content of 3 to 2
0%, and contains at least 10% or more of Fe. B exists as a molecule forming a hard phase of boride or complex boride, and imparts high hardness and wear resistance. It also plays an important role in sintering the powder compact and firmly bonding it to the metal member without applying pressure. The amount of hard phase is between 40 and 95%.

焼結体の硬度はI−IRA80〜93の範囲であるが、
11RA77程度まで硬度を落してもよい場合はB金白
−量を2%に下げることもできる。
The hardness of the sintered body is in the range of I-IRA 80 to 93,
If the hardness can be lowered to about 11RA77, the amount of B gold platinum can be lowered to 2%.

硬質相を形成する硼化物成分は、Mo、 W、 Ti。The boride components forming the hard phase are Mo, W, and Ti.

V 、 Nl)、 Ta、 Zr、 r−11の■a、
Vaおよび■a族元素およびPc 、 Cr 、Co 
、Ni 、 Mnの鉄族金属元素である。Cまたは炭化
物や窒化物を添加した場合には、これらは主として硬質
相を形成する。硬質相をとりまく結合相は、焼結体に強
度と靭性な賦与するものであり、FC基の合金成分より
なる。Cr、Ni。
V, Nl), Ta, Zr, ■a of r-11,
Va and ■a group elements and Pc, Cr, Co
, Ni, and Mn, which are iron group metal elements. When C or carbides or nitrides are added, they mainly form a hard phase. The binder phase surrounding the hard phase provides strength and toughness to the sintered body, and is composed of an FC-based alloy component. Cr, Ni.

MO、W 、Co 、Co 、 Mn等の添加:lit
によって、これらは硬質相または結合相あるいは両相に
存在し焼結体に耐食性、耐熱性および強度を賦与する役
;lH41をする。
Addition of MO, W, Co, Co, Mn, etc.: lit
Accordingly, these are present in the hard phase, the binder phase, or both phases, and serve to impart corrosion resistance, heat resistance, and strength to the sintered body;

使用する粉末の粒度は350メツシユ(44μ)以下、
好ましくは500メソシユ(25μ)以下、更に好まし
くは平均粒径o3〜3μの範囲である。
The particle size of the powder used is 350 mesh (44μ) or less,
The average particle size is preferably 500 meso (25μ) or less, more preferably an average particle size of 03 to 3μ.

この理由は粉末を圧粉成形した時の粉末相互の結合力を
高めて圧粉体に欠けや形(ずれを起させないこと、更に
焼結反応を円滑に行わせ、気孔の少ない実質的に真密度
の焼結体を得ること、焼結体の硬度や抗折力、耐摩耗性
などの機械的特性を高く保つこと、金属部材との接合強
度を高(し接合界面に気孔等の欠陥を残さないようにす
ることのため基本的に重要である。粉末粒度が1. O
Oメツシュ(150μ)〜325メツツユあるいは50
0メツンユよりも粗い粉末を含む場合には焼結体には多
くの空孔が残存し、また真密度の焼結体を得ることがで
きず抗折力等の強度は低下し、接合界面にも空孔が残存
して強力な接合体が得られない。
The reason for this is to increase the bonding force between the powders when compacting the powder, to prevent chipping or deformation (misalignment) in the powder compact, and to allow the sintering reaction to occur smoothly. To obtain a sintered body with high density, to maintain high mechanical properties such as hardness, transverse rupture strength, and wear resistance of the sintered body, and to increase the bonding strength with metal parts (and prevent defects such as pores at the bonding interface). It is fundamentally important to avoid leaving any residue.Powder particle size is 1.O
O mesh (150 μ) ~ 325 mesh or 50
If the powder contains powder coarser than 0, many pores remain in the sintered body, and it is not possible to obtain a sintered body with true density, and the strength such as transverse rupture strength decreases, causing problems at the bonding interface. However, pores remain and a strong bond cannot be obtained.

粉末を微細化するためにはアルコールやアセトン等の溶
剤を使用した湿式ボールミル、振動ボールミル、アトラ
イターあるいはこれらに相当する粉砕手段を用いる。微
粉末となるに従って、粉末が酸化しやすくなるのでパラ
フィン、ステアリン酸。
In order to make the powder fine, a wet ball mill, a vibrating ball mill, an attritor, or an equivalent grinding means using a solvent such as alcohol or acetone is used. As the powder becomes finer, it becomes more easily oxidized, so use paraffin and stearic acid.

ステアリン酸亜鉛等の適量を使用するのが好ましい。It is preferred to use an appropriate amount of zinc stearate or the like.

上記の微粉砕した粉末を乾燥、造粒後、加圧力100〜
3.000 kg7cm 、好ましくは150〜2、 
OOOkg/cJで所望の形状に圧粉成形し、圧粉密度
を3.2〜5.69/c4好ましくは3.4−5.1 
f/c4の範囲とする。これは真密度の焼結体の38〜
67%、好ましくは40〜60%の範囲である。圧粉体
密度が3.29/cAより小さいと圧粉体の強一度が不
足し、取扱いや運搬などの作業中に圧粉体がこわれるこ
とがおこる。また焼結中に亀裂や空孔を生しやすくなり
、接合が不充分な場合も多く安定しない。圧粉体密度が
5.69/cJ以上になると粉末表面に少量残イfして
いる酸化物や、この酸化物に起因するCOカス、あるい
は粉末粒子間に存在する空孔の逸散が困難となり、これ
らが焼結体の中心部に残存しやすくなり、焼結体の機械
的特性を低下させる。
After drying and granulating the above finely pulverized powder, the pressing force is 100~
3.000 kg7cm, preferably 150~2,
The powder is compacted into a desired shape at OOOkg/cJ, and the compacted powder density is 3.2 to 5.69/c4, preferably 3.4 to 5.1.
The range is f/c4. This is the true density of the sintered body of 38~
67%, preferably in the range of 40-60%. If the density of the green compact is less than 3.29/cA, the strength of the green compact will be insufficient, and the green compact may break during operations such as handling and transportation. In addition, cracks and pores are likely to form during sintering, and the bonding is often insufficient and unstable. When the green compact density is 5.69/cJ or more, it is difficult to dissipate a small amount of oxide remaining on the powder surface, CO scum caused by this oxide, or pores existing between powder particles. These tend to remain in the center of the sintered body, degrading the mechanical properties of the sintered body.

