JPH0455571B2 - - Google Patents

Info

Publication number
JPH0455571B2
JPH0455571B2 JP24795887A JP24795887A JPH0455571B2 JP H0455571 B2 JPH0455571 B2 JP H0455571B2 JP 24795887 A JP24795887 A JP 24795887A JP 24795887 A JP24795887 A JP 24795887A JP H0455571 B2 JPH0455571 B2 JP H0455571B2
Authority
JP
Japan
Prior art keywords
screw
materials
hard alloy
hard
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24795887A
Other languages
Japanese (ja)
Other versions
JPS6490717A (en
Inventor
Kazunori Nakano
Tsuneyuki Ide
Masaru Inoe
Koji Ooba
Osamu Nishimoto
Hisashi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP24795887A priority Critical patent/JPS6490717A/en
Publication of JPS6490717A publication Critical patent/JPS6490717A/en
Publication of JPH0455571B2 publication Critical patent/JPH0455571B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/60Screws

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、射出成形機用複合構造スクリユーに
関する。 〔従来の技術〕 射出成形機や押出機により加工される樹脂は近
年、多様化の傾向にあり、スクリユーも苛酷な条
件下で使用されるようになつてきている。たとえ
ば、加工時の加熱溶融により腐食性の強いガスを
発生する難燃性プラスチツク、ガラス繊維、炭素
繊維や磁性粉末等を含有する複合プラスチツク等
である。さらに最近ではセラミツクスや金属粉末
など研摩耗性の高い粉末材料の成形にも射出成形
機が使用されるようになり、耐久性の高いスクリ
ユーが望まれている。すなわち、スクリユーに使
用する材料は稼働時に受ける負荷に充分耐え得る
機械的強度を有すること以外に優れた耐食・耐摩
耗性をも兼備した材料であることが必要である。 従来よりスクリユーの耐久性を高めるため、ス
クリユー材としてマルエージング鋼や冷間工具鋼
(たとえばJIS SKD−11)等の鋼材が使用されて
おり、またスクリユーの長手方向に対しては一体
物の素材を用いたスクリユーを製造している。 〔発明が解決しようとする問題点〕 スクリユーは長手方向の各部(第4図)によつ
てダメージの受け方が異なる。すなわち、使用後
のスクリユーを観察すると長手方向について、摩
耗が主である部分(供給部)、摩耗と腐食の両方
を受けている部分(圧縮部)、腐食が主である部
分(溶融部)に分かれる。つまり各部によつてス
クリユーが具備すべき性能は異なるものと考えら
れる。 マルエージング鋼や冷間工具鋼は高強度を有す
るものの耐食性や耐摩耗性の点では必ずしも充分
であるとは言い難く、特にガラス繊維等を含む樹
脂やセラミツクスを成形する場合は摩耗が著しく
耐用寿命が短い。このような鋼材製スクリユーの
欠点を補うものとして、炭化タングステンのよう
な高硬度粒子を含有するCo基合金やNi基合金の
溶射被膜処理、あるいはこのような焼結合金を貼
り付けた複合材スクリユー(例えば特開昭61−
183430)が提案されている。しかしながら、炭化
タングステン粒子を含む合金は、それ自体の耐摩
耗性は優れるものの、これと接触する相手材料
(この場合にはシリンダー内壁)を摩耗させやす
いという欠点がある。 本発明は従来よりスクリユー材として使用され
ているマルエージング鋼、あるいは冷間工具鋼よ
りもさらに高い耐食、耐摩耗性を有する材料で第
1図に示す該複合円柱材料を製造し、第2図、第
3図に示すように組み合わせたスクリユーの製造
法に関するもので、スクリユー長手方向の異なる
ダメージに対応できるばかりでなく、高価な材料
の使用量を最小限にとどめることを特長とするが
これによつてスクリユーの耐用寿命を低下させる
ことはない。 〔問題点を解決するための手段〕 第1図に示す該複合円柱材料は外周Bが耐摩耗
性及び耐食性の優れる硬質合金からなり、芯金部
Aがスクリユーに必要な強度、靭性を有する鉄鋼
材料からなる複合材であつて、硬質合金Bと芯金
Aの界面は高強度の治金学的接合状態を呈する。
本発明に用いる硬質合金Bの材質は、前記の特性
を有する合金であつて具体的には鉄基複硼化物系
硬質合金(以下、該硬質合金と記す)、Co基合
金、Ni基合金、及び合金工具鋼等のなかから選
ばれ、この場合は該硬質合金を用いるのが最も好
ましい。該硬質合金は本発明者らが提案してきた
材料(例えば特公昭54−27818、特公昭56−8904、
特公昭56−15773、特公昭60−57499)であり、耐
食・耐摩耗性に優れるだけでなく高い強度と高温
耐酸化性を有する合金である。特にガラス繊維、
炭素繊維や磁性粉末等を含んだ樹脂やセラミツク
スや金属粉末のような研摩耗性の高い材料に対す
る耐摩耗性や弗素ガスなどに対する耐食性に優れ
ることが明らかになつている。 該硬質合金は微細な硬質粒が合金中に均一に分
散した金属組織を有し、該硬質粒は鉄基硼化物、
結合相はFe、Cr、Mo、W、Ti、V、Nb、Ta、
Hf、Zr、Ni、Cu、Co、Mnから選ばれた1種以
上の金属あるいは合金を主成分とする。該硬質粒
はB−Fe系、B−X−Fe系、B−X−Y−Fe系
(X、YはCr、Mo、W、Ti、V、Nb、Ta、Hf、
Zr、Ni、Cu、Co、Mnを示す)の硼化物で、例
えばFe2B、(Fe、Cr)2B、Mo2FeB2、Mo2(Fe、
Cr)B2(Mo、W)2(Fe、Cr)B2のような金属間
化合物であり、該硬質粒は合金中に25〜96%好ま
しくは35〜96%含まれている。 該硬質合金のB含有量は2〜20%好ましくは3
〜15%とし、Fe含有量は少なくとも10%以上、
さらにCr、Mo、Wの1種以上が含まれる場合の
範囲は各々0.1〜50%である。またTi、V、Nb、
Ta、Hf、Zr、Ni、Cu、CoおよびMnのうち1種
以上が含まれる場合は各々0.01〜15%の範囲内と
する。その他不可避的に含有する元素としAlは
3%以下、Oは2.5%以下、Cは0.01〜1%の範
囲内でとくにAlとOは0%であることが望まし
いが前記範囲内であれば強度、靭性を著しく低下
させることはない。 該硬質合金は前記の範囲で該硬質粒と該結合相
の量比を変えることにより硬度をHRA80〜92の
範囲で変化させることができる。さらに該結合相
はCrやNi等添加金属の種類と量を調整すること
によりマルテンサイト、フエライト、オーステナ
イト及びこれらの混合組織に変えることができ、
硬度、強度さらには耐食性や耐熱性をも加味した
合金設計が可能である。 該硬質合金の原料粉末には、水またはガスアト
マイズにより作成するFeBまたはFe2B系硼化物
粉末、あるいはフエロボロン粉末、さらにはNi、
Cr、W、Ti、Mo等の各硼化物粉末、もしくはB
単体粉末を使用し、これらとFe、Cr、Mo、W、
Ti、V、Nb、Ta、Hf、Zr、Ni、Cu、Co、Mn
