JPH05202402A - High strength and corrosion and wear resistant member and production tereof - Google Patents

High strength and corrosion and wear resistant member and production tereof

Info

Publication number
JPH05202402A
JPH05202402A JP29583392A JP29583392A JPH05202402A JP H05202402 A JPH05202402 A JP H05202402A JP 29583392 A JP29583392 A JP 29583392A JP 29583392 A JP29583392 A JP 29583392A JP H05202402 A JPH05202402 A JP H05202402A
Authority
JP
Japan
Prior art keywords
resistant
wear
lining layer
based alloys
strength corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29583392A
Other languages
Japanese (ja)
Inventor
Kimitaka Maruyama
公孝 丸山
Sakae Takahashi
栄 高橋
Mikiyoshi Miyauchi
幹由 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP29583392A priority Critical patent/JPH05202402A/en
Publication of JPH05202402A publication Critical patent/JPH05202402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To produce the above high strength and corrosion and wear resistant member by forming a ductile member on the inside of a high strength and corrosion resistant substrate of a Co-based alloy, etc., and partially forming a lining layer of a wear resistant composite material on the outside. CONSTITUTION:A ductile member 20 of stainless steel in formed on the inside of a high strength and corrosion resistant substrate 10 consisting of at least one of Co-, Ni-and Fe-based alloys. Parts 10a of the outside requiring wear resistance are coated with a slurry 30a consisting of WC having about 10mum average particle diameter, acrylic resin and methyl ethyl ketone and the slurry 30a is worked into a WC formed body 30 having a specified thickness. Particles 40 of an Ni-based alloy acting as a matrix metal are kneaded with acrylic resin and applied on neighborhood and the surface of the WC formed body 30. Sintering in a vacuum furnace 50 and finishing are then carried out to form a lining layer 60 of a wear resistant composite material. The physical properties of the lining layer 60 are freely regulated and a high strength and corrosion and wear resistant member is thus obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の技術分野】本発明は、機械部材等に耐食耐摩
耗性材料を被覆する方法に係り、特に耐食材料からなる
基材に耐摩耗性を与えた高強度耐食耐摩耗性部材及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coating a mechanical member or the like with a corrosion-resistant wear-resistant material, and more particularly to a high-strength corrosion-resistant wear-resistant member in which a base material made of a corrosion-resistant material is provided with wear resistance. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】機械部材に耐食耐摩耗性材料を被覆する
従来技術として、基材全面に有機バインダ等を用いて硬
質粒子を固定し、固定された硬質粒子にマトリックス金
属を接触するように配置し、ついで、加熱して硬質粒子
にマトリックス金属を溶融浸透させることにより耐摩耗
性複合材からなるライニング層を被覆形成する方法が知
られている。
2. Description of the Related Art As a conventional technique for coating a mechanical member with a corrosion-resistant and wear-resistant material, hard particles are fixed on the entire surface of a substrate by using an organic binder or the like, and the fixed hard particles are arranged so that a matrix metal is brought into contact with them. Then, a method is known in which a lining layer made of a wear-resistant composite material is formed by coating by heating and melting and infiltrating a matrix metal into the hard particles.

【0003】例えば本出願人の出願に係る特開昭63−
50402号は、炭化物または硼化物の粉末に有機バイ
ンダを混練して基材に被覆し、得られた被覆層を機械加
工した後焼結炉内に入れ、ここで前記被覆層の有機バイ
ンダを加熱して除去すると共に、前記被覆層に溶融した
金属バインダ(マトリックス金属)を浸透させかつ基材
と接合せしめる耐摩耗性材料の被覆方法を開示してい
る。また、本出願人の出願に係る特開昭60−8950
3号、特開昭60−89504号は、同様の方法を開示
している。これらの方法では、溶融マトリックス金属は
硬質粒子中に浸透して、複合材からなるライニング層を
形成すると共に基材材料と拡散接合する。しかし、上述
の従来の構造及びその方法は以下の問題点を有する。
For example, Japanese Patent Laid-Open No. 63-
No. 50402 is a carbide or boride powder that is kneaded with an organic binder to coat a substrate, and the obtained coating layer is machined and then placed in a sintering furnace, where the organic binder in the coating layer is heated. Disclosed is a method for coating an abrasion-resistant material, in which the molten metal binder (matrix metal) is permeated into the coating layer and bonded to the base material. Further, Japanese Patent Application Laid-Open No. 60-8950 filed by the present applicant
No. 3, JP-A-60-89504 discloses a similar method. In these methods, the molten matrix metal penetrates into the hard particles to form a lining layer of composite material and diffusion bond with the substrate material. However, the above-mentioned conventional structure and its method have the following problems.

【0004】(1) 上記従来の構造を例えばプラスチック
成形機用スクリューに適用した場合、基材が直接駆動軸
からのトルクを受けることとなり、キー溝の角部から破
壊しやすい問題がある。
(1) When the above conventional structure is applied to, for example, a screw for a plastic molding machine, the base material directly receives the torque from the drive shaft, and there is a problem that the corner portion of the key groove is easily broken.

【0005】(2) 焼結にて基材全面に複合材からなるラ
イニング層を被覆形成するため、基材と複合材からなる
ライニング層との線膨張率が離れているとクラックが生
じるため、両者の線膨脹率が近似している必要がある。
しかし、複合材からなるライニング層の線膨張率は7×
10-6〜8×10-6程度と小さく、これに対応する線膨
張率を有する基材を使用しなければならず、基材の材料
が制限される。
(2) Since the lining layer made of the composite material is formed on the entire surface of the base material by sintering, cracks occur when the linear expansion coefficient of the base material and the lining layer made of the composite material are separated from each other. It is necessary that the linear expansion coefficients of both are similar.
However, the linear expansion coefficient of the lining layer made of composite material is 7 ×
It is necessary to use a base material having a small linear expansion coefficient corresponding to 10 −6 to 8 × 10 −6, and the material of the base material is limited.

【0006】(3) 複合材からなるライニング層は、線膨
脹率の違いから特定の組成に制限され、複合材からなる
ライニング層自体の機械的性質の向上が難しく、さらに
基材の材質も制限されているので、基材に複合材からな
るライニング層を被覆した部材の強度向上も困難にな
る。
(3) The lining layer made of the composite material is limited to a specific composition due to the difference in the coefficient of linear expansion, it is difficult to improve the mechanical properties of the lining layer made of the composite material, and the material of the base material is also limited. Therefore, it is difficult to improve the strength of the member in which the base material is covered with the lining layer made of the composite material.

【0007】(4) 複合材からなるライニング層を基材全
面に被覆するため、耐摩耗性が不必要な部分(例えばね
じ谷)のライニング層が余分なコストとして製品に負荷
される。
(4) Since the lining layer made of the composite material is coated on the entire surface of the base material, the lining layer at the portion where wear resistance is unnecessary (for example, screw valley) is applied to the product as an extra cost.

【0008】[0008]

【発明が解決しようとする課題】以上のように、従来は
基材が直接トルクを受ける構造なので、その箇所が破壊
しやすい。
As described above, since the base material has a structure which directly receives the torque as described above, that portion is easily broken.

【0009】また、従来方法は複合材からなるライニン
グ層を全面に被覆するため接触面積が大きく、線膨脹率
の違いから基材の材質が制限され、また複合材からなる
ライニング層の物性が硬質粒子とマトリックス金属の種
類により決まるため、複合材からなるライニング層自
体、更に複合材からなるライニング層と基材を組合せた
強度に限界があった。本発明部材は、トルクを受ける箇
所の破壊を防止することができる高強度耐食耐摩耗部材
を提供することにある。
Further, in the conventional method, since the entire surface is covered with the lining layer made of the composite material, the contact area is large, the material of the base material is limited due to the difference in the coefficient of linear expansion, and the physical properties of the lining layer made of the composite material are hard. Since it depends on the type of particles and the type of matrix metal, there is a limit to the strength of the lining layer itself made of the composite material and the strength of the combination of the lining layer made of the composite material and the substrate. The member of the present invention is to provide a high-strength corrosion-resistant and abrasion-resistant member capable of preventing breakage of a portion receiving torque.

【0010】また本発明方法は、複合材からなるライニ
ング層を耐摩耗性を必要とする箇所に部分的に被覆する
ことにより基材選択の幅を広げ、また複合材からなるラ
イニング層に物性調整粒子を添加することにより複合材
からなるライニング層の物性を自由に調整し、複合材か
らなるライニング層と基材の組合せを多様化し、かつそ
の組合せた部材の強度を向上させることができる高強度
耐食耐摩耗部材の製造方法を提供することにある。
Further, in the method of the present invention, the lining layer made of a composite material is partially coated on a portion requiring abrasion resistance to widen the range of selection of the base material, and the lining layer made of a composite material is adjusted for physical properties. High strength that can freely adjust the physical properties of the lining layer made of composite material by adding particles, diversify the combination of lining layer made of composite material and base material, and improve the strength of the combined member It is an object of the present invention to provide a method for manufacturing a corrosion resistant and wear resistant member.

【0011】[0011]

【課題を解決するための手段】本発明部材は、Co基合
金、Ni基合金、及びFe基合金の群から選択された少
なくとも1種類の合金からなる高強度耐食性基材と、こ
の基材の内側に設けられた延性部材と、前記高強度耐食
性基材の外側に部分的に設けられた耐摩耗性複合材から
なるライニング層とを備えた高強度耐食耐摩耗性部材で
ある。
The member of the present invention comprises a high-strength corrosion-resistant base material comprising at least one alloy selected from the group consisting of Co-based alloys, Ni-based alloys and Fe-based alloys, and A high-strength corrosion-resistant wear-resistant member comprising a ductile member provided inside and a lining layer made of a wear-resistant composite material partially provided outside the high-strength corrosion-resistant base material.

【0012】また、本発明方法は、Co基合金、Ni基
合金、及びFe基合金の群から選択された少なくとも1
種類の合金の内側に延性部材を有する高強度耐食性基材
の外側に部分的に耐摩耗性複合材からなるライニング層
を設けた高強度耐食耐摩耗性部材の製造方法において、
基材の耐摩耗性を要する部分にのみ、炭化物、硼化物、
窒化物及びそれらの混合物の群から選択された硬質粒子
と、必要に添加した物性調整用金属粒子と、Fe基合
金、Ni基合金、Co基合金及びこれらの混合物の群か
ら選択されたマトリックス金属とを含有する耐摩耗性複
合材からなるライニング層を形成する高強度耐食耐摩耗
性部材の製造方法である。
Further, the method of the present invention comprises at least one selected from the group consisting of Co-based alloys, Ni-based alloys, and Fe-based alloys.
In a method of manufacturing a high-strength corrosion-resistant wear-resistant member, wherein a lining layer made of a wear-resistant composite material is partially provided on the outside of a high-strength corrosion-resistant base material having a ductile member on the inside of a kind of alloy,
Carbides, borides, and
Hard particles selected from the group of nitrides and mixtures thereof, optionally added metal particles for adjusting physical properties, and matrix metal selected from the group of Fe-based alloys, Ni-based alloys, Co-based alloys and mixtures thereof A method for producing a high-strength corrosion-resistant and wear-resistant member, which comprises forming a lining layer made of a wear-resistant composite material containing and.

【0013】さらに本発明は、基材の耐摩耗性を要する
部分にのみ、前記硬質粒子と、必要に添加した前記物性
調整用金属粒子との混合物からなる層を設けた後、前記
混合物の層に前記マトリックス金属を加熱浸透せしめて
ライニング層を形成する高強度耐食耐摩耗性部材の製造
方法である。
Furthermore, the present invention provides a layer of the mixture after providing a layer comprising a mixture of the hard particles and the optionally added metal particles for adjusting physical properties only in a portion of the base material which requires abrasion resistance. Is a method for producing a high-strength corrosion-resistant and wear-resistant member, which comprises heating and permeating the matrix metal to form a lining layer.

【0014】[0014]

【作用】本発明部材は、ニーディングディスクやスクリ
ューエレメントなど高強度耐食耐摩耗性を必要とする機
械部材に適用される。例えばプラスチック成形機用スク
リューエレメントに適用した場合、基材には、樹脂混
練、移送により摩耗が起り、大きな曲げ応力がかかる。
従って、この基材の好適な材質は、曲げ強度が130 k
gf/mm2 、硬度HR Cが40以上で耐食性のある合金で
ある。この材質として、例えば、Cr25.0〜30.
0重量%、W4.0〜14.0重量%、C0.6〜2.
8重量%、Fe3.0重量%以下、Ni:0.6〜2.
0重量%、Si:0.8〜1.5重量%、残部Co及び
不可避的不純物からなるCo基合金が挙げられる。この
Co基合金の各成分を限定したのは、この成分範囲のC
o基合金は、ライニング層を越える耐食性があり(ライ
ニング層の約1.5倍の耐食性)、硬度HR C50を保
つため、優れた耐摩耗性、剛性を有し、この結果、ライ
ニング層の変形を抑え、圧壊強度を上げ、耐欠け性を増
すためである。
The member of the present invention is applied to a mechanical member such as a kneading disk or a screw element which requires high strength corrosion resistance and abrasion resistance. For example, when applied to a screw element for a plastic molding machine, the base material is abraded due to resin kneading and transfer, and a large bending stress is applied.
Therefore, the preferred material for this substrate has a bending strength of 130 k.
gf / mm 2 , An alloy having a hardness H R C of 40 or more and having corrosion resistance. As this material, for example, Cr 25.0 to 30.
0% by weight, W 4.0 to 14.0% by weight, C 0.6 to 2.
8 wt%, Fe 3.0 wt% or less, Ni: 0.6-2.
A Co-based alloy composed of 0% by weight, Si: 0.8 to 1.5% by weight, the balance Co and inevitable impurities can be mentioned. The limitation of each component of this Co-based alloy is that C in this component range.
The o-based alloy has corrosion resistance exceeding that of the lining layer (corrosion resistance of about 1.5 times that of the lining layer) and maintains hardness H R C50, and therefore has excellent wear resistance and rigidity. As a result, This is because deformation is suppressed, crush strength is increased, and chipping resistance is increased.

【0015】延性部材は、この箇所で駆動軸からのトル
クを受けるため、好適な延性部材は、1.0 kgf m/cm
2 以上のシャルピー衝撃値を持つステンレス鋼又は構造
用鋼等の鋼材である。これらの鋼の場合、キー溝加工が
容易となる。
Since the ductile member receives torque from the drive shaft at this point, the preferred ductile member is 1.0 kgf m / cm.
2 It is a steel material such as stainless steel or structural steel having the above Charpy impact value. In the case of these steels, key groove processing becomes easy.

【0016】ライニング層は、バレルとの金属接触及び
樹脂との摩耗で激しく摩耗するので、高耐摩耗性、耐食
性を必要とする。好適なライニング層の組成は、炭化タ
ングステン粒子を20〜70重量%含有するNi系サー
メットである。Ni系サーメットとは、サーメットの金
属成分が、ニッケル又はニッケル合金で、ニッケル合金
として、BNi−1、BNi−2、BNi−3などが挙
げられる。
The lining layer is severely worn due to metal contact with the barrel and abrasion with the resin, and therefore requires high wear resistance and corrosion resistance. A preferable lining layer composition is a Ni-based cermet containing 20 to 70% by weight of tungsten carbide particles. The Ni-based cermet has a metal component of cermet of nickel or a nickel alloy, and examples of the nickel alloy include BNi-1, BNi-2, and BNi-3.

【0017】この組成で、炭化タングステン粒子の含有
範囲を20〜70重量%とした理由は、70%を越える
と、ライニング層が脆くなり、また製造が困難であり、
また20%未満では耐摩耗性が低下するためである。こ
の構造の高強度耐食耐摩耗性部材は、駆動軸からのトル
クを受ける箇所に延性部材を設けてあるので、キー溝の
角部からの破壊を防止することができる。
The reason why the content range of the tungsten carbide particles in this composition is set to 20 to 70% by weight is that when the content exceeds 70%, the lining layer becomes brittle and the production is difficult,
Also, if it is less than 20%, the wear resistance is lowered. Since the high-strength corrosion-resistant and wear-resistant member of this structure is provided with the ductile member at the portion receiving the torque from the drive shaft, it is possible to prevent breakage from the corner of the key groove.

【0018】本発明方法は、耐摩耗性を必要とする箇所
にのみ複合材からなるライニング層を部分的に被覆する
ことにより、ライニング層と基材との線膨脹率の違いを
あまり考慮する必要がなくなり、基材選択の幅を広げ
る。またライニング層に物性調整粒子を添加することに
より、ライニング層の物性を任意に調整し、複合材から
なるライニング層と基材の組合せを多様化し、かつその
組合せた部材の強度を向上させる。
In the method of the present invention, it is necessary to consider the difference in the linear expansion coefficient between the lining layer and the base material, by coating the lining layer made of the composite material only on the portion where abrasion resistance is required. Eliminates the possibility of widening the selection of base materials. Further, by adding particles for adjusting physical properties to the lining layer, the physical properties of the lining layer are arbitrarily adjusted, the combination of the lining layer made of the composite material and the base material is diversified, and the strength of the combined member is improved.

【0019】[0019]

【実施例】以下本発明の実施例を説明する。これらの実
施例で対象とする高強度耐食耐摩耗性部材は、図1に示
すニーディングディスク100および図2に示すスクリ
ュ200で、図1中耐摩耗性を必要とする箇所はライニ
ング層30が設けられてある。図1中、10は基材、2
0は延性部材である。図2中、11は基材、21は延性
部材である。31はライニング層である。 実施例1(スプレー法によるニーディングディスクの製
造)
EXAMPLES Examples of the present invention will be described below. The high-strength corrosion-resistant and abrasion-resistant members targeted in these examples are the kneading disc 100 shown in FIG. 1 and the screw 200 shown in FIG. 2, and the lining layer 30 is provided at the portion requiring abrasion resistance in FIG. It is provided. In FIG. 1, 10 is a base material, 2
0 is a ductile member. In FIG. 2, 11 is a base material and 21 is a ductile member. 31 is a lining layer. Example 1 (manufacture of a kneading disk by a spray method)

【0020】有機バインダとしてアクリル系樹脂を、有
機溶剤としてメチルエチルケトン、硬質粒子としてW
C、マトリックス金属としてNi基合金粒子、基材とし
てステライト#12(成分:C:1.5重量%、Si:
1.3重量%、Ni:0.8重量%、Cr:28.3重
量%、W:8.2重量%、Fe:0.4重量%、Co:
残部、曲げ強度:320 kgf/mm2 、硬度HR 50)を使用
した。平均粒径10μm のWCを100重量部とし、ア
クリル系樹脂を1重量部、メチルエチルケトンを14重
量部の混合比としてスラリを作った。
Acrylic resin as the organic binder, methyl ethyl ketone as the organic solvent, and W as the hard particles.
C, Ni-based alloy particles as matrix metal, Stellite # 12 as base material (component: C: 1.5% by weight, Si:
1.3 wt%, Ni: 0.8 wt%, Cr: 28.3 wt%, W: 8.2 wt%, Fe: 0.4 wt%, Co:
Remainder, flexural strength: 320 kgf / mm 2 , Hardness H R 50) was used. A slurry was prepared with 100 parts by weight of WC having an average particle size of 10 μm, 1 part by weight of acrylic resin and 14 parts by weight of methyl ethyl ketone as a mixing ratio.

【0021】ニーディングディスク基材10は、その内
面にステンレス鋼(シャルピー衝撃値:20 kgf m/cm
2 )からなる延性部材20が被覆形成され、基材10の
外面のうち、耐摩耗性を必要とする箇所、すなわちライ
ニング層を形成する箇所10aを予じめ仕上り寸法より
もマイナス側の寸法に加工しておいた(図3のA参
照)。次に、先に混練したスラリ30aを塗装用スプレ
ー装置(図示せず)を用いてニーディングディスク基材
10の前記箇所10aに被覆した(図3のB参照)。こ
の被覆されたWC成形体30をフライス盤により加工し
て、その厚さを所定の厚さ(例えば5mm以下)とした
(図3のC参照)。基材10の外面に部分的に存在する
WC成形体30の近傍および表面にマトリックス金属と
なるNi基合金粒子40を粒子のまま、アクリル樹脂と
混練した状態、若しくはシート状にして接触配置し、こ
れを真空炉50中に入れた(図3のD参照)。次いでこ
れを表1の焼結条件にて焼結し、仕上加工をおこなっ
て、耐摩耗性複合材からなるライニング層60(WC6
0%+Ni40%)を形成した(図3のE参照)。
The kneading disc substrate 10 has a stainless steel (Charpy impact value: 20 kgf m / cm 2) inner surface.
2 Of the outer surface of the base material 10, which is required to have wear resistance, that is, a portion 10a where a lining layer is formed is preliminarily processed into a dimension on the negative side of the finished dimension. (See A of FIG. 3). Next, the kneaded slurry 30a was coated on the above-mentioned location 10a of the kneading disk substrate 10 by using a spray device for coating (not shown) (see B in FIG. 3). The covered WC molded body 30 was processed by a milling machine to have a predetermined thickness (for example, 5 mm or less) (see C in FIG. 3). Ni-based alloy particles 40, which are matrix metals, are present in the vicinity of and on the surface of the WC molded body 30 partially present on the outer surface of the base material 10 as they are, in a state of being kneaded with an acrylic resin, or in the form of a sheet and brought into contact with each other. This was placed in a vacuum furnace 50 (see D in FIG. 3). Then, this is sintered under the sintering conditions shown in Table 1 and subjected to finish processing, and the lining layer 60 (WC6 made of wear-resistant composite material).
0% + Ni 40%) (see E in FIG. 3).

【0022】WCとNi基合金の複合材からなるライニ
ング層60は、線膨張率が7×10-6/℃〜8×10-6
/℃、他方、基材10のステライト#12は14×10
-6/℃である。この線膨脹率の差は、従来法により全面
に複合材からなるライニング層を付けることは困難であ
るが、上記実施例により部分的に付けることは可能であ
る。さらに、硬度HR C50のステライト#12でバッ
クアップして、基材と組合せた複合材からなるライニン
グ層の圧壊強度が一段と強化された。その結果を表2の
試料No.4に示す。
The lining layer 60 made of a composite material of WC and Ni-based alloy has a linear expansion coefficient of 7 × 10 -6 / ° C. to 8 × 10 -6.
/ ° C., on the other hand, Stellite # 12 of the substrate 10 is 14 × 10
-6 / ° C. It is difficult to apply the lining layer made of the composite material to the entire surface by the conventional method, but it is possible to make the difference in the linear expansion coefficient partially by the above-mentioned embodiment. Furthermore, by backing up with Stellite # 12 having a hardness of H R C50, the crushing strength of the lining layer made of the composite material combined with the base material was further enhanced. The results are shown in Table 2, Sample No. 4 shows.

【0023】また、WCの代りにWC39重量部と物性
調整用金属粉末であるSUS41021重量部との混合
粉末をもちいた点を除き上記実施例1と同様にしてライ
ニング層(WC39%+SUS41021%+Ni40
%)を被覆形成して高強度耐食耐摩耗性のニーディング
ディスクを製造した。その圧壊強度の実験結果を表2の
No.5に示す。 実施例2(スプレー法によるスクリュエレメントの製
造)
A lining layer (WC39% + SUS41021% + Ni40) was used in the same manner as in Example 1 except that a mixed powder of WC39 parts by weight and SUS41021 parts by weight as a metal powder for adjusting physical properties was used instead of WC.
%) To form a kneading disc having high strength and corrosion resistance. The experimental results of the crush strength are shown in No. 2 of Table 2. 5 shows. Example 2 (manufacturing of screw element by spraying method)

【0024】有機バインダとしてアクリル系樹脂を、有
機溶剤としてメチルエチルケトン、硬質粒子としてW
C、マトリックス金属としてNi基合金粒子、基材とし
て内側に延性部材を有するステライト#12を使用し
た。平均粒径10μm のWCを100重量部とし、アク
リル系樹脂を1重量部、メチルエチルケトンを14重量
部の混合比としてスラリを作った。
Acrylic resin as the organic binder, methyl ethyl ketone as the organic solvent, and W as the hard particles.
C, Ni-based alloy particles were used as the matrix metal, and Stellite # 12 having a ductile member inside was used as the base material. A slurry was prepared with 100 parts by weight of WC having an average particle size of 10 μm, 1 part by weight of acrylic resin and 14 parts by weight of methyl ethyl ketone as a mixing ratio.

【0025】スクリュエレメント基材11は、その内面
にステンレス鋼(実施例1と同材質)からなる延性部材
21が被覆形成され、基材11の外面のうち、ライニン
グ層を形成した箇所11aを予じめ仕上り寸法よりもマ
イナス側の寸法に加工しておいた。次に、先に混練した
スラリ31aを塗装用スプレー装置(図示せず)を用い
てスクリュエレメント基材11の所定の箇所11aに被
覆した(図4のA参照)。この被覆されたWC成形体3
1をフライス盤により加工して、その厚さを所定の厚さ
(例えば5mm以下)とした(図4のB参照)。この部分
的に存在するWC成形体31の近傍および表面にマトリ
ックス金属となるNi基合金粒子41を粒子のまま、ア
クリル樹脂と混練した状態、若しくはシート状にして接
触配置し、真空炉51中に入れる(図4のC参照)。こ
れを表1の焼結条件にて焼結し、仕上加工をおこなっ
て、耐摩耗性複合材からなるライニング層61を形成し
た(図4のD参照)。
The inner surface of the screw element base material 11 is coated with a ductile member 21 made of stainless steel (the same material as in Example 1), and the outer surface of the base material 11 is preliminarily covered with a portion 11a where a lining layer is formed. It was processed to a dimension on the negative side of the final finish dimension. Next, the previously kneaded slurry 31a was coated on a predetermined portion 11a of the screw element base material 11 by using a coating spray device (not shown) (see A in FIG. 4). This coated WC molded body 3
1 was processed by a milling machine to have a predetermined thickness (for example, 5 mm or less) (see B in FIG. 4). In the vicinity and on the surface of this partially existing WC compact 31, Ni-based alloy particles 41 serving as a matrix metal are kneaded in the state of being kneaded with an acrylic resin or in the form of a sheet and placed in contact with each other in a vacuum furnace 51. (See C in FIG. 4). This was sintered under the sintering conditions shown in Table 1 and subjected to finishing to form a lining layer 61 made of a wear resistant composite material (see D in FIG. 4).

【0026】WCとNi基合金の複合材(WC60%+
Ni40%)からなるライニング層は、線膨張率が7×
10-6/℃〜8×10-6/℃、ステライト#12は14
×10-6/℃であり、従来法により全面に複合材からな
るライニング層を付けることは困難であるが、この実施
例で部分的に付けることは可能であり、硬度HR C50
のステラトでバックアップして、基材と組合せた複合材
からなるライニング層61の強度が一段と強化された。 実施例3(CIP法によるニーディングディスクの製
造)
Composite material of WC and Ni-based alloy (WC60% +
Ni 40%) has a linear expansion coefficient of 7 ×.
10 −6 / ° C. to 8 × 10 −6 / ° C., Stellite # 12 is 14
It is × 10 -6 / ° C. It is difficult to apply the lining layer made of the composite material on the entire surface by the conventional method, but it is possible to apply it partially in this example, and the hardness H R C50
By backing up with sterato, the strength of the lining layer 61 made of the composite material combined with the base material was further strengthened. Example 3 (Manufacture of a kneading disk by the CIP method)

【0027】内面にステンレス鋼からなる延性部材20
を被覆形成した基材10(実施例1と同材質)を用意し
た(図5のA参照)。複合材からなるライニング層の硬
質粒子として平均粒径10μm のWC100重量部、有
機バインダとしてアクリル樹脂3重量部、有機溶剤とし
てメチルエチルケトン7重量部を用い混合、混練、乾燥
をして35〜120メッシュ(0.5〜0.125mm)
に粉砕分級した。この造粒粉30bを基材外表面に充填
し、周面をゴム円筒71で囲み、上下面を鉄製蓋72で
囲み、これを静水圧装置70に入れ、ステライト#12
の円筒状基材表面に1500 kgf/cm2 で冷間等方静水
圧プレス(CIP)により層30´を被覆成形した(図
5のB乃至D参照)。これを所定厚さ(5mm以下)に加
工してライニング層30を形成し(図5のE参照)、N
i基合金粒子40を接触するように配置し、真空炉50
に挿入し(図5のF参照)、表1の条件で焼結した。こ
れによりアクリル樹脂が400℃で分解蒸発し空隔に1
100℃で溶融したNi基合金が浸透し複合材からなる
ライニング層60を形成しかつ基材10に拡散接合さ
せ、ニーディングディスク形状に加工仕上げした。この
ことにより高強度耐食耐摩耗用ニーディングディスクが
低コストで製造可能となった。
A ductile member 20 made of stainless steel on the inner surface.
A substrate 10 (same material as that of Example 1) coated with was prepared (see A in FIG. 5). 100 parts by weight of WC having an average particle size of 10 μm as hard particles of a lining layer made of a composite material, 3 parts by weight of an acrylic resin as an organic binder, and 7 parts by weight of methyl ethyl ketone as an organic solvent are mixed, kneaded and dried to obtain 35 to 120 mesh ( 0.5-0.125mm)
It was crushed and classified into The granulated powder 30b was filled into the outer surface of the base material, the peripheral surface was surrounded by the rubber cylinder 71, and the upper and lower surfaces were surrounded by the iron lid 72, which was put in the hydrostatic device 70 and the stellite # 12 was used.
1500 kgf / cm 2 on the cylindrical substrate surface of The layer 30 'was overmolded by cold isostatic pressing (CIP) (see B to D in FIG. 5). This is processed to a predetermined thickness (5 mm or less) to form a lining layer 30 (see E in FIG. 5), and N
The i-based alloy particles 40 are placed in contact with each other, and the vacuum furnace 50
(See F in FIG. 5) and sintered under the conditions shown in Table 1. This causes the acrylic resin to decompose and evaporate at 400 ° C, leaving 1
A Ni-based alloy melted at 100 ° C. was infiltrated to form a lining layer 60 made of a composite material, diffusion-bonded to the base material 10, and processed into a kneading disk shape. As a result, a high-strength corrosion-resistant and abrasion-resistant kneading disk can be manufactured at low cost.

【0028】また、WCの代わりにWC39重量部と物
性調整用金属粉末であるSUS410、21重量部との
混合粉末をもちいた点を除き上記実施例3と同様にして
ライニング層(WC39%+SUS41021%+Ni
40%)を被覆形成して高強度耐食耐摩耗性のニーディ
ングディスク製造した。 実施例4(CIP法によるスクリュエレメントの製造)
A lining layer (WC39% + SUS41021%) was prepared in the same manner as in Example 3 except that a mixed powder of WC39 parts by weight and SUS410, which was a metal powder for adjusting physical properties, and 21 parts by weight was used instead of WC. + Ni
40%) to form a kneading disk having high strength, corrosion resistance and abrasion resistance. Example 4 (Manufacturing of screw element by CIP method)

【0029】内面にステンレス鋼からなる延性部材21
を被覆形成した基材11(実施例1と同材質)を用意し
た(図6のA参照)。複合材からなるライニング層の硬
質粒子として平均粒径10μm のWC100重量部、有
機バインダとしてアクリル樹脂3重量部、有機溶剤とし
てメチルエチルケトン7重量部を用い混合、混練、乾燥
をして35〜120メッシュ(0.5〜0.125mm)
に粉砕分級した。この造粒粉を静水圧装置70を用いて
ステライト#12の円筒状基材表面に1500kgf /cm
2 で冷間等方静水圧プレス(CIP)により成形した
(図6のB乃至D参照)。これを所定厚さ(5mm以下)
に加工し(図6のE参照)、Ni基合金粒子を接触する
ように配置し、真空炉80に挿入し(図6のF参照)、
表1の条件で焼結した。これによりアクリル樹脂が40
0℃で分解蒸発し空隔に1100℃で溶融したNi基合
金が浸透し複合材からなるライニング層61を形成しか
つ基材11に拡散接合させ、スクリュエレメント形状に
加工仕上げすることにより高強度耐食耐摩耗用スクリュ
エレメントが低コストで製造可能となった。 比較例1(従来のスプレー法によるニーディングディス
クの製造)
A ductile member 21 made of stainless steel on the inner surface.
A base material 11 (same material as in Example 1) coated with was prepared (see A in FIG. 6). 100 parts by weight of WC having an average particle size of 10 μm as hard particles of a lining layer made of a composite material, 3 parts by weight of an acrylic resin as an organic binder, and 7 parts by weight of methyl ethyl ketone as an organic solvent are mixed, kneaded and dried to obtain 35 to 120 mesh ( 0.5-0.125mm)
It was crushed and classified into This granulated powder was applied to the surface of the cylindrical base material of Stellite # 12 using a hydrostatic pressure device 70 at 1500 kgf / cm.
2 It was molded by cold isostatic pressing (CIP) (see B to D in FIG. 6). This is a predetermined thickness (5 mm or less)
(See E in FIG. 6), the Ni-based alloy particles are placed in contact with each other, and inserted into the vacuum furnace 80 (see F in FIG. 6).
Sintering was performed under the conditions shown in Table 1. This makes acrylic resin 40
The Ni-based alloy, which decomposes and evaporates at 0 ° C. and melts at 1100 ° C. penetrates into the space, forms the lining layer 61 made of a composite material, diffuse-bonds it to the base material 11, and finishes it into a screw element shape to achieve high strength. Corrosion and abrasion resistant screw elements can now be manufactured at low cost. Comparative Example 1 (manufacture of a kneading disk by a conventional spray method)

【0030】基材10をSUS420J2とし、その外
面全面にライニング層を形成した点を除き、実施例1と
同様にしてニーディングディスクを製造した。その圧壊
強度の実験結果を表2のNo.1に示す。 比較例2(従来のスプレー法によるニーディングディス
クの製造)
A kneading disk was manufactured in the same manner as in Example 1 except that the substrate 10 was SUS420J2 and the lining layer was formed on the entire outer surface thereof. The experimental results of the crush strength are shown in No. 2 of Table 2. Shown in 1. Comparative Example 2 (manufacture of a kneading disk by a conventional spray method)

【0031】基材10をSUS420J2とし、その外
面全面にライニング層を形成した点、およびライニング
層をWC:39%、SUS410:21%、Ni:40
%とした点をを除き、実施例1と同様にしてニーディン
グディスクを製造した。その圧壊強度の実験結果を表2
のNo.2に示す。 比較例3(従来のスプレー法によるニーディングディス
クの製造)
The base material 10 is SUS420J2, and a lining layer is formed on the entire outer surface, and the lining layer is WC: 39%, SUS410: 21%, Ni: 40.
A kneading disk was manufactured in the same manner as in Example 1 except that the percentage was changed to%. The experimental results of the crush strength are shown in Table 2.
No. 2 shows. Comparative Example 3 (manufacture of a kneading disk by a conventional spray method)

【0032】基材10を冷間工具鋼とし、その外面全面
にライニング層を形成した点を除き、実施例1と同様に
してニーディングディスクを製造した。その結果を表2
のNo.3に示す。
A kneading disk was manufactured in the same manner as in Example 1 except that the base material 10 was cold tool steel and a lining layer was formed on the entire outer surface thereof. The results are shown in Table 2.
No. 3 shows.

【0033】以上の実施例および比較例から明らかなよ
うに、本発明によれば、高硬度耐食材によるスクリュエ
レメントの一部分に高強度耐食耐摩耗材を焼結により拡
散接合し、三層構造の耐食耐摩耗部材を高強度にかつ低
コストで製作することができることが確認された。また
材料の組合せ幅が広がることも確認された。
As is clear from the above examples and comparative examples, according to the present invention, a high-strength corrosion-resistant and wear-resistant material is diffusion-bonded by sintering to a part of the screw element made of a high-hardness food material, and a corrosion resistance of a three-layer structure is obtained. It was confirmed that the wear resistant member can be manufactured with high strength and at low cost. It was also confirmed that the range of material combinations could be expanded.

【0034】[0034]

【発明の効果】本発明の高強度耐食耐摩耗性部材によれ
ば、駆動軸からのトルクを受ける箇所などに延性部材を
設けているので、キー溝の角部からの破壊を防止するこ
とができる。
According to the high-strength corrosion-resistant and abrasion-resistant member of the present invention, since the ductile member is provided at a portion that receives torque from the drive shaft, it is possible to prevent breakage from the corner of the key groove. it can.

【0035】また、本発明方法は、複合材からなるライ
ニング層を部分的に接合することにより、線膨張率に関
する基材の制約が除かれ、基材とライニング層との線膨
脹率の違う材質のものを利用することができる。従っ
て、高強度材およびそれらの複合材を使うことで複合材
からなるライニング層をバックアップし、基材と複合材
からなるライニング層を組合せたら強度、特に圧壊強度
が向上し、しかもコスト低減される。
Further, in the method of the present invention, by partially joining the lining layers made of the composite material, the restriction of the base material on the linear expansion coefficient is removed, and the material having a different linear expansion coefficient between the base material and the lining layer. Can be used. Therefore, by using a high-strength material and a composite material thereof to back up the lining layer made of the composite material, and combining the base material and the lining layer made of the composite material, the strength, particularly the crush strength is improved, and the cost is reduced. ..

【0036】さらに複合材からなるライニング層中に物
性調整粒子を添加すれば線膨張率を調整して大きくする
ことができ、かつ硬質粒子を少なくすることができる結
果、線膨張率の大きな基材も用いることができ複合材か
らなるライニング層の機械的性質を一層向上させること
ができる。
Further, by adding particles for adjusting physical properties to the lining layer made of the composite material, the coefficient of linear expansion can be adjusted and increased, and the hard particles can be decreased. As a result, a substrate having a large coefficient of linear expansion can be obtained. Can also be used to further improve the mechanical properties of the lining layer made of a composite material.

【0037】また、高強度基材を使用する際、内径加
工、キーミゾ加工を容易にするため、内径側に硬度の低
い延性部材を組合せた複合材を用いることでコスト低減
され、キーミゾからの破壊も防止できる。なお、本発明
は、ニーディングディスクやスクリュエレメントに限ら
ず、高強度耐食耐摩耗性を必要とする他の機械部材に適
用することができる。
When using a high-strength base material, a composite material in which a ductile member having low hardness is combined on the inner diameter side is used in order to facilitate inner diameter processing and key groove processing, thereby reducing cost and breaking from key groove. Can also be prevented. The present invention can be applied not only to the kneading disc and the screw element, but also to other mechanical members that require high strength, corrosion resistance and abrasion resistance.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る高強度耐食耐摩耗性部材を適用し
たニーディングディスクの説明図。
FIG. 1 is an explanatory diagram of a kneading disc to which a high-strength corrosion-resistant and abrasion-resistant member according to the present invention is applied.

【図2】本発明に係る高強度耐食耐摩耗性部材を適用し
たスクリュエレメントの説明図。
FIG. 2 is an explanatory diagram of a screw element to which the high-strength corrosion-resistant and abrasion-resistant member according to the present invention is applied.

【図3】本発明の実施例1の方法を説明する図。FIG. 3 is a diagram illustrating a method according to the first embodiment of the present invention.

【図4】本発明の実施例2の方法を説明する図。FIG. 4 is a diagram illustrating a method according to a second embodiment of the present invention.

【図5】本発明の実施例3の方法を説明する図。FIG. 5 is a diagram illustrating a method according to a third embodiment of the present invention.

【図6】本発明の実施例4の方法を説明する図。FIG. 6 is a diagram illustrating a method according to a fourth embodiment of the present invention.

【符号の説明】 10,11…基材、20,21…延性部材、30,31
…ライニング層、40,41…Ni基合金粒子、50…
真空炉、60,61…ライニング層
[Explanation of reference numerals] 10, 11 ... Base material, 20, 21 ... Ductile member, 30, 31
... Lining layer, 40, 41 ... Ni-based alloy particles, 50 ...
Vacuum furnace, 60, 61 ... Lining layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Co基合金、Ni基合金、及びFe基合
金の群から選択された少なくとも1種類の合金からなる
高強度耐食性基材と、この基材の内側に設けられた延性
部材と、前記高強度耐食性基材の外側に部分的に設けら
れた耐摩耗性複合材からなるライニング層とを備えた高
強度耐食耐摩耗性部材。
1. A high-strength corrosion-resistant base material comprising at least one alloy selected from the group consisting of Co-based alloys, Ni-based alloys, and Fe-based alloys, and a ductile member provided inside the base material. A high-strength corrosion-resistant wear-resistant member, comprising: a lining layer made of a wear-resistant composite material, which is partially provided outside the high-strength corrosion-resistant base material.
【請求項2】 高強度耐食性基材は、その組成が、C
r:25.0〜30.0重量%、W:4.0〜14.0
重量%、C:0.6〜2.8重量%、Fe:3.0重量
%以下、Ni:0.6〜2.0重量%、Si:0.8〜
1.5重量%、残部Co及び不可避的不純物からなる請
求項1に記載の高強度耐食耐摩耗性部材。
2. The high-strength corrosion resistant substrate has a composition of C
r: 25.0 to 30.0% by weight, W: 4.0 to 14.0
Wt%, C: 0.6 to 2.8 wt%, Fe: 3.0 wt% or less, Ni: 0.6 to 2.0 wt%, Si: 0.8 to
The high-strength corrosion-resistant wear-resistant member according to claim 1, which comprises 1.5% by weight, the balance being Co and inevitable impurities.
【請求項3】 延性部材は、1.0 kgf m/cm2 以上の
衝撃値を持つ鋼材である請求項1に記載の高強度耐食耐
摩耗性部材。
3. The ductile member is 1.0 kgf m / cm 2 The high-strength corrosion-resistant and abrasion-resistant member according to claim 1, which is a steel material having the above-mentioned impact value.
【請求項4】 ライニング層は、炭化タングステン粒子
を20〜70重量%含有するNi系サーメットである請
求項1に記載の高強度耐食耐摩耗性部材。
4. The high-strength corrosion-resistant wear-resistant member according to claim 1, wherein the lining layer is a Ni-based cermet containing 20 to 70% by weight of tungsten carbide particles.
【請求項5】 Co基合金、Ni基合金、及びFe基合
金の群から選択された少なくとも1種類の合金の内側に
延性部材を有する高強度耐食性基材の外側に、部分的に
耐摩耗性複合材からなるライニング層を設けた高強度耐
食耐摩耗性部材の製造方法において、 基材の耐摩耗性を要する部分にのみ、炭化物、硼化物、
窒化物及びそれらの混合物の群から選択された硬質粒子
と、Fe基合金、Ni基合金、Co基合金及びこれらの
混合物の群から選択されたマトリックス金属とを含有す
る耐摩耗性複合材からなるライニング層を形成する高強
度耐食耐摩耗性部材の製造方法。
5. A high-strength corrosion-resistant base material having a ductile member inside at least one alloy selected from the group consisting of Co-based alloys, Ni-based alloys, and Fe-based alloys, and is partially wear-resistant on the outside. In a method for producing a high-strength corrosion-resistant and wear-resistant member provided with a lining layer made of a composite material, a carbide, boride,
A wear resistant composite comprising hard particles selected from the group of nitrides and mixtures thereof and matrix metals selected from the group of Fe-based alloys, Ni-based alloys, Co-based alloys and mixtures thereof. A method for manufacturing a high-strength corrosion-resistant wear-resistant member for forming a lining layer.
【請求項6】 基材の耐摩耗性を必要とする部分にの
み、前記硬質粒子からなる層を設けた後、この層に前記
マトリックス金属を加熱浸透せしめてライニング層を形
成する請求項5の高強度耐食耐摩耗性部材の製造方法。
6. The lining layer is formed by providing a layer made of the hard particles only on a portion of the base material that requires abrasion resistance, and then heat infiltrating the matrix metal into the layer. A method for manufacturing a high-strength corrosion-resistant and wear-resistant member.
【請求項7】 Co基合金、Ni基合金、及びFe基合
金の群から選択された少なくとも1種類の合金の内側に
延性部材を有する高強度耐食性基材の外側に、部分的に
耐摩耗性複合材からなるライニング層を設けた高強度耐
食耐摩耗性部材の製造方法において、 基材の耐摩耗性を必要とする部分にのみ、炭化物、硼化
物、窒化物及びそれらの混合物の群から選択された1種
以上の硬質粒子と、物性調整用金属粒子と、Fe基合
金、Ni基合金、Co基合金及びこれらの混合物の群か
ら選択されたマトリックス金属とを含有する耐摩耗性複
合材からなるライニング層を形成する高強度耐食耐摩耗
性部材の製造方法。
7. A high-strength corrosion-resistant base material having a ductile member inside at least one alloy selected from the group consisting of Co-based alloys, Ni-based alloys, and Fe-based alloys. In a method for producing a high-strength corrosion-resistant and wear-resistant member provided with a lining layer made of a composite material, only a portion of the base material that requires wear resistance is selected from the group of carbides, borides, nitrides and mixtures thereof. Wear-resistant composite material containing one or more kinds of hard particles, metal particles for adjusting physical properties, and a matrix metal selected from the group of Fe-based alloys, Ni-based alloys, Co-based alloys and mixtures thereof. For producing a high-strength corrosion-resistant and wear-resistant member for forming a lining layer of the same.
【請求項8】 基材の耐摩耗性を必要とする部分にの
み、前記硬質粒子と、前記物性調整用金属粒子との混合
物からなる層を設けた後、前記混合物の層に前記マトリ
ックス金属を加熱浸透せしめてライニング層を形成する
請求項7の高強度耐食耐摩耗性部材の製造方法。
8. A layer made of a mixture of the hard particles and the metal particles for adjusting physical properties is provided only on a portion of the base material that requires abrasion resistance, and then the matrix metal is added to the layer of the mixture. The method for producing a high-strength corrosion-resistant wear-resistant member according to claim 7, wherein the lining layer is formed by heating and permeating.
JP29583392A 1991-11-26 1992-11-05 High strength and corrosion and wear resistant member and production tereof Pending JPH05202402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29583392A JPH05202402A (en) 1991-11-26 1992-11-05 High strength and corrosion and wear resistant member and production tereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-310718 1991-11-26
JP31071891 1991-11-26
JP29583392A JPH05202402A (en) 1991-11-26 1992-11-05 High strength and corrosion and wear resistant member and production tereof

Publications (1)

Publication Number Publication Date
JPH05202402A true JPH05202402A (en) 1993-08-10

Family

ID=26560427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29583392A Pending JPH05202402A (en) 1991-11-26 1992-11-05 High strength and corrosion and wear resistant member and production tereof

Country Status (1)

Country Link
JP (1) JPH05202402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA013342B1 (en) * 2007-03-21 2010-04-30 Дир Энд Компани Method for applying a relatively thick protective coating on a sheet metal substrate
EP2739419A2 (en) * 2011-08-01 2014-06-11 Coperion GmbH Method and treatment-element blank for producing a treatment element for a screw machine
CN105537594A (en) * 2016-03-08 2016-05-04 苏州珍展科技材料有限公司 Resin-aluminum-based layered composite fan blade

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA013342B1 (en) * 2007-03-21 2010-04-30 Дир Энд Компани Method for applying a relatively thick protective coating on a sheet metal substrate
EP2739419A2 (en) * 2011-08-01 2014-06-11 Coperion GmbH Method and treatment-element blank for producing a treatment element for a screw machine
JP2014524514A (en) * 2011-08-01 2014-09-22 コペリオン ゲーエムベーハー Process for the manufacture of processing elements for screw machines and semi-processed processing elements
CN105537594A (en) * 2016-03-08 2016-05-04 苏州珍展科技材料有限公司 Resin-aluminum-based layered composite fan blade

Similar Documents

Publication Publication Date Title
AU2001258982B2 (en) Iron-base alloy containing chromium-tungsten carbide and a method of producing it
CN102596448B (en) Thread rolling die
JPS63162801A (en) Manufacture of screw for resin processing machine
AU2001258982A1 (en) Iron-base alloy containing chromium-tungsten carbide and a method of producing it
JP3046336B2 (en) Sintered alloy with graded composition and method for producing the same
US4851267A (en) Method of forming wear-resistant material
US3279049A (en) Method for bonding a sintered refractory carbide body to a metalliferous surface
US4973356A (en) Method of making a hard material with properties between cemented carbide and high speed steel and the resulting material
CN113396233A (en) Hard powder particles with improved compressibility and green strength
JP2003205352A (en) Member for molten metal, composed of sintered alloy having excellent corrosion resistance and wear resistance to molten metal, its producing method and machine structural member using it
JP2001303233A (en) Member for molten metal excellent in erosion resistance to molten metal and producing method thereof
JPH05202402A (en) High strength and corrosion and wear resistant member and production tereof
JPH08104969A (en) Ceramic metal composite powder for thermal spraying, thermally sprayed coating film and its formation
JPH073306A (en) High-strength sintered hard alloy composite material and production thereof
JPH0913177A (en) Cermet build-up metallic parts by welding and production thereof
JP3366659B2 (en) Heterogeneous layer surface-finished sintered alloy and method for producing the same
JPH0483807A (en) Combined hard alloy material
KR100441758B1 (en) Disk roll for pressure processing and manufacturing method for the disk roll
JPH115191A (en) Cermet cladding metal parts and manufacture thereof
JP2893887B2 (en) Composite hard alloy material
JP2760926B2 (en) High-strength cemented carbide composite material combining low carbon steel and method for producing the same
US4854978A (en) Manufacturing method for high hardness member
JPH10195585A (en) Hard cement material, and tool for metallizing and machine parts using the same
JP2002069562A (en) Ni BASED CERMET AND PARTS FOR PLASTIC MOLDING MACHINE AND FOR DIE CASTING MACHINE USING THE SAME
Maslyuk et al. Layered powder metallurgy wear-and corrosion-resistant materials for tool and tribological applications. Structure and properties