−J−記条件で作られた粉末圧粉体を金属部材と直線ま
たは曲線−1−においてのみ接触するように静置し焼結
を行うが、この粉末圧粉体の接合される側の曲率半径を
接合せんとする部材の曲率半径より太き(することが重
要である。どの程度大きければよいかという点について
は、圧粉体が加熱を受けて収縮しほぼ真密度に到達する
間に、最初の接触(e/置に近い4’Fi、 ji’、
jから順次遠い側へ接触し、この逆が起らないような最
低限の大きさ以上であれば接合が完全に行われ、破損や
クラック等の問題を起すことはない。
-J- The powder green body made under the conditions described above is left standing and sintered so that it contacts the metal member only in a straight line or curved line -1-, but the curvature of the side of this powder green body to be joined is It is important that the radius be larger than the radius of curvature of the parts to be joined.As for how large it should be, it is important to , first contact (4'Fi, ji', near e/position)
If the contact is successively farther from j and the size is at least the minimum size that prevents the reverse from occurring, the bonding will be complete and problems such as damage and cracks will not occur.

粉末圧粉体の焼結時の収縮率をに%、粉末圧粉体の接合
される側の曲率半径なR=、金属部材の外径なり tn
mとすると の関係が保たれておれば更に好ましい。また曲率半径R
は最大無限大(即ち直線)まで可能である。
The shrinkage rate of the powder green body during sintering is %, the radius of curvature of the powder green body to be joined is R=, and the outer diameter of the metal member is tn.
It is more preferable if the relationship with m is maintained. Also, the radius of curvature R
is possible up to infinity (ie, a straight line).

(第5図参照) 更に平板に接合させる場合には曲率半径Rは負の値をと
ればよい。
(See FIG. 5) Furthermore, when joining to a flat plate, the radius of curvature R may take a negative value.

曲率半径が一定でない曲面の場合にも上記関係が維持で
きるように最大曲率半径を基準に圧粉体寸法を算定すれ
ばよい。
Even in the case of a curved surface whose radius of curvature is not constant, the compact size may be calculated based on the maximum radius of curvature so that the above relationship can be maintained.

金属部材に対する粉末圧粉体の組み伺けの関係は金属部
祠な水平に縞置きし、その上に粉末圧粉体を乗せること
を基本とする。こうすることによって、粉末圧粉体は焼
結と同時に自重によって金属部拐と接触する。必要に応
じて金属部材を傾斜させて1r1き、その傾斜面に粉末
圧粉体を乗せることもできる。この場合にも金属部材と
の接合に、粉末圧粉体の自重を作用させることが必要で
ある。
The basic principle for assembling the powder compact to the metal member is to place the metal part horizontally in stripes and place the powder compact on top of it. By doing so, the powder compact comes into contact with the metal part due to its own weight at the same time as sintering. If necessary, it is also possible to tilt the metal member 1r1 and place the powder compact on the inclined surface. In this case as well, it is necessary to apply the weight of the powder compact to the bonding with the metal member.

金属部材の傾斜角度は60°まで好ましくは45°まで
である。
The angle of inclination of the metal part is up to 60°, preferably up to 45°.

使用する金属部材については各種実験の結果、JTS規
格SS祠、SC祠、SB祠、 5TT3拐のような晋通
鋼、3U、I材、SCM材、SK祠、SKSオ8’ 、
SKD祠。
As a result of various experiments, the metal parts used are JTS standard SS shrine, SC shrine, SB shrine, Jintong steel such as 5TT3, 3U, I material, SCM material, SK shrine, SKS O8',
SKD Shrine.

5KII材、 SUS祠、SUH材のような低合金鋼、
描漬用鋼、工具鋼、ステンレス鋼、耐熱鋼、高速度鋼、
鋳鋼、鋳鉄零のFeベースの飼料が使用でき、いずれも
剪断強度35〜50 kJma 、曲げ強度で1001
(りhj程度以上の強い接合強度が得られる。銀ろうイ
;jけ等の接合の剪断強度は20〜251(F’+nA
程度である。
Low alloy steel such as 5KII material, SUS, SUH material,
Drawing steel, tool steel, stainless steel, heat-resistant steel, high-speed steel,
Cast steel and cast iron-free Fe-based feeds can be used, both of which have a shear strength of 35-50 kJma and a bending strength of 1001
(It is possible to obtain a strong bonding strength of about 100% or more.) The shear strength of a bond such as silver solder is 20 to 251 (F'
That's about it.

次に接合についての加熱条件について述べる。Next, the heating conditions for bonding will be described.

加熱炉雰囲気は真空、還元性または非酸化性雰囲気が使
用できるが、BやCrやTi等の少量の酸化物の還元容
易性や加熱時の酸化防止その他の作業性から816 シ
て真空の方がより好ましい。
Vacuum, reducing or non-oxidizing atmosphere can be used as the heating furnace atmosphere, but vacuum is preferable due to ease of reduction of small amounts of oxides such as B, Cr, and Ti, prevention of oxidation during heating, and workability. is more preferable.

頁空炉使用の場合真空度は1〜10 ’ torr 好
ましくは10−1〜l Q ’ torrの範囲である
。真空度がl torr以下では粉末表面にB、Cr、
Ti等の酸化物が生しるので、下限はl torr 、
好ましくは1O−1torrである。また、」二記B、
Cr、Ti等の酸化物の還元は10−’ torr ま
ででほぼ行われ、また、10”−5torr以上に真空
度を上げることは設備的にも高価となるので上限は10
−5torr好ましくは1O−4torr cある。
When a page-open furnace is used, the degree of vacuum is in the range of 1 to 10' torr, preferably 10-1 to lQ' torr. When the degree of vacuum is below 1 torr, B, Cr,
Since oxides such as Ti are formed, the lower limit is l torr ,
Preferably it is 10-1 torr. Also,” 2nd Book B,
The reduction of oxides such as Cr and Ti is almost done at up to 10-' torr, and increasing the vacuum level to 10"-5 torr or higher is expensive in terms of equipment, so the upper limit is 10"-5 torr or higher.
-5 torr, preferably 10-4 torr.