等の金属粉末あるいはこれらを主成分とする合金
粉末を使用する。 これらの原料粉末を所定の化学組成となるよう
に配合し、その混合粉末を振動ボールミルを用い
有機溶媒中で湿式粉砕後、乾燥造粒を行い圧粉体
を作成する。圧粉体は冷間静水圧法(CIP)等の
圧粉法により円筒状に成形するが、圧粉体の成形
法は必ずしも限定しない。CIP法による場合はゴ
ム製の円筒の中央に剛性のある真直な丸棒をた
て、粉末を充てんした後ゴム製のふたをして加圧
成形する。成形後中央の丸棒を抜き去り円筒状の
圧粉体を得る。圧粉体は焼結時に収縮するため円
筒状圧粉体の内径は収縮量を鑑みた寸法とするこ
とが必要である。すなわち第1図の該複合構造円
柱材料は焼結接合法により製造するが、それは該
硬質合金の圧粉体の焼結時の収縮を利用し、材料
Aに該硬質合金を強固に接合させるものである。
つまり、焼結前における圧粉体内径と材料Aの間
隙が小さ過ぎると焼結時に該硬質合金にクラツク
が発生し、その逆に間隙が大き過ぎると焼結後に
材料Aと該硬質合金の接合面に隙間が残存し良好
な接合状態が得られないためである。該硬質合金
圧粉体の焼結時の収縮量は圧粉法や形状、寸法に
より異なるが内径は5〜20%の範囲である。 ここで材料Aは周面が均一に接合し得るように
旋削仕上げしておくことが望ましい。また油脂等
の汚れは接合性に悪影響を及ぼすため、あらかじ
め充分脱脂、洗浄しておく必要がある。材料Aの
鋼種は特に限定しないが、該硬質合金との接合が
可能でかつスクリユーに必要な機械的強度を有す
るものでなければならない。(例えばJIS SS、
SC、SNC、SCr、SCM、SNCM、SUJ、SK、
SKH、SKS、SKD、SKT、SUS、SUHなど。) 焼結接合は真空、または非酸化性雰囲気下にお
いて1100〜1400℃で5〜90分行う。1100℃以下で
は良好な接合状態が得られないだけでなく該硬質
合金も未焼結状態である。逆に1400℃以上では該
硬質粒の粗大化と該硬質合金そのものの形状が崩
れてしまう。また焼結時間が5分未満では該硬質
合金の充分な緻密化が進行せず、90分をこえても
時間の経過に見合う強度の向上は認められない。 上記のようにして得た焼結体を所定の長さに切
断し、両端面は旋削等によつて仕上げ、第1図に
示す該複合円柱材料を作成する。 次に該複合円柱材料を第2図、あるいは第3図
のように組合せてスクリユー用素材を作成する
が、第4図における、主に樹脂による腐食でスク
リユーがダメージを受けるX1部(第2図、第3
図においてはL1部に相当)は耐食性に優れる該
硬質合金(第2図、第3図においてはB部に相
当)を用いる。腐食、摩耗の負荷が比較的軽い
X2部(第2図、第3図においてはL2部に相当)
はわずかに低硬度ではあるが強度、靭性に優れる
該硬質合金(第2図においてはC部に相当)ある
いは、さらに靭性面で有利なSKD11、SUS440C
のようなJISに定める合金工具鋼、あるいは硬質
クロムめつきを施した鉄鋼材料(第3図において
はC部に相当)を用いてもよい。さらに樹脂によ
る摩耗が問題となるX3部(第2図、第3図にお
いてはL3部に相当)は高硬度の該硬質合金(第
2図、第3図においてはD部に相当)を用いるこ
とになる。これらは該硬質合金の該硬質合金どう
し、あるいは鉄鋼材料との溶接、半田づけ、ある
いは拡散接合が可能であることを利用するもので
ある。摩擦溶接を利用し接合を行う場合、加熱圧
力は3〜15Kg/mm2、アプセツト圧力は10〜30Kg/
mm2が望ましい。また加熱時の寄り代は0.5〜3.5mm
とするのが望ましい。 長手方向における各材料の組み合せは、スクリ
ユーが使用時に受けるダメージの種類や程度に合
わせて選択することができる。 〔実施例〕 本発明の実施例を図面を参照しながら説明す
る。 実施例 1 第2図におけるL1部とL2部を第1表に示す材
料の組合せで作成した。溶接部の断面組織を観察
した結果、芯材に使用している鉄鋼材料(この場
合はSCM440)には境界よりL1部、L2部内部に約
10mmの溶接時の発熱に伴う熱影響部があるが、ね
じり強度320Kg・mが得られたところから使用に
際して支障をきたすことはないと考えられる。各
材料の特性を第1表、摩擦溶接条件及びねじり強
度を第2表に示す。
[Industrial Field of Application] The present invention relates to a composite structure screw for an injection molding machine. [Prior Art] In recent years, resins processed by injection molding machines and extrusion machines have tended to be diversified, and screws have also come to be used under harsh conditions. Examples include flame-retardant plastics that generate highly corrosive gases when heated and melted during processing, and composite plastics containing glass fibers, carbon fibers, magnetic powders, and the like. Furthermore, recently, injection molding machines have come to be used to mold powder materials with high abrasiveness such as ceramics and metal powder, and a highly durable screw is desired. In other words, the material used for the screw must not only have sufficient mechanical strength to withstand the load applied during operation, but also have excellent corrosion and abrasion resistance. Conventionally, in order to increase the durability of screws, steel materials such as maraging steel and cold work tool steel (for example, JIS SKD-11) have been used as screw materials, and in the longitudinal direction of screws, integral materials have been used. Manufactures screws using [Problems to be Solved by the Invention] The screw is damaged differently depending on its longitudinal parts (FIG. 4). In other words, if you observe a screw after use, you will notice that in the longitudinal direction, there is a part that is mainly worn (feeding part), a part that is subject to both wear and corrosion (compression part), and a part that is mainly corroded (melting part). Divided. In other words, the performance that the screw should have is considered to be different depending on each part. Although maraging steel and cold work tool steel have high strength, they do not necessarily have sufficient corrosion resistance or wear resistance. Especially when molding resins or ceramics containing glass fiber, etc., wear is significant and the service life is shortened. is short. To compensate for these drawbacks of steel screws, thermal spray coating treatment of Co-based alloys or Ni-based alloys containing high-hardness particles such as tungsten carbide, or composite material screws to which such sintered alloys are attached, have been proposed. (For example, JP-A-61-
183430) has been proposed. However, although alloys containing tungsten carbide particles have excellent wear resistance, they have the disadvantage that they tend to wear out the material that comes into contact with them (in this case, the inner wall of the cylinder). In the present invention, the composite cylindrical material shown in FIG. 1 is manufactured using a material that has higher corrosion resistance and wear resistance than maraging steel or cold work tool steel, which has been conventionally used as a screw material. , which relates to a manufacturing method for screws that are combined as shown in Figure 3, and is characterized by not only being able to deal with damage that differs in the longitudinal direction of the screws, but also minimizing the amount of expensive materials used. Therefore, the service life of the screw is not reduced. [Means for solving the problem] The composite cylindrical material shown in Fig. 1 has an outer periphery B made of a hard alloy with excellent wear resistance and corrosion resistance, and a core metal part A made of steel having the strength and toughness necessary for screws. It is a composite material made of materials, and the interface between the hard alloy B and the core metal A exhibits a high-strength metallurgical bonding state.
The material of the hard alloy B used in the present invention is an alloy having the above-mentioned characteristics, and specifically, iron-based complex boride hard alloy (hereinafter referred to as the hard alloy), Co-based alloy, Ni-based alloy, and alloy tool steel, etc., and in this case, it is most preferable to use the hard alloy. The hard alloy is a material proposed by the present inventors (for example, Japanese Patent Publication No. 54-27818, Japanese Patent Publication No. 56-8904,
It is an alloy that not only has excellent corrosion and wear resistance, but also high strength and high-temperature oxidation resistance. Especially glass fiber
It has been revealed that it has excellent wear resistance against highly abrasive materials such as resins containing carbon fibers and magnetic powder, ceramics, and metal powder, and corrosion resistance against fluorine gas. The hard alloy has a metal structure in which fine hard grains are uniformly dispersed in the alloy, and the hard grains include iron-based borides, iron-based borides,
The bonding phase is Fe, Cr, Mo, W, Ti, V, Nb, Ta,
The main component is one or more metals or alloys selected from Hf, Zr, Ni, Cu, Co, and Mn. The hard particles are B-Fe type, B-X-Fe type, B-X-Y-Fe type (X, Y are Cr, Mo, W, Ti, V, Nb, Ta, Hf,
Zr, Ni, Cu, Co, Mn) borides, such as Fe 2 B, (Fe, Cr) 2 B, Mo 2 FeB 2 , Mo 2 (Fe,
Cr) B2 (Mo,W) 2 (Fe,Cr) B2 , the hard grains of which are contained in the alloy in an amount of 25-96%, preferably 35-96%. The B content of the hard alloy is 2 to 20%, preferably 3
~15%, Fe content is at least 10%,
Furthermore, when one or more of Cr, Mo, and W are included, the range is 0.1 to 50% each. Also Ti, V, Nb,
If one or more of Ta, Hf, Zr, Ni, Cu, Co, and Mn is included, each should be within the range of 0.01 to 15%. Other elements that are unavoidably contained include Al below 3%, O below 2.5%, C within the range of 0.01 to 1%, and it is particularly desirable that Al and O be 0%, but if they are within the above ranges, the strength will be increased. , does not significantly reduce toughness. The hardness of the hard alloy can be varied within the HRA range of 80 to 92 by changing the quantitative ratio of the hard particles to the binder phase within the above range. Furthermore, the binder phase can be changed to martensite, ferrite, austenite, or a mixed structure thereof by adjusting the type and amount of additive metals such as Cr and Ni.
It is possible to design alloys that take into account hardness, strength, and even corrosion resistance and heat resistance. The raw material powder for the hard alloy includes FeB or Fe 2 B-based boride powder prepared by water or gas atomization, or ferroboron powder, as well as Ni,
Boride powders such as Cr, W, Ti, Mo, etc., or B
Using single powder, these and Fe, Cr, Mo, W,
Ti, V, Nb, Ta, Hf, Zr, Ni, Cu, Co, Mn
Metal powders such as or alloy powders containing these as main components are used. These raw material powders are blended to have a predetermined chemical composition, the mixed powder is wet-pulverized in an organic solvent using a vibrating ball mill, and then dried and granulated to create a green compact. The powder compact is formed into a cylindrical shape by a powder compaction method such as cold isostatic pressing (CIP), but the method for forming the compact is not necessarily limited. When using the CIP method, a rigid, straight round rod is placed in the center of a rubber cylinder, filled with powder, then covered with a rubber lid and pressure-molded. After molding, the central round rod is removed to obtain a cylindrical green compact. Since the powder compact shrinks during sintering, the inner diameter of the cylindrical powder compact needs to be dimensioned in consideration of the amount of shrinkage. That is, the composite structure cylindrical material shown in FIG. 1 is manufactured by a sinter bonding method, which utilizes the contraction of the compacted powder of the hard alloy during sintering to firmly bond the hard alloy to material A. It is.
In other words, if the gap between the compact body diameter and material A before sintering is too small, cracks will occur in the hard alloy during sintering, and conversely, if the gap is too large, the material A and the hard alloy will join after sintering. This is because gaps remain on the surfaces and a good bonding state cannot be obtained. The amount of shrinkage of the hard alloy compact during sintering varies depending on the compaction method, shape, and dimensions, but the inner diameter is in the range of 5 to 20%. Here, it is desirable that the material A is finished by turning so that the circumferential surface can be uniformly joined. In addition, dirt such as oil and fat has a negative effect on bonding properties, so it is necessary to thoroughly degrease and clean the product in advance. The steel type of material A is not particularly limited, but it must be capable of joining with the hard alloy and have the mechanical strength necessary for the screw. (For example, JIS SS,
SC, SNC, SCr, SCM, SNCM, SUJ, SK,
SKH, SKS, SKD, SKT, SUS, SUH, etc. ) Sinter bonding is performed at 1100 to 1400°C for 5 to 90 minutes in a vacuum or in a non-oxidizing atmosphere. At temperatures below 1100°C, not only is a good bonded state not obtained, but the hard alloy is also in an unsintered state. On the other hand, at temperatures above 1400°C, the hard particles become coarse and the hard alloy itself loses its shape. Further, if the sintering time is less than 5 minutes, sufficient densification of the hard alloy will not proceed, and even if the sintering time exceeds 90 minutes, no improvement in strength commensurate with the passage of time will be observed. The sintered body obtained as described above is cut to a predetermined length, and both end faces are finished by turning or the like to produce the composite cylindrical material shown in FIG. 1. Next, the material for the screw is created by combining the composite cylindrical materials as shown in Figure 2 or Figure 3 . Figure, 3rd
The hard alloy with excellent corrosion resistance (corresponding to part B in Figs. 2 and 3) is used for the part L1 in the figure). Relatively light corrosion and wear load
2 copies of X (equivalent to 2 copies of L in Figures 2 and 3)
is a hard alloy with slightly low hardness but excellent strength and toughness (corresponding to section C in Figure 2), or SKD11 and SUS440C, which are more advantageous in terms of toughness.
An alloy tool steel specified by JIS such as JIS, or a steel material plated with hard chrome (corresponding to section C in Fig. 3) may be used. Furthermore, the X 3 part (corresponding to the L 3 part in Figures 2 and 3), where wear due to resin is a problem, is made of the hard alloy (corresponding to the D part in Figures 2 and 3). will be used. These methods take advantage of the fact that the hard alloys can be welded, soldered, or diffusion-bonded with other hard alloys or with steel materials. When joining using friction welding, the heating pressure is 3 to 15 Kg/ mm2 , and the upset pressure is 10 to 30 Kg/mm2.
mm 2 is preferred. Also, the deviation during heating is 0.5 to 3.5 mm.
It is desirable to do so. The combination of materials in the longitudinal direction can be selected depending on the type and degree of damage that the screw receives during use. [Example] An example of the present invention will be described with reference to the drawings. Example 1 The L1 part and L2 part in FIG. 2 were made using the material combinations shown in Table 1. As a result of observing the cross-sectional structure of the weld, it was found that the steel material used for the core material ( SCM440 in this case) has approximately
Although there is a heat-affected zone due to heat generation during welding of 10 mm, it is thought that this will not cause any problems in use since a torsional strength of 320 kg・m was obtained. The properties of each material are shown in Table 1, and the friction welding conditions and torsional strength are shown in Table 2.

【表】【table】

【表】 実施例 2 第2図に示すL1部とL2部を第3表に示す材料
の組合せで作成した。摩擦溶接条件及びねじり強
度を第4表に示す。
[Table] Example 2 L 1 part and L 2 part shown in FIG. 2 were prepared using the combination of materials shown in Table 3. Table 4 shows the friction welding conditions and torsional strength.

【表】【table】

【表】 実施例 3 第3図におけるL1部とL2部に相当する部分を
第5表に示す組合せで作成した。摩擦溶接条件及
びねじり強度を第6表に示す。
[Table] Example 3 The parts corresponding to the L1 part and L2 part in Fig. 3 were created in the combinations shown in Table 5. Table 6 shows the friction welding conditions and torsional strength.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明のスクリユーは、使用時に受けるダメー
ジの種類や程度によつて各部に最適な材料を適用
するものであり、スクリユーの性能をさらに向上
させることができ、セラミツクスや金属粉末等の
研摩耗性の著しく高い材料の射出成形が可能にな
つた。さらに、安価な鉄鋼材料でも使用に耐え得
る部分は積極的に該硬質合金を鉄鋼材料で代用し
ようとするものであり、これにより高価な該硬質
合金の使用量を必要最小限にとどめることができ
製造コストを低下させることができた。
The screw of the present invention applies the most suitable material to each part depending on the type and degree of damage received during use, and the performance of the screw can be further improved. Injection molding of significantly more expensive materials has become possible. Furthermore, we actively try to substitute steel materials for the hard alloys in parts that can withstand the use of inexpensive steel materials, thereby making it possible to keep the amount of expensive hard alloys used to the minimum necessary. We were able to reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複合構造スクリユーの構成に
使用する複合構造円柱材料の断面概略図、第2図
および第3図は複合構造スクリユー素材の断面機
略図、第4図は射出成形機スクリユー部の概略図
である。 A,A1〜A4;芯金、B,C,D,E;鉄基硼
化物系硬質合金、F,G;鉄鋼材料製丸棒、1;
スクリユー、2;シリンダー、3;材料投入口、
X1;溶融部、X2;圧縮部、X3;供給部。
Fig. 1 is a schematic cross-sectional view of the composite structure cylindrical material used in the construction of the composite structure screw of the present invention, Figs. 2 and 3 are cross-sectional schematic views of the composite structure screw material, and Fig. 4 is the injection molding machine screw section. FIG. A, A 1 to A 4 ; Core metal, B, C, D, E; Iron-based boride hard alloy, F, G; Round bar made of steel material, 1;
Screw, 2; Cylinder, 3; Material input port,
X 1 ; Melting section; X 2 ; Compression section; X 3 ; Supply section.

Claims (1)

【特許請求の範囲】 1 スクリユー谷径より細径の材料A、それより
大きな径の円筒を材料Bにて構成し、A,B間は
強固に接合されている複合構造円柱材料(第1
図)を用い、さらに長さ方向のL1部は材料A,
B、L2部は材料A,C、L3部は材料A,D、L4
部は材料A,E等で構成され、L1とL2、L2とL3
L3とL4間は摩擦溶接によつて強固に接合した複
合円柱材料(第2図)を用いたことを特徴とする
射出成形機用複合構造スクリユー(ここで1〜4
はn点まで拡張可)。 2 スクリユー谷径より細径の材料A、それより
大きな径の円筒を材料Bにて構成し、A,B間は
強固に接合されている複合構造円柱材料(第1
図)を用い、中心部材がL1部ではA1、L2部では
A2、L3部ではA3、L4部ではA4と各部分によつて
異なるような構成をもつ複合円柱材料(第2図)
を用いたことを特徴とする射出成形機用複合構造
スクリユー。 3 スクリユー谷径より細径の材料A、それより
大きな径の円筒を材料Bにて構成し、A,B間は
強固に接合されている複合構造円柱材料(第1
図)を用い、L1部は材料A,B、L2部は材料F、
L3部は材料A,D、L4部は材料Gと各部分によ
つて異なるような構成をもつ複合円柱材料(第3
図)を用いたことを特徴とする射出成形機用複合
構造スクリユー。
[Claims] 1 Composite structure cylindrical material (first
), and L1 part in the length direction is made of material A,
B, L 2 parts are materials A, C, L 3 parts are materials A, D, L 4
The part is composed of materials A, E, etc., L 1 and L 2 , L 2 and L 3 ,
Composite structure screws for injection molding machines (here , 1 to 4
(can be extended up to n points). 2 Composite structure cylindrical material (first
), when the center member is L 1 part, A 1 is used, and when L 2 part is the center member, A 1 is used.
Composite cylindrical material with different composition depending on each part: A 2 , L 3 part is A 3 , L 4 part is A 4 (Fig. 2)
A composite structure screw for an injection molding machine characterized by using. 3 Composite structure cylindrical material (first
), L 1 part is material A and B, L 2 part is material F,
L 3 parts are materials A and D, L 4 part is material G, and a composite cylindrical material (3rd part) with different composition depending on each part.
A composite structure screw for an injection molding machine characterized by using the screw shown in the figure).
JP24795887A 1987-10-02 1987-10-02 Composite structural screw for injection molding machine Granted JPS6490717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24795887A JPS6490717A (en) 1987-10-02 1987-10-02 Composite structural screw for injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24795887A JPS6490717A (en) 1987-10-02 1987-10-02 Composite structural screw for injection molding machine

Publications (2)

Publication Number Publication Date
JPS6490717A JPS6490717A (en) 1989-04-07
JPH0455571B2 true JPH0455571B2 (en) 1992-09-03

Family

ID=17171085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24795887A Granted JPS6490717A (en) 1987-10-02 1987-10-02 Composite structural screw for injection molding machine

Country Status (1)

Country Link
JP (1) JPS6490717A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2037606C (en) * 1990-03-13 2002-06-04 Yukiatsu Komiya Polyurethane, elastic polyurethane fiber and polyesterpolycarbonatediol used for the same
JPH0568626U (en) * 1992-02-24 1993-09-17 株式会社名機製作所 Injection molding machine screw
CN109676142B (en) * 2017-12-27 2020-07-31 全亿大科技(佛山)有限公司 Metal product with complex structure and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6490717A (en) 1989-04-07

Similar Documents

Publication Publication Date Title
US4729789A (en) Process of manufacturing an extruder screw for injection molding machines or extrusion machines and product thereof
US10272497B2 (en) Cladded articles and methods of making the same
US8534529B2 (en) Powder metal friction stir welding tool and method of manufacture thereof
KR101354488B1 (en) Powder metal friction stir welding tool and method of manufacture thereof
US9302323B2 (en) Powder metal ultrasonic welding tool and method of manufacture thereof
US20030012677A1 (en) Bi-metallic metal injection molded hand tool and manufacturing method
US10865149B2 (en) Metal-detectable plastic material
JPH0455571B2 (en)
US10710933B2 (en) Cermet body
US4386959A (en) Method for compound sintering
EP1193042A2 (en) Housing for plastics, metal powder, ceramic powder or food processing machines
JPH073306A (en) High-strength sintered hard alloy composite material and production thereof
US20030106198A1 (en) Methods of making wear resistant tooling systems to be used in high temperature casting and molding
JP2006289430A (en) Sintered hard alloy-made combined roll for rolling
US11958262B2 (en) Cermet tooling with a plastic support structure
JPS63195254A (en) Production of composite material
US11225704B2 (en) Cermet body
US20200307136A1 (en) Cermet tooling with a plastic support structure
EP3318655A1 (en) Laminated tube and manufacturing method therefor
EP3529385A1 (en) Cermet composition
JP2009255454A (en) Molding machine plunger
JPH03240940A (en) Screw for plastic molding machine and its manufacture
JPH05202402A (en) High strength and corrosion and wear resistant member and production tereof
KR100422092B1 (en) Sliding parts and manufacturing method thereof
JPH0365321A (en) Corrosion-resistant or wear-resistant screw head

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees