JPS6333667B2 - - Google Patents

Info

Publication number
JPS6333667B2
JPS6333667B2 JP56155951A JP15595181A JPS6333667B2 JP S6333667 B2 JPS6333667 B2 JP S6333667B2 JP 56155951 A JP56155951 A JP 56155951A JP 15595181 A JP15595181 A JP 15595181A JP S6333667 B2 JPS6333667 B2 JP S6333667B2
Authority
JP
Japan
Prior art keywords
urea
absorption liquid
disposed downstream
carrier solution
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56155951A
Other languages
Japanese (ja)
Other versions
JPS5855857A (en
Inventor
Hisayuki Ikeda
Setsuo Muramoto
Tomoko Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP56155951A priority Critical patent/JPS5855857A/en
Publication of JPS5855857A publication Critical patent/JPS5855857A/en
Publication of JPS6333667B2 publication Critical patent/JPS6333667B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/58Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving urea or urease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/62Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving urea

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は、血液等の被検体中に含まれている尿
素の濃度を所定の吸収液の導電率変化量から間接
的に測定する尿素の測定方法および測定装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring urea that indirectly measures the concentration of urea contained in a sample such as blood from the amount of change in conductivity of a predetermined absorption liquid. It is.

近年、生医学的測定法の発展により、体温、胃
腸内の圧力、血圧、呼吸の速度、および生物学的
ポテンシヤルのような生理学的変数を連続的に遠
隔測定したり、生体内におけるpO2、pCo2、血液
のPHおよび電解質、並びに胃のPHを連続的に測定
したりする測定方法や測定方法や測定装置が関発
されるようになつた。このような生医学的測定法
の一つとして、被検体中の尿素に尿素分解酵素で
あるウレアーゼ酸素を作用させて下式(1)の酵素反
応を生じさせ、生成したNH3をNH3ガス電極若
しくはNH4 +カチオン電極にて検出することによ
り間接的に被検体中の尿素を測定する方法があ
る。
In recent years, advances in biomedical measurements have enabled continuous telemetry of physiological variables such as body temperature, gastrointestinal pressure, blood pressure, rate of respiration, and biological potential, as well as in vivo pO 2 , Measurement methods, methods, and devices for continuously measuring pCo 2 , blood PH and electrolytes, and gastric PH have become of interest. As one such biomedical measurement method, urease oxygen, which is a urea-degrading enzyme, is applied to urea in the sample to cause the enzymatic reaction of formula (1) below, and the generated NH 3 is converted into NH 3 gas. There is a method of indirectly measuring urea in a subject by detecting it with an electrode or an NH 4 + cation electrode.

然しながら、上記尿素測定方法においては、上
記電極からの出力信号とNH3濃度との関係は下
式(2)のようなネルンストの式に従つて指数関数的
関係にあり、比較電極の液間電位差の微少変化が
NH3濃度の測定に際して大きな誤差要因になる
といつた欠点があつた。
However, in the above urea measurement method, the relationship between the output signal from the electrode and the NH 3 concentration is an exponential relationship according to the Nernst equation as shown in equation (2) below, and the liquid junction potential difference of the reference electrode A slight change in
It had a drawback that it was said to be a major source of error when measuring NH 3 concentration.

E=E0+2.303RT/F(log〔NH3〕+log a) ……(2) 〔log〔NH3〕+log a=log(〔NH3)xa)=log
〔OH-〕〔OH-〕/〔NH3〕=a E:平衝電極電
位、Eo:標準電極電位、R:ガス定数、T:絶
体温度、F:フアラデー定数、〔NH3〕:NH3
度、〔OH-〕:OH-濃度、a:定数〕 本発明は、かかる欠点等に鑑みてなされたもの
であり、その目的は、全血等の被検体中に含まれ
る尿素をも迅速に測定できる尿素の測定方法およ
び測定装置を提供することにある。
E=E 0 +2.303RT/F(log[NH 3 ]+log a) ...(2) [log[NH 3 ]+log a=log([NH 3 )xa)=log
[OH - ] [OH - ] / [NH 3 ] = a E: equilibrium electrode potential, Eo: standard electrode potential, R: gas constant, T: absolute temperature, F: Faraday constant, [NH 3 ]: NH 3 concentration, [OH- ] : OH - concentration, a: constant] The present invention was made in view of these drawbacks, and its purpose is to quickly remove urea contained in specimens such as whole blood. The object of the present invention is to provide a method and device for measuring urea that can be used to measure urea.

以下、本発明について図を用いて詳細に説明す
る。第1図は本発明実施例の構成説明図であり、
図中、1a〜1cは容器、2aは例えばHNO3
液でなる吸収液、2bはキヤリア溶液、2cはキ
ヤリア廃液、3aは吸収液導入口、3bはキヤリ
ア溶液導入口、3cはキヤリア溶液排出口、3d
は吸収液排出口、4は吸収液およびキヤリア溶液
を夫々の流路へ送液する二連のペリスタポンプ、
5は所定量の被検体をキヤリア溶液中へ注入する
サンプルインジエクタ、6は被検体中に含まれる
尿素に作用して酵素反応を生ぜしめるウレアーゼ
酵素が固定化されている固定化酵素、7aは例え
ば商品名ナフイオンなどの陽イオン交換膜でなる
チユーブ、7bは該チユーブ7aに装設され鉄線
若しくは白金線等でなる陰極、7cは上記チユー
ブ7aの外側に例えばらせん状に巻回されて装設
され白金若しくはカーボン等でなる陽極、7dは
該陰極および陽極7b,7c間に所定の電圧を印
加する電源、7eは上記チユーブ7aの外側を満
たしている例えばNa2CO3若しくはNaOHなどの
ナトリウム塩の飽和溶液、7fは内部に上記チユ
ーブや飽和溶液7e等を収容する電解セル、8a
はイオンを通さずガスを透過させる例えば結晶性
PTFEなどの高分子物質でなる薄膜、8bは上記
吸収液2aが流れる流路の一部を形成している第
2室、8cは上記キヤリア溶液2bが流れる流路
の一部を形成するとともに、上記第2室8bとは
薄膜8aを介して隣接している第1室、8d,8
eは第2室8bにおける吸収液の導入口および導
出口、8f,8gは第1室8cにおけるキヤリア
溶液等の導入口および導出口、8hは上記第1室
8cおよび第2室8b等から構成されているフロ
ーセル、9aは吸収液の導電率を検出する例えば
SUS316製マイクロフローセル形の電極、9bは
電極9aに接続され該電極9aから出力される測
定信号を演算処理してのち測定値表示を行なう導
電率計、10aは吸収液導入口3aからペリスタ
ポンプ4、導入口8d、第2室8d、導出口8
e、および電極9aを経て吸収液排出3dに至る
第1の流路、10bはキヤリア溶液導入口3bか
らペリスタポンプ4、サンプルインジエクタ5、
固定化酵素6、陽イオン交換膜チユーブ7a、導
入口8f、第1室8c、および導出口8gを経て
キヤリア溶液排出口3cに至る第2の流路であ
る。尚、キヤリア溶液2bは例えばKH2EDTA、
安息香酸およびNaCl等の混合溶液からなり固定
化酵素6において酵素反応が効率よく行なわれる
ようにPHが該酵素反応の至適PHに調節されてい
る。また、第2図は、電解セル7e内における陽
イオン交換の現象を説明する原理説明図であり、
図中、第1図と同一記号は同一意味をもたせて使
用しここでの説明は省略する。
Hereinafter, the present invention will be explained in detail using figures. FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention,
In the figure, 1a to 1c are containers, 2a is an absorption liquid such as HNO3 solution, 2b is a carrier solution, 2c is a carrier waste liquid, 3a is an absorption liquid inlet, 3b is a carrier solution inlet, and 3c is a carrier solution outlet. ,3d
4 is an absorption liquid outlet; 4 is a double peristaltic pump that sends the absorption liquid and carrier solution to their respective channels;
5 is a sample injector for injecting a predetermined amount of the analyte into a carrier solution; 6 is an immobilized enzyme on which is immobilized a urease enzyme that acts on urea contained in the analyte to cause an enzyme reaction; and 7a is an immobilized enzyme; For example, a tube made of a cation exchange membrane such as Nafion (trade name); 7b is installed in the tube 7a, and a cathode made of iron wire or platinum wire; 7c is installed, for example, wound in a spiral shape on the outside of the tube 7a; 7d is a power source that applies a predetermined voltage between the cathode and anodes 7b and 7c, and 7e is a sodium salt such as Na 2 CO 3 or NaOH that fills the outside of the tube 7a. 7f is an electrolytic cell 8a containing the tube, saturated solution 7e, etc.
For example, a crystalline material that does not allow ions to pass through but allows gas to pass through.
A thin film made of a polymeric substance such as PTFE, 8b is a second chamber forming a part of the channel through which the absorption liquid 2a flows, 8c is a second chamber forming a part of the channel through which the carrier solution 2b flows, The second chamber 8b is adjacent to the first chambers 8d and 8 through the thin film 8a.
e is an inlet and an outlet for the absorption liquid in the second chamber 8b, 8f and 8g are an inlet and an outlet for the carrier solution, etc. in the first chamber 8c, and 8h is composed of the first chamber 8c, the second chamber 8b, etc. For example, the flow cell 9a detects the conductivity of the absorption liquid.
A micro flow cell type electrode made of SUS316, 9b is a conductivity meter that is connected to the electrode 9a and displays the measured value after processing the measurement signal output from the electrode 9a, 10a is the peristaltic pump 4 from the absorption liquid inlet 3a, Inlet port 8d, second chamber 8d, outlet port 8
e, the first flow path leading to the absorption liquid discharge 3d via the electrode 9a, and 10b, the carrier solution inlet 3b, the peristaltic pump 4, the sample injector 5,
This is a second flow path leading to the carrier solution outlet 3c via the immobilized enzyme 6, the cation exchange membrane tube 7a, the inlet 8f, the first chamber 8c, and the outlet 8g. Note that the carrier solution 2b is, for example, KH 2 EDTA,
It consists of a mixed solution of benzoic acid, NaCl, etc., and the pH is adjusted to the optimum pH for the enzyme reaction so that the enzyme reaction can be carried out efficiently in the immobilized enzyme 6. Further, FIG. 2 is a principle explanatory diagram illustrating the phenomenon of cation exchange within the electrolytic cell 7e,
In the figure, the same symbols as in FIG. 1 are used with the same meaning, and the explanation here will be omitted.

以下、第1図および第2図を用いながら本発明
実施例の動作について説明する。第1図において
ペリスタポンプ4が駆動すると、吸収液2aは上
記第1流路10aを通つて流れ容器1a内に回収
されるとともに、キヤリア溶液2bは上記第2流
路10bを通つて流れ容器1c内へ廃棄される。
この状態で、サンプルインジエクタ5から所定量
(例えば20μ)の被検体が上記第2流路10b
へ注入されると、該被検体はキヤリア溶液に運ば
れて固定化酵素6に至り、該被検体中の尿素が下
記(3)のような酵素反応を受ける。
The operation of the embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In FIG. 1, when the peristaltic pump 4 is driven, the absorption liquid 2a flows through the first channel 10a and is collected into the container 1a, and the carrier solution 2b flows through the second channel 10b and is collected into the container 1c. will be disposed of.
In this state, a predetermined amount (for example, 20μ) of the analyte is transferred from the sample injector 5 to the second flow path 10b.
When the analyte is injected into the carrier solution, it reaches the immobilized enzyme 6, and the urea in the analyte undergoes an enzymatic reaction as described in (3) below.

上記第(3)式の反応で生成したNH4 +および
HCO3 -は、再びキヤリア溶液に運ばれて陽イオ
ン交換膜チユーブ7aに至る。このとき、電源7
dから陰極7bと陽極7cの間に所定の電圧(例
えば2.5V)が印加されていると、ナトリウム塩
の飽和溶液7eが例えばNaOHの場合には下式
(4)のような電解反応を受ける。
NH 4 + produced by the reaction of formula (3) above and
HCO 3 - is again transported to the carrier solution and reaches the cation exchange membrane tube 7a. At this time, power supply 7
When a predetermined voltage (for example, 2.5V) is applied between the cathode 7b and the anode 7c from d, if the saturated sodium salt solution 7e is NaOH, the following formula
It undergoes an electrolytic reaction like (4).

すなわち、第2図において、陰極7bと陽極7
cの間に電源7dから所定の電圧が印加されてい
る状態では、Na+のみが陽イオン交換膜チユーブ
7cを透過してキヤリア溶液2bに到達するとと
もに、上式(4)の陰極反応で生じたOH-と反応し
てNaOHを生じ、該キヤリア溶液2bのPH値を
上昇させる。このようにして、陽イオン交換膜チ
ユーブ7a内のキヤリア溶液は、陰極7bと陽極
7cの間に電源7dから供給される電気量に対応
してPH値が変化する。従つて、該電気量を所定の
値に保つことにより、陽イオン交換膜チユーブ7
a内のキヤリア溶液のPHが10.5以上のアルカリ性
を示すようになり、前記第(3)式で生じたNH4 +
下式(5)の反応を受けてNH3に変換される。
That is, in FIG. 2, the cathode 7b and the anode 7
When a predetermined voltage is applied from the power supply 7d during the period c, only Na + passes through the cation exchange membrane tube 7c and reaches the carrier solution 2b, and is generated by the cathodic reaction of the above equation (4). The carrier solution 2b reacts with OH - to generate NaOH, increasing the pH value of the carrier solution 2b. In this way, the PH value of the carrier solution in the cation exchange membrane tube 7a changes depending on the amount of electricity supplied from the power source 7d between the cathode 7b and the anode 7c. Therefore, by keeping the amount of electricity at a predetermined value, the cation exchange membrane tube 7
The carrier solution in a becomes alkaline with a pH of 10.5 or more, and the NH 4 + generated in the above formula (3) undergoes the reaction of the following formula (5) and is converted to NH 3 .

NH4 ++OH-→NH3+H2O ……(5) 上記第(5)式の反応で生成したNH3は、再びキ
ヤリア溶液に運ばれてフローセル8h内の第1室
8cに達し、その後、薄膜8aを透過して第2室
8bに至り該第2室8b内に第1流路10aを通
つて供給されている吸収液と、下式(6)にような反
応を起こして吸収される。
NH 4 + +OH - →NH 3 +H 2 O ...(5) NH 3 generated in the reaction of the above formula (5) is again transported to the carrier solution and reaches the first chamber 8c in the flow cell 8h, and then , which passes through the thin film 8a and reaches the second chamber 8b, where it reacts with the absorption liquid supplied through the first flow path 10a into the second chamber 8b and is absorbed as shown in the following formula (6). Ru.

NH3+HNO3→NH4NO3 ……(6) 上記第(6)式の反応で生成したNH4NO3は吸収
液に運ばれて電極9aに達するが、HNO3に比し
てNH4NO3は導電率が小さいため上記第(6)式の
反応の前後で吸収液の導電率が変化する。該変化
が上記電極9aによつて検出され、該検出信号に
前記(3)〜(6)式の内容を考慮した所定の演算処理が
施こされて前記被検体中の尿素濃度が算出され、
該尿素濃度が導電率計9b等に表示される。
NH 3 +HNO 3 →NH 4 NO 3 ...(6) NH 4 NO 3 generated in the reaction of the above equation (6) is carried to the absorption liquid and reaches the electrode 9a, but compared to HNO 3 NH 4 Since NO 3 has a low electrical conductivity, the electrical conductivity of the absorption liquid changes before and after the reaction of equation (6) above. The change is detected by the electrode 9a, and the detection signal is subjected to predetermined arithmetic processing taking into account the contents of equations (3) to (6) to calculate the urea concentration in the subject;
The urea concentration is displayed on the conductivity meter 9b or the like.

以上、詳しく説明したような本発明の実施例に
よれば、電解セル7f内において電解反応を利用
してキヤリア溶液のPHを所望の値に調節するよう
な構成であるため、該キヤリア溶液のPH調整のた
めアルカリ性試薬を添加する方法に比して、該ア
ルカリ性試薬のためのパイプ等を必要とせず大幅
なコストダウンがはかれる等の利点を有する。ま
た、前記従来例にみられたような大きな誤差要因
を受けることなく、被検体中に含まれる尿素を迅
速かつ正確に測定できるという利点も有する。更
に、非測定時に第1図の電源7dをOFFとする
ことによつて、キヤリア溶液中への強アルカリ性
溶液の混入も容易に回避でき、固定化酵素6内の
酵素寿命の延命化を図れるという利点も有する。
更にまた、本発明は、単純な測定原理で堅牢な検
出端を用いた尿素定量法でもあり、臨床検査にお
ける尿素測定法として要求されるところの迅速
化、高感度化、および全血測定等の諸条件を全て
満足する実用的な測定法でもある。
According to the embodiment of the present invention as described above in detail, the PH of the carrier solution is adjusted to a desired value by using electrolytic reaction in the electrolytic cell 7f. Compared to the method of adding an alkaline reagent for adjustment, this method has the advantage that it does not require pipes or the like for the alkaline reagent, resulting in a significant cost reduction. It also has the advantage that urea contained in a sample can be measured quickly and accurately without being affected by large error factors as seen in the conventional example. Furthermore, by turning off the power supply 7d in Figure 1 when not measuring, it is possible to easily avoid contamination of a strong alkaline solution into the carrier solution, thereby extending the life of the enzyme in the immobilized enzyme 6. It also has advantages.
Furthermore, the present invention is a method for quantifying urea using a simple measurement principle and a robust detection end, and is capable of achieving speed and high sensitivity required for a urea measurement method in clinical tests, as well as whole blood measurement. It is also a practical measurement method that satisfies all conditions.

以上、基質が尿素で酵素がウレアーゼである場
合について詳述したが、基質がL−アミノ酸、ア
スパラギン酸、若しくはクレアチニンであり、酵
素が夫々、L−アミノ酸オキシダーゼ、アスパラ
ギナーゼ、若しくはクレアチナーゼの場合も同様
のことがいえる。
The case where the substrate is urea and the enzyme is urease has been described in detail above, but the same applies when the substrate is L-amino acid, aspartic acid, or creatinine and the enzyme is L-amino acid oxidase, asparaginase, or creatinase, respectively. I can say that.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成説明図、第2図は
陽イオン交換の原理説明図である。 1a〜1c……容器、2a……吸収液、2b…
…キヤリア溶液、2c……サヤリア廃液、3a,
3b,8b,8f……導入口、3c,3d……排
出口、8c,8g……導出口、4……ペリスタポ
ンプ、5……サンプルインジエクタ、6……固定
化酵素、7a……陽イオン交換膜チユーブ、7
b,7c,9a……電極、7d電……電源、7e
……ナトリウム塩飽和溶液、7f……電解セル、
8a……薄膜、8b,8c……室、8h……フロ
ーセル、9b……導電率計、10a,10b……
流路。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the principle of cation exchange. 1a to 1c...container, 2a...absorption liquid, 2b...
...Carrier solution, 2c...Sayaria waste liquid, 3a,
3b, 8b, 8f...inlet, 3c, 3d...outlet, 8c, 8g...outlet, 4...peristaltic pump, 5...sample injector, 6...immobilized enzyme, 7a...cation Exchange membrane tube, 7
b, 7c, 9a... Electrode, 7d Electric power... Power supply, 7e
... Sodium salt saturated solution, 7f ... Electrolytic cell,
8a... Thin film, 8b, 8c... Chamber, 8h... Flow cell, 9b... Conductivity meter, 10a, 10b...
flow path.

Claims (1)

【特許請求の範囲】 1 キヤリア溶液が流れる流路に被検体を注入す
る手段と、該被検体中の尿素を酵素反応によつて
NH+ 4に変換する手段と、電解反応で生成した
OH-によつて該キヤリア溶液をアルカリ性にし
て前記NH+ 4をNH3に変換する手段と、該NH3
イオン不透過性でガス透過性の薄膜を介して吸収
液へ透過させる手段と、該吸収液の導電率変化量
を検出する手段とを講じて、前記被検体中の尿素
を定量することを特徴とする尿素測定方法。 2 吸収液およびキヤリア溶液を夫々第1および
第2の流路へ送液する二連のペリスタポンプと、
該ペリスタポンプの下流に配設され前記第2流路
へ被検体を注入するサンプルインジエクタと、該
サンプルインジエクタの下流に配設されるととも
にウレアーゼが固定化された固定化酵素と、前記
第2の流路の一部を形成する陽イオン交換膜チユ
ーブ、該チユーブの外側に収容されたナトリウム
塩飽和溶液、および該溶液を電気分解させる不溶
性電極から構成され前記固定化酵素の下流に配設
された電解セルと、該電解セルの下流に配設され
るとともにイオン不透過性でガス透過性の薄膜を
介して前記第2流路の一部を形成する第1室と前
記第1流路の一部を形成する第2室が隣接して設
けられているフローセルと、前記第1流路におい
て前記第2室の下流に配設され前記吸収液の導電
率変化量を検出する電極とを具備し、前記被検体
中の尿素を定量することを特徴とする尿素測定装
置。
[Scope of Claims] 1. Means for injecting an analyte into a channel through which a carrier solution flows, and urea in the analyte by an enzymatic reaction.
A means of converting it to NH + 4 and a means of converting it to NH + 4 and
means for alkalinizing the carrier solution with OH - to convert the NH + 4 to NH 3 ; and means for permeating the NH 3 through an ion-impermeable, gas-permeable membrane to the absorption liquid; A method for measuring urea, characterized in that the amount of urea in the sample is determined by detecting the amount of change in conductivity of the absorption liquid. 2. a double peristaltic pump that sends the absorption liquid and the carrier solution to the first and second channels, respectively;
a sample injector disposed downstream of the peristaltic pump and injecting the analyte into the second channel; an immobilized enzyme disposed downstream of the sample injector and having immobilized urease; a cation exchange membrane tube forming part of the flow path of the tube, a sodium salt saturated solution contained outside the tube, and an insoluble electrode for electrolyzing the solution and disposed downstream of the immobilized enzyme. a first chamber disposed downstream of the electrolytic cell and forming a part of the second flow path through an ion-impermeable, gas-permeable thin film; a flow cell in which a second chamber forming a part of the flow cell is provided adjacent to the flow cell; and an electrode disposed downstream of the second chamber in the first flow path to detect a change in conductivity of the absorption liquid. and a urea measuring device for quantifying urea in the subject.
JP56155951A 1981-09-30 1981-09-30 Method and apparatus for measuring urea Granted JPS5855857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56155951A JPS5855857A (en) 1981-09-30 1981-09-30 Method and apparatus for measuring urea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56155951A JPS5855857A (en) 1981-09-30 1981-09-30 Method and apparatus for measuring urea

Publications (2)

Publication Number Publication Date
JPS5855857A JPS5855857A (en) 1983-04-02
JPS6333667B2 true JPS6333667B2 (en) 1988-07-06

Family

ID=15617090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56155951A Granted JPS5855857A (en) 1981-09-30 1981-09-30 Method and apparatus for measuring urea

Country Status (1)

Country Link
JP (1) JPS5855857A (en)

Also Published As

Publication number Publication date
JPS5855857A (en) 1983-04-02

Similar Documents

Publication Publication Date Title
JPS5841486Y2 (en) Fractionation device
US3539455A (en) Membrane polarographic electrode system and method with electrochemical compensation
CA1191898A (en) Method for measuring ionic concentration utilizing an ion-sensing electrode
US4490235A (en) Electrochemical cell provided with selective electrodes and at least one chemical reactor, for indirect measurement of clinical-chemical parameters
CN105784814A (en) Sensor based on concentration cell principle
JPS638423B2 (en)
EP0805350B1 (en) An apparatus and method for the determination of substances in solution, suspension or emulsion by differential pH measurement
Snycerski Polarographic determination of flutamide
US4960497A (en) Apparatus and method for minimizing the effect of an electrolyte's dissolved oxygen content in low range oxygen analyzers
US4149949A (en) Electrochemical analysis apparatus employing single ion measuring sensor
JPS6333667B2 (en)
McKeown et al. Comparative studies of dissolved oxygen analysis methods
EP3767286B1 (en) Sp3 substituted carbon electrode analysis
JPS6317181B2 (en)
JP3687789B2 (en) Substance concentration measuring device
US3652223A (en) Method and apparatus for continuously measuring the concentration of a reactant in a liquid carrier
JPS61155847A (en) Quantitative determination of urea nitrogen and creatinine
Toth et al. Analytical methods involving ion-selective
JP2009281907A (en) Method, device and instrument for measuring creatinine, and method, device and instrument for measuring amount of salt in urine using those means
CN206192891U (en) Online real -time detection device of oxide always remains
JPS594283Y2 (en) electrochemical analyzer
US3790449A (en) Method of and apparatus for continuous electrochemical metering of substance concentrations in gaseous media,with electrolyte recirculation
JPS5839946A (en) Method and apparatus for simultaneous determination of two components
SU1032402A1 (en) Mass transfer coefficient measuring method
JPS5839947A (en) Measuring method and apparatus of urea