還元性雰囲気または非酸化性雰囲気としては、T−12
、N2 、 A、rカスまたは少量のCOやCO2を含
むガスまたはこれらの混合カス雰囲気であり、B、Cr
等の酸化が進まないようまたはこれらの酸化物の還元を
行わせるため、酸素ポテンシャルを下げ露点を一10℃
以下に保っておく。
As the reducing atmosphere or non-oxidizing atmosphere, T-12
, N2, A, r gas or a gas containing a small amount of CO or CO2, or a mixture of these gases, and B, Cr
In order to prevent the oxidation of these oxides from proceeding or to reduce these oxides, the oxygen potential is lowered and the dew point is lowered to -10°C.
Keep it below.

次に加熱温度は、粉末の組成により変化するが、1、1
50〜1350℃、好ましくは1.180〜1、300
℃の範囲である。本発明に使用する粉末圧粉体の密度は
、真密度の38〜67%であり、1、C1,に11.に
よって真密度の99%以」二で、不可避的な少[Lの不
純物を含むが実質的に100%の真密度となる。焼結時
に、粉末中に3〜20%含有されるB1またはB化合物
とFc、 Ni、 Cr、Co等との間で、おおよそ1
.150℃以上で)(品液相を生して、はぼ100%真
密度の焼結体になるが、焼結体中のBまたはI3化合物
が焼結時に、同し焼結温度範囲内で金属部材の鉄、鋼や
合金鋼中のFc。
Next, the heating temperature varies depending on the composition of the powder, but is 1, 1
50~1350℃, preferably 1.180~1.300℃
℃ range. The density of the powder compact used in the present invention is 38 to 67% of the true density, and is 1.C1 to 11. Therefore, the true density is substantially 100%, although it contains an unavoidable small amount of impurity. During sintering, approximately 1% of B1 or B compound contained in the powder and Fc, Ni, Cr, Co, etc.
.. (at 150℃ or higher) (A liquid phase is formed, resulting in a sintered body with almost 100% true density, but the B or I3 compound in the sintered body is sintered within the same sintering temperature range. Fc in metal parts such as iron, steel and alloy steel.

または含有されているCr 、 Ni 、 Co等との
間でも一部共品液相を生じるものとみられ、粉末圧粉体
I’lの焼結および焼結体と金属部材との間の強固な接
合がほぼ同時に進行するものと考えられる。
Also, it seems that a part of the liquid phase is formed with the contained Cr, Ni, Co, etc., and the sintering of the powder green compact I'l and the strong bond between the sintered compact and the metal member. It is considered that bonding proceeds almost simultaneously.

焼結体は粉末圧粉体に対して、寸法で12〜27%、体
積で33〜62%の極めて大きな収縮をおこすにも拘ら
ず、上記の焼結温度と後に述べる時間を選定することに
より、形状がくずれることもな(,1」的とする寸法と
形状をもった焼結体が得られ、かつ、接合部利との間で
も、剪断強度が351(6]以上の強固な接合が行われ
る。粉末圧粉体を丸棒や管上に直線または曲線上におい
てのみ接触させた場合、焼結後の正確な寸法と形状を保
ち接合位置も正確であり剪断強度も極めて高いことから
、先づ、大きな寸法収縮がおこって焼結が行われた後、
金属部材との接合が行われているものと解釈される。
Despite the fact that the sintered compact shrinks significantly compared to the powder compact by 12 to 27% in size and 33 to 62% in volume, by selecting the above sintering temperature and the time described later, It is possible to obtain a sintered body with the desired dimensions and shape without deformation (, 1), and to form a strong bond with a shear strength of 351(6) or higher between the joints. When a powder compact is brought into contact with a round rod or tube only in a straight line or curved line, it maintains accurate dimensions and shape after sintering, the joining position is accurate, and the shear strength is extremely high. First, after large dimensional shrinkage occurs and sintering is performed,
It is interpreted that joining with a metal member is being performed.

例えば第1図、第2図の棒や管上への接合の場合は、圧
粉体が収縮してほぼ100%真密度の焼結体となり、そ
の半径を小さくしであるいは重力の作用により棒や管に
接触し、接合が行われるものと考えられる。
For example, in the case of joining onto a rod or tube as shown in Figures 1 and 2, the green compact shrinks and becomes a sintered body with almost 100% true density, and the radius is reduced or the rod or tube is bonded by the action of gravity. It is thought that the bonding occurs when the material comes into contact with the pipe or pipe.

」二連したように本願発明の技術思想の第1は、粉末圧
粉体を接合金属部拐である鉄、鋼または合金鋼部十」と
一部分のみ接触する状態として間隙をIYだせ、かつ粉
末圧粉体の自重が働(ような位置関係におくことである
。第2にはB含有量3〜20%で、しかも微粉砕した粉
末を用いることにより粉末自身がBによる100%真密
度の液相焼結を行うと同時に金属部相成分との間でも一
部共品液相を生ずることにより、Bが金属部材表面の酸
化物の還元除去と清浄化作用を行い、拡散接合な極めて
容易にすることである。通常の拡11交接合におい℃は
、接合を充分性わせるために大きな加圧イ1:i山をか
けるが、本願発明の方法においては粉末圧粉体の自重の
みでよく、加圧は必要としない。寸法で12〜27%の
極めて大きな収縮を勾えるにも拘らず焼結を完了する最
終時期においてはしめて金属部44表面と焼結体が全面
r1りに接触するように配置し、拡f1f、接合を完成
させる。
``The first technical idea of the present invention is to bring the powder green compact into contact with only a portion of the iron, steel, or alloy steel part that is the joining metal part, so that a gap is left, and The powder compact should be placed in such a position that its own weight will work.Secondly, by using finely pulverized powder with a B content of 3 to 20%, the powder itself will have 100% true density due to B. At the same time as liquid phase sintering, a part of the liquid phase is generated between the metal phase components, so that B reduces and removes oxides on the surface of the metal component and has a cleaning effect, making diffusion bonding extremely easy. In normal expanded 11-cross welding, a large pressure is applied to ensure sufficient bonding, but in the method of the present invention, only the dead weight of the powder compact is used. Generally, no pressure is required.Despite the extremely large shrinkage of 12 to 27% in dimensions, the surface of the metal part 44 and the sintered body come into contact with the entire surface r1 at the final stage of completing sintering. Then, expand f1f and complete the joining.

これによって焼結中の焼結体表面が、収縮による移動に
より、金属部十」表面の所定最終位置からずれる現象や
、部分的接合による焼結体の亀裂破1すi現象などを完
全に防止し、正確な位置に、目的とする寸法と形状を維
持しながら、実質的に100%真密度の焼結と接合を同
時に行わせることが可能となるのである。
This completely prevents the phenomenon in which the surface of the sintered body during sintering deviates from the predetermined final position on the surface of the metal part due to movement due to contraction, and the phenomenon in which the sintered body cracks due to partial bonding. This makes it possible to simultaneously perform sintering and bonding at substantially 100% true density while maintaining the desired dimensions and shape at the correct location.

次に、加熱温度は上記のi’1ll1度範囲であるが、
1、150℃以下では真密度の焼結体が得られず、空孔
が多く残存し、また金属rqs祠との接合強度が低く 
、 f、II離を生じるようになるので下限は1.15
0℃、好ましくは1.180℃である。逆に加熱温度が
「15過ぎると金属部利との接合%i度(ま充分である
が、焼結体の形状がくずれ、目的とする形状と寸法の焼
結体を得ることができなくなるので温度の」1限(ま1
.350℃、〃了ましくは1.300℃である。
Next, the heating temperature is in the above i'1ll1 degree range,
1. At temperatures below 150°C, a sintered body with true density cannot be obtained, many pores remain, and the bonding strength with the metal RQS shrine is low.
, f, II separation occurs, so the lower limit is 1.15
0°C, preferably 1.180°C. On the other hand, if the heating temperature exceeds 15 degrees, the bonding with the metal part will be %i degree (although it is sufficient, the shape of the sintered body will collapse and it will not be possible to obtain a sintered body with the desired shape and dimensions. Temperature's 1st limit
.. The temperature is 350°C, preferably 1.300°C.

次に1.150〜1,350℃での加熱口4間番よ5〜
90分である。焼結と接合の反応は速(進むので−)−
記p1度に5I−温する速+Cを遅鳴すると一11記灼
熱温+Wに達すると同時に所期の目的を達成することが
てきるが、焼結や接合強度が、不充分な場合もηヨする
ので、下限を5分とする。粉末圧粉体や金属部利が大き
い場合、更に処理量が多し)場合を二〇よ、部分的な昇
l詰の遅れや、d111度の不均一を4−しるので均熱
時間の上限を90分とする。
Next, turn the heating port 4 times at 1.150 to 1,350℃.
It is 90 minutes. The reaction of sintering and joining is fast (because it progresses -) -
If the speed of heating +C is delayed to 111 degrees, the desired purpose can be achieved as soon as the scorching temperature +W is reached, but if the sintering or bonding strength is insufficient, η Therefore, the lower limit is set to 5 minutes. In the case of powder green compacts or large metal parts, the amount of processing is even larger) In case 20, there is a delay in partial heating and d111 degree non-uniformity, so the soaking time should be reduced. The upper limit is 90 minutes.

次に昇温速度は、液相出現から焼結までの温度範囲での
昇41λ速度が重要であり、20℃/分以下におさえる
必要がある。)7 +A速度が大きし)と士妾合イ立置
が不正確になったり、曲面への接合カイ不」−ノなとこ
ろが生じるので20℃/分以下が好ましし)。
Next, regarding the temperature increase rate, the rate of increase of 41λ in the temperature range from the appearance of a liquid phase to sintering is important, and it is necessary to keep it to 20° C./min or less. ) 7 + A speed is too high, which may result in inaccurate vertical positioning or poor bonding to curved surfaces, so the speed is preferably 20° C./min or less).

」−述のように本発明の方法では、焼結接合加熱処理に
際して接合強度を、高めるための荷重をかけろ必四がな
く、粉末圧粉体の自重で接触すれば充I))である。
- As mentioned above, in the method of the present invention, it is not necessary to apply a load to increase the bonding strength during the sintering and bonding heat treatment, but it is sufficient if the powder compact is brought into contact with its own weight.

ウリε結接合処理を行うに先立ち、金属部組表面はノヨ
ノトフラス+−、J&削、研削等による思皮の除去処理
などを行うことが望ましい。ブラスト処理′8により接
合面に生しる凹凸は、接合強度に影!Tを′jえる。
Prior to performing the Uri ε bonding process, it is preferable that the surface of the metal assembly be subjected to a process to remove skin by Noyonotofras +-, J&, grinding, or the like. The unevenness created on the joint surface by blasting process '8 affects the joint strength! Increase T.

表+fii l’l (QがRm;+x 5071以−
にテハ、接合節a ヲ保つために加熱温度を土、ける必
要があり、加熱温度を1−げると焼結体の形状がj町)
られなくなる。そのため、表面ill IljはRma
x 60μ以下で、好ましくは3011ν丁、更に好ま
しくは10 /l以下がよい。
Table+fii l'l (Q is Rm;+x 5071 and above-
In order to maintain the bonding point, it is necessary to increase the heating temperature, and if the heating temperature is increased by 1, the shape of the sintered body will change.
I won't be able to do it. Therefore, the surface ill Ilj is Rma
x 60μ or less, preferably 3011ν tons, more preferably 10 /l or less.

1・限は0.27z程度の鏡面に仕上げでも良好な接合
節1すが11、Jられるが、通常08μ程度まででよい
1. The limit is 0.27z, which is good even when finished to a mirror surface.11,J is good, but usually up to about 0.8μ is fine.

必ヅに応じて金属部((表面を溶剤ににり脱脂し、また
はアルノJり洗浄や酸洗等の面処理を行う。
If necessary, degrease the surface of the metal parts with a solvent, or perform surface treatments such as AlnoJ cleaning or pickling.

以1−に述べた製造条件によって所望の寸法と形状を保
ったtV、粘体とこれの金属部44への強固な接合を同
11.′fに完了させることができる。接合させる面積
は、必ザに応じてかえることができる。
The tV maintained the desired dimensions and shape according to the manufacturing conditions described in 1-1 below, and the viscous material was firmly bonded to the metal part 44 under the same 11. 'f can be completed. The area to be joined can be changed according to necessity.

なお、加熱温度が高いために、加熱の影響を除去するた
め、金属部材の調質熱処理を必要とする場合には、使用
する金属部材の材質に応じて焼結接合後に、規準熱処理
や溶体化処理、焼入れ、焼戻し−や歪み取りや析出処理
等の熱処理を行うことができる。これらの熱処理は、焼
結接合処理後に同一炉内でN2ガス等により直ちに所望
の加熱冷却作業を行うことによって1回の加熱、冷却処
理工程で極めて経済的に達せられる。また、−p常温ま
で冷却した後に別な炉で熱処理を行ってもよい。
In addition, if the heating temperature is high and the metal parts require tempering heat treatment to remove the effects of heating, standard heat treatment or solution treatment may be performed after sintering and joining depending on the material of the metal parts used. Heat treatments such as treatment, quenching, tempering, strain relief, and precipitation treatment can be performed. These heat treatments can be accomplished extremely economically in a single heating and cooling process by immediately performing the desired heating and cooling operations using N2 gas or the like in the same furnace after the sintering and bonding process. Alternatively, heat treatment may be performed in a separate furnace after cooling to −p room temperature.

これらの熱処理に際しても焼結体と金属部材の接合温度
が晶り、また接合強度が充分高いので′f、II 11
111等の問題は生じにり(、また焼結体の硬度や抗折
力などの機械的特性の変化はほとんど生じない。
Even during these heat treatments, the bonding temperature between the sintered body and the metal member is crystallized, and the bonding strength is sufficiently high, so 'f, II 11
However, problems such as 111 do not occur (and changes in mechanical properties such as hardness and transverse rupture strength of the sintered body hardly occur).

例えば焼7(ハ熱処理は880〜1.000℃、10〜
30分N2カス中で加熱後20〜50℃/mznの冷却
速度で冷却することによって、金属部利の結晶粒度およ
び機械的易性を復元でき、焼結体の硬度、抗折力および
組織に変化はない。ステンレス鋼の場合は1.000〜
1.150℃に均熱後N2カスでり冷することをイノ1
用してもよい。
For example, baking 7 (C heat treatment is 880~1.000℃, 10~
By heating in N2 gas for 30 minutes and then cooling at a cooling rate of 20 to 50°C/mzn, the crystal grain size and mechanical ease of the metal part can be restored, and the hardness, transverse rupture strength, and structure of the sintered body can be restored. There is no change. 1.000~ for stainless steel
1. After soaking to 150℃, cooling with N2 residue is recommended.
may be used.

本発明の硬質焼結合金接合金属体は、硬質焼結合金が1
用い硬度と強度を1νち優れた耐摩耗性を持つ他に、優
れた耐食1/]およU’ 1’!;温での耐熱IYI 
、耐酸化IJ1を賦LJすることができるためにj翻い
強度を1′1ツだ一般耐1% N’ in 、 1lj
4食而l摩材旧、耐熱耐摩拐A1川の複合体として広い
用途範囲で使用する二とができる。例えば平板や円筒、
棒等の金属部祠上に1個才たけ多数個配列し、接合させ
て鉄や非鉄の板や線、棒、盲が通過する部分のカイトプ
レート、ツノイド杯、ニド価やノヨヅトプラスト等によ
る酎こずり4耗用のプレート、石炭、コークス、鉱イ1
.カラス、七メント2等の輸送コンベア等輸送手段のか
き落し棒、板、耐摩部材1石炭だき、流動床ボイラー用
の炉内パイプ類のアッシュエロージョンUj市ライニン
グ、@ノンドボンブのケーシングや羽根、スクリューコ
ンベア羽根の耐摩ライニング等や、溶融Znに対する耐
摩耗部品や鉱山、土木、建設機械、鉄鋼、非鉄金属2紙
、化学、氷利用機械金属加工業笠木発明の硬質合金の耐
摩、耐食、耐熱性が活用できる分野に広く用いることが
できる。
The hard sintered alloy bonded metal body of the present invention has a hard sintered alloy of 1
In addition to having a hardness and strength of 1ν and excellent wear resistance, it also has excellent corrosion resistance 1/] and U'1'!;Heat resistance IYI at high temperature
, in order to be able to add oxidation resistance IJ1, the bending strength is 1'1.General resistance 1% N'in, 1lj
4.It can be used in a wide range of applications as a composite of 4 types of abrasive materials, heat resistant and abrasion resistant A1. For example, a flat plate or cylinder,
A large number of metal parts such as rods are arranged on the shrine and joined together to create chuko using ferrous or non-ferrous plates, wires, rods, kite plates where blinds pass through, tsunoid cups, nido titanium, noyozutoplast, etc. Plate for shear 4 wear, coal, coke, ore 1
.. Scraping rods, plates, and wear-resistant members for transport means such as transport conveyors such as Karasu and Shichiment 2 Ash erosion of furnace pipes for coal fires and fluidized bed boilers Uj city lining, @Nondo bomb casings and blades, screw conveyors The wear resistance, corrosion resistance, and heat resistance of the hard alloy invented by Kasagi can be utilized for wear-resistant linings of blades, wear-resistant parts against molten Zn, mines, civil engineering, construction machinery, steel, non-ferrous metals, paper, chemistry, ice utilization machinery, metal processing industries, etc. It can be used in a wide range of fields.

以」−に述へた粉末の微粉末化、粉末の圧粉成型王力と
圧粉体密度、加熱に伴う焼結体の収縮量による実質的に
100%真密度化および金属部祠と粉末圧粉体の紹み伺
は方、金属部材表面粗度の記述はN1やCo基のB含有
粉末およびC,Si、Pを多(含有させた液相焼結合金
の場合にも同様に適用し得る。
The pulverization of the powder mentioned above, the power of compacting the powder, the density of the compact, the shrinkage amount of the sintered body due to heating, and substantially 100% true densification, and the metal parts and powder. Introducing green compacts, the description of the surface roughness of metal parts applies similarly to N1 and Co-based B-containing powders and liquid-phase sintered alloys containing a large amount of C, Si, and P. It is possible.

N1基合金でBやSi、 Cを2〜4%と多(含有する
粉末の場合には液相出現温度は1.050℃程度まで低
下する。液相焼結温度が1.350℃を越えると加熱時
に金属部材の変形等を生じゃすくなるので、液相焼結温
度が1.350℃を越える粉末への適用は困か1[であ
る。
In the case of N1-based alloys containing a large amount of B, Si, and C (2 to 4%), the liquid phase appearance temperature drops to about 1.050℃.The liquid phase sintering temperature exceeds 1.350℃. It is difficult to apply this method to powders whose liquid-phase sintering temperature exceeds 1.350° C., since deformation of metal members is likely to occur during heating.

なお前述したように、通常のFe基合金やN1基合金等
一般の焼結用に用いられるような一100メツツユ程度
の粉末を用いる場合には99%以上で、実質的に100
%真密度の焼結体は得られず、より低密度焼結体となり
、空孔が残存し、更に金属部祠との接合界面の空孔も増
加し、接合強度も低士するが、11的によっては使用可
能である。
As mentioned above, when using a powder of about 1,100 nits, such as those used for general sintering such as ordinary Fe-based alloys and N1-based alloys, the
% true density cannot be obtained, and the result is a lower-density sintered body with pores remaining, and the number of pores at the bonding interface with the metal part also increases, and the bonding strength decreases. It can be used depending on the target.

以下、本願うt明の実施例を示す。Examples of the present invention will be shown below.

実hi:i例1 10%B、■3%Cr 、Fe rL+1.の粉末にM
o粉末/14%、 Ni粉末39A 、 Fe粉末6%
、黒鉛粉末03%とパラフィン6%を混合し、振動ボー
ルミルて゛ト均ネit、 i% 1.57℃mに湿式粉
砕し、乾す〜?後、密度比51%の半円+=y r[粉
体(外面半径44間、内面半径40mm)にプレスで成
形し、この圧粉体をRmax611mの表面粗度をもつ
外径60箇の5s41およQ・5US4Q5の丸棒の上
に置き(第1図A)全体を3 X 10 ” torr
の真空中で1.275℃、20分焼G+’l接合した。
Actual hi: Example 1 10%B, ■3%Cr, Fe rL+1. M to the powder of
o powder/14%, Ni powder 39A, Fe powder 6%
, 3% graphite powder and 6% paraffin were mixed, homogenized in a vibrating ball mill, wet-pulverized to 1.57°C, and dried. After that, it is pressed into a semicircle with a density ratio of 51% + = y r [powder (outer radius 44 mm, inner radius 40 mm), and this green compact is molded into 60 outer diameter 5s41 particles with a surface roughness of Rmax 611 m. Place the whole thing on a round bar of approximately Q.5US4Q5 (Fig. 1A) at 3 x 10” torr.
G+'l bonding was performed by baking in a vacuum at 1.275°C for 20 minutes.

(第1図B)・焼結体の密度は8.2 fj/crlで
空孔は認められず実質的にほぼ100%貫密度であった
(Figure 1B) - The density of the sintered body was 8.2 fj/crl, with no pores observed and the penetration density was substantially 100%.

これより試片をリリ出し、JIS GO61クラッド鋼
の剪断強さ試験に準じた方法で剪断強さをflll定し
た結果、第1表に示す接合強度が得られた。
A sample was taken out from this, and the shear strength was determined by a method similar to the JIS GO61 clad steel shear strength test. As a result, the joint strengths shown in Table 1 were obtained.

焼結体の硬度はI−IRA S 7であり接合界面は拡
散1mをともなった強固なものであった。
The hardness of the sintered body was I-IRA S 7, and the bonding interface was strong with a diffusion of 1 m.

実施例2 13%B、5%Cr 、Fe Bad。の粉末にMO粉
末50%、 Ni粉末3%、Fe粉末4%、黒鉛粉末0
4%とパラフィン5%を混合し、ボールミルで平均粒径
1.31℃mに湿式粉砕し、乾燥後、密度比48%の半
円筒圧粉体(外面半径51覗、内面半径47諭)にプレ
スで成形し、この圧粉体を平面に横置きした外径76覗
の鋼管(表面11度Rmax 10〜301℃m )上
に静1jツし、(第2囚人)全体を4.5 X 10−
2.torrの真空中で1.250℃、20分焼結接合
した。((第2図B)焼結接合後、焼結体は金属部材と
完全に接合しており接合面の顕微鏡観察においても界面
に空孔は存在しないことが確認された。また焼結体にも
空孔は認められず硬度はHnA、 90であつた。接合
強度は46 k77mAであった。
Example 2 13% B, 5% Cr, Fe Bad. The powder contains 50% MO powder, 3% Ni powder, 4% Fe powder, and 0 graphite powder.
4% paraffin and 5% paraffin were mixed, wet-pulverized in a ball mill to an average particle size of 1.31℃m, and after drying, it was made into a semi-cylindrical compact with a density ratio of 48% (outer surface radius 51 mm, inner radius 47 mm). The green compact was molded using a press and placed on a flat surface horizontally placed on a steel pipe with an outer diameter of 76 mm (surface 11° Rmax 10-301°Cm), and the whole (second prisoner) was heated at 4.5 x 10-
2. Sintering and joining were carried out at 1.250° C. for 20 minutes in a vacuum of torr. ((Figure 2B) After sintering and joining, the sintered body was completely joined to the metal member, and microscopic observation of the joint surface confirmed that there were no pores at the interface. No pores were observed, and the hardness was HnA, 90. The bonding strength was 46 k77 mA.

実施例3 実施例2と同様の粉末を用い、密度比45%のIZ)面
か(1己粉体(外面半径46.5++++n、内面半径
315■)に成形し、この圧粉体をRmaxlQμの表
面$1111Zをもつ外径50.5 mm(D SUS
 410 )丸棒の上に置き (第3図A)、全体を2
 X 10−3torrの真空中で1.250℃、20
分焼結接合した。
Example 3 Using the same powder as in Example 2, it was molded into an IZ) surface with a density ratio of 45% (outer surface radius 46.5++++n, inner radius 315 mm), and this green compact was Outer diameter 50.5 mm (D SUS
410) Place it on a round bar (Fig. 3A) and
1.250°C, 20 in a vacuum of X 10-3 torr
Separately sintered and joined.

(第3図B) この焼結接合体より8 mrn X 4 rmn X 
25 mmの直方体を切り出し接合面を荷重負荷点とす
る3点曲げ試験を行った。その結果第2表に示す接合強
度が得られた。
(Figure 3B) 8 mrn x 4 rmn x from this sintered joined body
A 25 mm rectangular parallelepiped was cut out and a three-point bending test was conducted using the joint surface as the load point. As a result, the bonding strengths shown in Table 2 were obtained.

実施例4 実施例2と同様の粉末を用い、筒面かく型圧粉体(外面
半径35mm、内面半径31.5 ttrm、第4図A
)を外径505關の450ベンド管上に管軸方向にすき
まな(配置し、(第4図B)全体を45×10’−2t
orr の真空中でi、 250℃、20分焼結接合し
た。焼結接合後は第4図Cに示すごどく焼結体は相互の
間に間隔をあけた状態で金属部材と完全に接合したもの
がil、)られた。
Example 4 Using the same powder as in Example 2, a cylindrical shaped powder compact (outer surface radius 35 mm, inner radius 31.5 ttrm, Fig. 4A
) is placed on a 450-bent pipe with an outer diameter of 505 mm with a gap in the pipe axis direction, and the whole is 45 x 10'-2t (Fig. 4B).
They were sintered and joined in a vacuum at 250° C. for 20 minutes. After sintering and bonding, the highly sintered body shown in FIG. 4C was completely bonded to the metal member with a space between them.

実施例5 実施例2と同様の粉末を用い巾15陥、長さ100m+
i、厚さ3胡の板状の圧粉体を成形し、この用粉体をR
max15μの表面粗度をもつ外径76謂mの鋼管」二
に静置しく第5図A)全体を2X10−3torrの真
空中で1.250℃、20分焼結接合した。
Example 5 Using the same powder as in Example 2, a width of 15 holes and a length of 100 m +
i. Form a plate-shaped powder compact with a thickness of 3 mm, and use the powder for this purpose as R.
A steel pipe having an outer diameter of 76 m and having a surface roughness of max. 15 .mu.m (Fig. 5A) was left stationary and the whole was sintered and joined in a vacuum of 2.times.10@-3 torr at 1.250 DEG C. for 20 minutes.

(第5図B)焼結接合後、焼結体は金属部材と完全に接
合しており、計理試験により変形を加えても接合部は剥
離しないことが確認された。
(FIG. 5B) After sintering and joining, the sintered body was completely joined to the metal member, and it was confirmed by a mathematical test that the joint did not separate even if deformed.

実施例6 実施例1と同様の粉末を用い密度比50%の半円筒圧粉
成形体(外面半径35胴、内面半径315mm、 中1
5 in)をプレスにて成形し、この圧粉体をRmax
 10μmの表面粗度をもつ外径50.5 mmの鋼管
(炭素量009%)上に静置し全体を35×1O−31
Orr の真空中で1.250℃、20分焼結接合した
。焼結接合後、計理試験により焼結金属を破断させるま
で女形させても焼結体は金属部材と分離せず完全に接合
していることが確認された。
Example 6 Using the same powder as in Example 1, a semi-cylindrical powder compact with a density ratio of 50% (outer radius 35 mm, inner radius 315 mm, medium 1
5 inch) with a press, and this compacted powder is Rmax
It was placed on a steel pipe (carbon content: 009%) with an outer diameter of 50.5 mm and a surface roughness of 10 μm, and the whole was heated to 35 × 1 O-31.
Sintering and joining were carried out in a vacuum at 1.250°C for 20 minutes. After sintering and joining, it was confirmed by a mathematical test that even if the sintered metal was shaped until it broke, the sintered body did not separate from the metal member and was completely joined.

また、この接合金属体よりJI812号試験片を切り出
し引張試験を行ったところ、降伏点l 51<7/、A
 、抗張力35 k7/ma 、伸び44%で金属部材
結晶粒が粗大化していた。950℃、20分N2ガス中
で加熱した後、40℃々Inで冷却した規準熱処理試験
片は降伏点26 l(g/mA + 抗張力39 Ic
y/mA + 伸び43%であり、焼結接合処理前の金
属部材の機械的特性に復元でき、結晶粒も処理前の状態
に復元された。焼結体の硬度はHnA 87で変化がな
かった。
In addition, when a JI812 test piece was cut out from this bonded metal body and a tensile test was performed, the yield point l51<7/, A
, the tensile strength was 35 k7/ma, the elongation was 44%, and the metal member crystal grains were coarsened. A standard heat-treated specimen heated at 950°C for 20 minutes in N2 gas and then cooled at 40°C had a yield point of 26 l (g/mA + tensile strength of 39 Ic).
y/mA + elongation was 43%, and the mechanical properties of the metal member before the sintering process could be restored, and the crystal grains were also restored to the state before the process. The hardness of the sintered body remained unchanged at HnA 87.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、ff!3図、第4図および第5図は何
れも本発明の実施例を示す図面であり、第1図(A)、
第2図(A)、第3図(A)、第4図(B)および第5
図(A)は圧粉体と金属部材との組みつけ方を示す図面
である。第1図(B)、第2図(B)、第3図(B)、
第4図(C)および第5図(rllは焼結接合された状
態を示す図面である。 1・・・・・圧粉体 2・・・金属部材3・・・・焼結
体 第1図 (ハ) CB) 第2図 (,4) (B) 第3図 (A’) (B) (ハ) (0) 第5図 (八) (B)
Figure 1, Figure 2, ff! 3, 4, and 5 are drawings showing embodiments of the present invention, and FIG. 1(A),
Figure 2 (A), Figure 3 (A), Figure 4 (B) and Figure 5
Figure (A) is a drawing showing how to assemble a compacted powder body and a metal member. Figure 1 (B), Figure 2 (B), Figure 3 (B),
Figures 4(C) and 5 (rll are drawings showing the state of sintering and joining. 1...Powder compact 2...Metal member 3...Sintered body 1st Figure (c) CB) Figure 2 (,4) (B) Figure 3 (A') (B) (c) (0) Figure 5 (8) (B)

Claims (6)

【特許請求の範囲】[Claims] (1)焼結時に液相を生じる成分からなる粉末圧粉体を
用い、該粉末圧粉体の接合される側の曲率1′−径を接
合せんとする金属部材の曲率半径より太き(し、かつ該
粉末圧粉体が金属部材と直線または曲線上においてのみ
接触するように組みつけた状態で、r↓内空中たは非酸
化性雰囲気中で加熱し、1該粉末圧粉体を液相焼結する
と同時に金属部材との間の)(重液相を利用して拡散接
合を行わせることを特徴とする焼結接合方法。
(1) A powder compact made of a component that generates a liquid phase during sintering is used, and the curvature 1'-diameter of the side to be joined of the powder compact is larger than the radius of curvature of the metal members to be joined ( and heated in air or in a non-oxidizing atmosphere in r↓ while assembled so that the powder green body is in contact with the metal member only on a straight line or curved line, 1. A sinter bonding method characterized by performing liquid phase sintering and at the same time performing diffusion bonding (between metal members) using a heavy liquid phase.
(2)金属部材が円柱状2円筒状、半円筒状や楕円状等
のような円弧からなる曲面をもった物体で、かつ長手方
向が直線もしくは曲線状である特許請求範囲第1項記載
の焼結接合方法。
(2) The metal member is an object having a curved surface consisting of an arc such as a cylinder, a semi-cylindrical shape, an ellipse, etc., and the longitudinal direction is straight or curved. Sinter joining method.
(3)金属部材が鉄、炭素鋼2合金鋼、工具鋼などのよ
うな銅相である14許請求の範囲第1項および第2項N
p 1lili、の焼結接合方法。
(3) The metal member is a copper phase material such as iron, carbon steel 2 alloy steel, tool steel, etc.Claims 1 and 2N
p 1lili, sintering joining method.
(4)粉末圧粉体が13.Si、P、およびCの1種以
上を含有し、かつ焼結温度が1,000℃〜1.115
0℃である特許請求の範囲第1項、第2項および第3項
記載の焼結接合方法。
(4) The powder compact is 13. Contains one or more of Si, P, and C, and has a sintering temperature of 1,000°C to 1.115°C
The sintering and joining method according to claims 1, 2 and 3, wherein the temperature is 0°C.
(5)粉末圧粉体がB含有量3〜20%で少な々とも1
0%以」二のFeを含み、焼結後に主として硼化物もし
くは複硼化物よりなる硬質相を40〜95%と、該硬質
相を結合する結合相よりなる硬質焼結合金となる粉末の
粒度な350メツシユ(44μ)以下とし、該粉末な圧
粉成型して圧粉体密度を38〜67%とした粉末圧粉体
であり、該粉末圧粉体を金属部材である鉄、mまたは合
金鋼に一部を接触させた状態で−1〜10−5torr
の真空加熱炉で1.150〜1.350℃に加熱した後
、冷却することによって12〜27%の寸法収縮率を与
え99%以上実質的に100%真密度の焼結体とし、同
時に該金属部第3との強固な接合を行つ46許請求の範
囲第1項、第2項、第3項および第4項記載の焼結接合
方法。
(5) The powder compact has a B content of 3 to 20% and at least 1
Particle size of powder that contains 0% or more of Fe, and after sintering becomes a hard sintered alloy consisting of 40 to 95% of a hard phase mainly composed of boride or complex boride, and a binder phase that binds the hard phase. 350 mesh (44μ) or less, the powder compact is molded into powder to have a compact density of 38 to 67%, and the powder compact is made of iron, m or an alloy as a metal member. -1 to 10-5 torr when partially in contact with steel
After heating to 1.150 to 1.350°C in a vacuum heating furnace, the sintered body is cooled to give a dimensional shrinkage of 12 to 27%, resulting in a sintered body with a true density of 99% or more and substantially 100%. 46. The sintering and joining method according to claim 1, 2, 3, and 4, which performs strong joining to the third metal part.
(6)焼結接合後の冷却過程または一旦冷却後、(1■
加熱により接合部材の調質熱処理を行う特許請求の範囲
第1項、第2項、第3項、第4項およびa15項記載の
焼結接合方法。
(6) Cooling process after sintering or once cooling (1■
The sintering and joining method according to claims 1, 2, 3, 4, and a15, wherein the joining member is subjected to tempering heat treatment by heating.
JP19251883A 1983-10-17 1983-10-17 Sintering connection of green compact to metal member Granted JPS6086202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19251883A JPS6086202A (en) 1983-10-17 1983-10-17 Sintering connection of green compact to metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19251883A JPS6086202A (en) 1983-10-17 1983-10-17 Sintering connection of green compact to metal member

Publications (2)

Publication Number Publication Date
JPS6086202A true JPS6086202A (en) 1985-05-15
JPS6334201B2 JPS6334201B2 (en) 1988-07-08

Family

ID=16292613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19251883A Granted JPS6086202A (en) 1983-10-17 1983-10-17 Sintering connection of green compact to metal member

Country Status (1)

Country Link
JP (1) JPS6086202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198179A (en) * 1989-04-24 1993-03-30 Injectall Limited Gas injector
JP2022145554A (en) * 2021-03-19 2022-10-04 冨士ダイス株式会社 Method for manufacturing hard metal composite member and method for manufacturing vacuum adsorber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070104A (en) * 1983-09-28 1985-04-20 Nippon Piston Ring Co Ltd Production of cam shaft

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070104A (en) * 1983-09-28 1985-04-20 Nippon Piston Ring Co Ltd Production of cam shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198179A (en) * 1989-04-24 1993-03-30 Injectall Limited Gas injector
JP2022145554A (en) * 2021-03-19 2022-10-04 冨士ダイス株式会社 Method for manufacturing hard metal composite member and method for manufacturing vacuum adsorber

Also Published As

Publication number Publication date
JPS6334201B2 (en) 1988-07-08

Similar Documents

Publication Publication Date Title
US10272497B2 (en) Cladded articles and methods of making the same
JP5525813B2 (en) Thermal spray coated work roll
JP5697604B2 (en) Manufacturing method of metal parts
JP3884618B2 (en) Method of uniaxial compression of agglomerated spherical metal powder
JPH0347903A (en) Density increase of powder aluminum and aluminum alloy
JPH0130882B2 (en)
JPS61179805A (en) Method for compacting one parts from separate metal member
JP2005516118A (en) Sinterable powder mixture for producing sintered parts
US5788142A (en) Process for joining, coating or repairing parts made of intermetallic material
EP2591874B1 (en) Friction stir welding tool made of cemented tungsten carbid with Nickel and with a Al2O3 surface coating
US3279049A (en) Method for bonding a sintered refractory carbide body to a metalliferous surface
CN104162676A (en) Fracturing pump valve body and valve seat vacuum fusion covering surface strengthening method
JP2018531795A (en) Friction stir welding tool
EP0202886B1 (en) Canless method for hot working gas atomized powders
JPS6086202A (en) Sintering connection of green compact to metal member
US4881681A (en) Process for modifying the surface of metal or metal alloy substrates and surface modified products produced thereby
JPS61194147A (en) Sintered hard alloy
US5006414A (en) Process for modifying the surface of metal or metal alloy substrates and surface modified products produced thereby
US4852789A (en) Process for modifying the surface of metal or metal alloy substrates and surface modified products produced thereby
CN110273149B (en) Molybdenum-based alloy coating and substrate with same
US6821313B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JPH0114997B2 (en)
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JP4221703B2 (en) Cemented carbide roll composite roll manufacturing method and roll
JPH03193204A (en) Plug for manufacturing hot seamless tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees