JPS61155847A - Quantitative determination of urea nitrogen and creatinine - Google Patents

Quantitative determination of urea nitrogen and creatinine

Info

Publication number
JPS61155847A
JPS61155847A JP59275637A JP27563784A JPS61155847A JP S61155847 A JPS61155847 A JP S61155847A JP 59275637 A JP59275637 A JP 59275637A JP 27563784 A JP27563784 A JP 27563784A JP S61155847 A JPS61155847 A JP S61155847A
Authority
JP
Japan
Prior art keywords
conductivity
creatinine
change
urea nitrogen
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59275637A
Other languages
Japanese (ja)
Inventor
Masami Kuroda
昌美 黒田
Kenji Harada
健治 原田
Hisao Osawa
大沢 久男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59275637A priority Critical patent/JPS61155847A/en
Publication of JPS61155847A publication Critical patent/JPS61155847A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To determine quantitatively and quickly urea and creatinine in one conductivity cell by adding successively creatinine deiminase and urease to a liquid to be inspected, detecting the change quantity of the conductivity in each stage and calculating the difference thereof. CONSTITUTION:A platinum electrode 1 is provided to a measuring cell 4. A sample liquid and buffer soln. are put into the cell 4 through a feed port 6. The liquid to be inspected and creatinine deiminase soln. are first injected into the cell and the conductivity by the NH<+>4 formed by enzyme reaction is measured by a measuring instrument 11, by which the creatinine is determined and the change quantity X of the conductivity thereof is calculated. The urease soln. is then put into the cell and the change quantity of the conductivity by the formed NH<+>4 and HCO<->3 is detected. The urea nitrogen is determined by subtracting the quantity X from the quantity Y. The two different enzyme reactions are continuously effected in one conductivity cell and the change quantity of the conductivity is detected and calculated and therefore the quick analysis of the creatinine and urea nitrogen by a simple measuring method is made possible.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、酸素ウレアーゼ(g、c、3.s、t、s
 )とクレアチニンディミナーゼ(E、C,3,5,4
,2)を用いて、被検液中の尿素窒素とクレアチニンを
電導度測定法により定量する方法に関する。
Detailed description of the invention [Technical field to which the invention pertains] This invention relates to oxygen urease (g, c, 3.s, t, s
) and creatinine diminase (E, C, 3, 5, 4
, 2) to quantify urea nitrogen and creatinine in a test liquid by conductivity measurement.

〔従来゛技術とその問題点〕[Conventional technology and its problems]

この種の電導度測定法に関連して、本件出願人は先に特
願昭58−61284および特願昭59−7671によ
り、尿素窒素の分析装置とクレアチニンの定量方法をそ
れぞれ別個に提案している。
In connection with this type of conductivity measuring method, the applicant previously proposed a urea nitrogen analyzer and a method for quantifying creatinine in Japanese Patent Applications No. 58-61284 and No. 59-7671, respectively. There is.

前者は、尿素を分解しアンモニアと二酸化炭素を生成す
ることのできる酵素ウレアーゼを、多孔性膜を被覆した
2個の電導度測定電極を備え、緩衝液を満たされた電導
度測定セル室内に導き、更にこの測定セル室内に尿素を
含む被検液を導入し、この被検液を含む緩衝液の導電率
の変化量または変化率を測定することにより、被検液中
の尿素窒素を定量するものである。
The former is equipped with two conductivity measurement electrodes covered with a porous membrane, and introduces the enzyme urease, which can decompose urea to produce ammonia and carbon dioxide, into a conductivity measurement cell chamber filled with a buffer solution. Furthermore, a test solution containing urea is introduced into this measurement cell chamber, and the amount of change or rate of change in the conductivity of the buffer solution containing this test solution is measured to quantify urea nitrogen in the test solution. It is something.

また後者は、試料に対してクレアチニンディミナーゼを
添加することによりクレアチニンを分解し、生成するア
ンモニアによる導電率の変化量あるいは変化率を多孔性
膜を有する電導度測定電極により検出して試料中のクレ
アチニンを定量するものである。
In the latter method, creatinine is decomposed by adding creatinine diminase to the sample, and the amount or rate of change in conductivity due to the generated ammonia is detected using a conductivity measuring electrode with a porous membrane. This is for quantifying creatinine.

両者はいずれも、被検液中の尿素あるいはクレアチニン
と特異的に分解する反応液を用いているため、被検液中
の共存物質の影響を受けずに尿素あるいはクレアチニン
を迅速、正確に定量でき、また電導度測定電極に多孔性
膜を装着しているため、長期間にわたり安定した測定が
行なえるという長所がある。
Both use a reaction solution that specifically decomposes urea or creatinine in the test solution, so urea or creatinine can be determined quickly and accurately without being affected by coexisting substances in the test solution. Furthermore, since the conductivity measurement electrode is equipped with a porous membrane, it has the advantage of being able to perform stable measurements over a long period of time.

しかしながら、近年、臨床検査分野における生体液中の
クレアチニン濃度と尿素窒素濃度は腎機能の指標として
重要視されており、より簡便で迅速な定量方法が要請さ
れている。
However, in recent years, the creatinine concentration and urea nitrogen concentration in biological fluids have become important as indicators of renal function in the field of clinical testing, and a simpler and faster quantitative method is required.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みなされたものであり、1つの測定セ
ル室内において12つの酵素反応を連続的に進め、それ
ぞれの反応による導電率の変化量から尿素窒素とクレア
チニンの濃度を、1組の電導度測定電極により、測定し
ようとするものである。
The present invention was developed in view of the above, and involves continuously conducting 12 enzyme reactions in one measurement cell chamber, and calculating the concentrations of urea nitrogen and creatinine from the amount of change in conductivity caused by each reaction. It is intended to be measured using a temperature measuring electrode.

〔発明の゛要点〕[Key points of the invention]

この目的は本発明によれば、被検液に対してクレアチニ
ンディミナーゼを添加することによる導電率の変化量を
検出する工程と、前記被検液に対してウレアーゼを添加
することによる導電率の変化量を検出する工程とを時間
をずらして同一セルで連続して行ない、先に始めた工程
による導電率の変化量を後から始めた工程による導電率
の変化量より差し引くことにより、後から始めた工程単
独での導電率の変化量を求めることにより達成される。
According to the present invention, this purpose includes a step of detecting the amount of change in electrical conductivity by adding creatinine diminase to the test solution, and a step of detecting the amount of change in electrical conductivity by adding urease to the test solution. By sequentially performing the process of detecting the amount of change in the same cell at different times, and subtracting the amount of change in conductivity due to the process that started earlier from the amount of change in conductivity due to the process that started later, This is achieved by determining the amount of change in conductivity during the initial process alone.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例である分析装置の系統図であ
る。第1図において、測定セル3に電導度測定用白金電
極「が取り付けられ、白金電極1の下端には多孔性膜2
が装着されている。電導度測定セル室3は緩衝溶液で満
たされ、図示していないエアーポンプなどによりシリコ
ンダイヤフラム5を振動させ、攪拌されている。被検液
及び酵素溶液は洋入口6から一定量注入される。測定セ
ル室4は一定の容積(たとえば0.4 m )を有し、
図示されていない温度調整手段により20〜40℃の一
定温度に保たれている。
FIG. 1 is a system diagram of an analyzer that is an embodiment of the present invention. In FIG. 1, a platinum electrode for measuring conductivity is attached to a measurement cell 3, and a porous membrane 2 is attached to the lower end of the platinum electrode 1.
is installed. The conductivity measurement cell chamber 3 is filled with a buffer solution, which is stirred by vibrating a silicon diaphragm 5 using an air pump (not shown) or the like. A fixed amount of the test liquid and the enzyme solution are injected from the ocean inlet 6. The measurement cell chamber 4 has a constant volume (for example 0.4 m),
The temperature is maintained at a constant temperature of 20 to 40° C. by a temperature adjusting means (not shown).

測定セル室4にクレアチニンディミナーゼ溶液と被検液
を注入すると、次の酵素反応が進行する。
When the creatinine diminase solution and the test liquid are injected into the measurement cell chamber 4, the next enzymatic reaction proceeds.

+NH4” + OH− したがって、(1)の反応により生成するアンモニアイ
オン(NH4)による測定セル室4内の導電率の変化量
あるいは変化率を検出し、クレアチニンを測定する。さ
らにウレアーゼ溶液を注入すると次の酵素反応が進行す
る。
+NH4" + OH- Therefore, the amount or rate of change in conductivity in the measurement cell chamber 4 due to ammonia ions (NH4) generated by the reaction (1) is detected, and creatinine is measured. Furthermore, when the urease solution is injected, The next enzymatic reaction proceeds.

尿IA+3H20文に1:j−2NH4+HCOa−+
OH””  ・・・・・・(2)(2)の反応により生
成するアンモニアイオン(NH4)。
Urine IA+3H20 sentence 1:j-2NH4+HCOa-+
OH"" ...(2) Ammonia ion (NH4) produced by the reaction of (2).

炭酸水素イオン(HCOs−)による導電率の変化量ま
たは変托率を検出し、尿素窒素を測定する。すなわち、
白金電極1を用いて、各反応による測定セル室4内の電
導度の変化量あるいは変化率を電導度測定器11により
測定し、演算器12で所定の演算を行うことにより、尿
素窒素とクレアチニン濃度を表示器13に表示する。
The amount of change in conductivity or rate of change due to hydrogen carbonate ions (HCOs-) is detected, and urea nitrogen is measured. That is,
Using the platinum electrode 1, the amount or rate of change in the conductivity in the measurement cell chamber 4 due to each reaction is measured by the conductivity measuring device 11, and by performing predetermined calculations in the calculator 12, urea nitrogen and creatinine are determined. The concentration is displayed on the display 13.

この発明に用いる電導度測定器11としては、コールラ
ウッシュ型の4辺ブリッジでもリニアブリッジ型でもよ
く、電導度測定電極間に印加する電圧は、分極発生を防
ぐため交流電圧(好ましくは0.53G(z 、 IV
程度)が望ましい。また、電導度測定用電極は、白金以
外に白金−白金黒、ステンレスなどを用いることができ
る。
The conductivity measuring device 11 used in the present invention may be a Kohlrausch type four-sided bridge or a linear bridge type, and the voltage applied between the conductivity measuring electrodes is an alternating current voltage (preferably 0.05 mV) to prevent polarization. 53G(z, IV
degree) is desirable. In addition to platinum, platinum-platinum black, stainless steel, or the like can be used for the conductivity measuring electrode.

第2図は、第1図の測定系を用いた場合の測定セル室4
内の導電率の変化を示す特性図である。
Figure 2 shows the measurement cell chamber 4 when using the measurement system shown in Figure 1.
FIG.

ここでは、多孔性膜2として、孔径0.01Sun、厚
さ7μ馬のポリカーボネート膜を用い、使用した溶液は
、0.01 Mリン酸塩緩衝溶液(PH70) 、 0
.05Mリン酸塩緩衝溶液で溶解した尿素窒素、クレア
チニン混合溶液、ウレアーゼ溶液2.5”F/d 、 
りL/アチニンディミナーゼ溶液10sv/−であり、
測定は25±0.01℃で行った。
Here, a polycarbonate membrane with a pore diameter of 0.01 Sun and a thickness of 7 μm was used as the porous membrane 2, and the solutions used were 0.01 M phosphate buffer solution (PH70),
.. Urea nitrogen dissolved in 05M phosphate buffer solution, creatinine mixed solution, urease solution 2.5”F/d,
10 sv/- of L/atinine diminase solution,
Measurements were performed at 25±0.01°C.

第2図において、クレアチニンディミナーゼ溶液25μ
tを測定セル室4内に注入する(Il)と、クレアチニ
ンディミナーゼ溶液中の電解質などの影!#lこより導
電率が増加するが、攪拌が充分に行なわれている場合は
注入後5秒程度で一定値が得られた。導電率が一定値と
なった後、0.05M1ン酸塩緩衝溶液で溶解した尿素
窒素濃度50岬/dt。
In Figure 2, creatinine diminase solution 25μ
When t is injected into the measurement cell chamber 4 (Il), shadows of electrolytes etc. in the creatinine diminase solution! The conductivity increased from #l, but when stirring was sufficient, a constant value was obtained about 5 seconds after injection. After the conductivity reached a constant value, the urea nitrogen concentration dissolved in 0.05M monophosphate buffer solution was 50 capes/dt.

クレアチニン濃度100 q/dLの試料溶液を50μ
を注入する(工2)と、注入直後に試料溶液中の電解質
の影響により導電率が急激に増加し、その後徐々に導電
率が増加(ΔS1)シた。この導電率のゆるやかな増加
は、反応式(1)によりクレアチニンとクレアチニンデ
ィミナーゼが反応しアンモニアイオン(NH4)が生成
しているためである。
50 μ of sample solution with creatinine concentration of 100 q/dL
Immediately after injection, the conductivity increased rapidly due to the influence of the electrolyte in the sample solution, and then gradually increased (ΔS1). This gradual increase in electrical conductivity is due to the reaction between creatinine and creatinine diminase to generate ammonia ions (NH4) according to reaction formula (1).

更に測定セル室4内にウレアーゼ溶液20μtを注入す
る(工3)と、反応式(2)によるアンモニアイオン(
NH4” ) e炭酸水素イオン(HCO3−)の生成
による導電率の増加(Δ82)が観測された。ここで、
八iにはΔt2の時間における反応式(1)による導電
率の増加分が正誤差として含まれるが、Δtlの時間に
おける導電率の変化量、Jtより計算式(、Jx/xt
t×Δt2 )で求めることができ、演算器12で団2
より差引くことにより反応式(2)のみによる導電率の
変化量を求めることができる。−2測定後液送りポンプ
14を動作させ、測定セル室4内へ一定流−1(6sd
/JOIE)で緩衝溶液15を送り込むことにより測定
セル室4内を洗浄し、押し出された排液は16に洗い流
され、約30〜60秒で測定セル室4内の導電率は測定
前のレベルにもどり、次の測定が可能となる。
Furthermore, when 20 μt of urease solution is injected into the measurement cell chamber 4 (Step 3), ammonia ions (
NH4'')eAn increase in electrical conductivity (Δ82) due to the generation of bicarbonate ions (HCO3-) was observed.Here,
8i includes the increase in conductivity according to the reaction equation (1) in the time Δt2 as a positive error, but the amount of change in conductivity in the time Δtl, calculated from the formula (, Jx/xt
t×Δt2), and the calculation unit 12 calculates the group 2
By subtracting from the equation (2), it is possible to determine the amount of change in conductivity due to reaction formula (2) alone. -2 After measurement, the liquid feed pump 14 is operated and a constant flow of -1 (6sd
/JOIE) to clean the inside of the measurement cell chamber 4 by sending a buffer solution 15, and the extruded liquid is washed away by 16, and the conductivity in the measurement cell chamber 4 returns to the level before measurement in about 30 to 60 seconds. You can now return to the previous position and perform the next measurement.

第3図は第1図の分析装置による検量線図で、試料溶液
注入後1〜5分間(Δtl )における導電率q変化量
(Δ8りとクレアチニン濃度の関係(直線a)およびウ
レアーゼ溶液注入後5〜30秒間(Δt2)における導
電率の変化量(Δ82)と尿素窒素濃度の関係(直線b
)を示す。クレアチニンによる導電率の変化量は小さい
が、共に良好な直線関係を示した。したがって、あらか
じめ尿素窒素、クレアチニンそれぞれについて検tSを
作成しておけば、未知濃度の尿素窒素とクレアチニンを
簡単に定量することができる。
Figure 3 is a calibration curve using the analyzer shown in Figure 1, showing the relationship between the change in conductivity q (Δtl) and creatinine concentration (straight line a) for 1 to 5 minutes (Δtl) after injection of the sample solution, and the relationship between the creatinine concentration (straight line a) and the relationship between creatinine concentration (straight line a) after injection of the urease solution. Relationship between change in conductivity (Δ82) and urea nitrogen concentration for 5 to 30 seconds (Δt2) (straight line b
) is shown. Although the amount of change in conductivity due to creatinine was small, both showed a good linear relationship. Therefore, by preparing test tS for each of urea nitrogen and creatinine in advance, unknown concentrations of urea nitrogen and creatinine can be easily quantified.

なお、前記実施例においては、一定時間(Δtl。Note that in the above embodiment, a certain period of time (Δtl.

Δ12)における導電率の変化量(Jt 、−z )を
検出しているが一定時間後の導電率の変化率を検出し被
検液中の尿素窒素とクレアチニンを定量することも可能
である。また、前記実施例で用いた多孔性膜は孔径0.
015μ、厚さ7μ肩のポリカーボネート膜であるが、
セルロースアセテート膜、ポリビニルクロライド膜、多
孔性セラミック膜などを用いても良い。孔径は0.00
1〜0.1μ屏、厚さは0.5〜1000μmの範囲の
多孔性膜を使用することができるが、好ましくは孔径0
.015〜0.1μm、厚さ2〜10μ馬である。
Although the amount of change in conductivity (Jt, -z) at Δ12) is detected, it is also possible to quantify urea nitrogen and creatinine in the test liquid by detecting the rate of change in conductivity after a certain period of time. Further, the porous membrane used in the above example had a pore size of 0.
It is a polycarbonate membrane with a thickness of 015μ and a thickness of 7μ.
Cellulose acetate membranes, polyvinyl chloride membranes, porous ceramic membranes, etc. may also be used. Pore diameter is 0.00
A porous membrane with a pore size of 1 to 0.1 μm and a thickness of 0.5 to 1000 μm can be used, but preferably has a pore size of 0.
.. 015-0.1 μm, thickness 2-10 μm.

更に前記実施例では、被検液にクレアチニンディミナー
ゼを添付して生成するアンモニアによる導電率の変化量
を検出した後にウレアーゼを添加しているが、本発明は
これに限られるものではなく、先にウレアーゼを添付し
て生成するアンモニアと炭酸水素による導電率の変化量
を検出した後lこクレアチニンディミナーゼを添加して
もよい。
Further, in the above example, urease is added after adding creatinine diminase to the test solution and detecting the amount of change in conductivity due to ammonia produced. However, the present invention is not limited to this, and the present invention is not limited to this. Creatinine diminase may be added after detecting the amount of change in conductivity due to ammonia and hydrogen carbonate produced by adding urease to the solution.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなようにこの発明によれば、1つ
の電導度測定セル内において、2つの異なる酵素反応を
連続的に進行させ、それぞれの反応による導電率の変化
量あるいは変化率を1組の電導度測定電極で検出し、尿
素窒素とクレアチニンを定量するようにしたため、簡単
な測定系で、腎臓機能の診断lこ欠かすことのできない
尿素窒素とクレアチニンを、少量の被検液で連続的、簡
便かつ迅速に分析することができるという効果が得られ
る。
As is clear from the above description, according to the present invention, two different enzymatic reactions are allowed to proceed continuously in one conductivity measurement cell, and one set of changes or rates of change in conductivity due to each reaction is obtained. urea nitrogen and creatinine are detected using conductivity measurement electrodes, and urea nitrogen and creatinine are quantitatively measured using a simple measurement system, which is essential for diagnosing kidney function. , the effect of being able to perform analysis simply and quickly can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す分析装置の系統図、第
2図は本発明の実施例による実験結果を示す導電率の経
時変化特性図、rs図は第1図の分析装置による尿素窒
素とクレアチニンの検量線図である。 1・・・電導度測定用白金電極、2・・・多孔性膜、3
・・・測定セル、4・・・寛導度測定セル室、11・・
・電導度測定器、12・・・演算器、13・・・表示器
Fig. 1 is a system diagram of an analyzer showing an embodiment of the present invention, Fig. 2 is a time-course characteristic diagram of electrical conductivity showing experimental results according to an embodiment of the present invention, and an rs diagram is a diagram of the analyzer shown in Fig. 1. It is a calibration curve diagram of urea nitrogen and creatinine. 1... Platinum electrode for conductivity measurement, 2... Porous membrane, 3
... Measuring cell, 4... Tolerance measurement cell room, 11...
- Conductivity measuring device, 12... Arithmetic unit, 13... Display device.

Claims (1)

【特許請求の範囲】 1)被検液に対してクレアチニンディミナーゼを添加す
ることによる導電率の変化量を検出する工程と、前記被
検液に対してウレアーゼを添加することによる導電率の
変化量を検出する工程とを時間をずらして同一セルで連
続して行ない、先に始めた工程による導電率の変化量を
後から始めた工程による導電率の変化量より差し引くこ
とにより、後から始めた工程単独での導電率の変化量を
求めることを特徴とする尿素窒素とクレアチニンの定量
方法。 2)特許請求の範囲第1項記載の方法において、クレア
チニンディミナーゼを添加する工程を先に行なった後、
ウレアーゼを添加する工程を行なうことを特徴とする尿
素窒素とクレアチニンの定量方法。
[Scope of Claims] 1) A step of detecting the amount of change in conductivity due to the addition of creatinine diminase to the test solution, and a change in conductivity due to the addition of urease to the test solution. By sequentially performing the process of detecting the amount in the same cell at different times, and subtracting the amount of change in conductivity due to the process that started earlier from the amount of change in conductivity due to the process that started later, A method for quantifying urea nitrogen and creatinine, characterized by determining the amount of change in conductivity in a single process. 2) In the method according to claim 1, after the step of adding creatinine diminase is performed first,
A method for quantifying urea nitrogen and creatinine, comprising a step of adding urease.
JP59275637A 1984-12-28 1984-12-28 Quantitative determination of urea nitrogen and creatinine Pending JPS61155847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59275637A JPS61155847A (en) 1984-12-28 1984-12-28 Quantitative determination of urea nitrogen and creatinine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59275637A JPS61155847A (en) 1984-12-28 1984-12-28 Quantitative determination of urea nitrogen and creatinine

Publications (1)

Publication Number Publication Date
JPS61155847A true JPS61155847A (en) 1986-07-15

Family

ID=17558232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59275637A Pending JPS61155847A (en) 1984-12-28 1984-12-28 Quantitative determination of urea nitrogen and creatinine

Country Status (1)

Country Link
JP (1) JPS61155847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064483A (en) * 2017-04-26 2017-08-18 上海健康医学院 A kind of double item rapid assay methods of serum urea nitrogen creatinine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064483A (en) * 2017-04-26 2017-08-18 上海健康医学院 A kind of double item rapid assay methods of serum urea nitrogen creatinine

Similar Documents

Publication Publication Date Title
US3919051A (en) Biological analyzer and method
EP0102958B1 (en) Method for measuring ionic concentration utilizing an ion-sensing electrode
US3539455A (en) Membrane polarographic electrode system and method with electrochemical compensation
JPS5841486Y2 (en) Fractionation device
CN105784814A (en) Sensor based on concentration cell principle
CN102072930A (en) Flow injection serially connected microelectrode electrochemical automatic method and device for simultaneous measurement of various electrolytes in blood sample
Park et al. A simple method for the estimation of plasma ammonia using an ion specific electrode.
Meyerhoff et al. Polymer-membrane electrode-based potentiometric sensing of ammonia and carbon dioxide in physiological fluids.
JPS6325301B2 (en)
JPS5861459A (en) Analyzing device for creatine and creatinine
JPS61155847A (en) Quantitative determination of urea nitrogen and creatinine
US4149949A (en) Electrochemical analysis apparatus employing single ion measuring sensor
JPS5916780B2 (en) Artificial kidney monitor device
Lagerlöf Determination of ionized calcium in parotid saliva
JPS60151560A (en) Quantitative determination of creatinine
JPS59187249A (en) Analyzing device of urea nitrogen
Fievet et al. Response of ion-selective sodium and potassium electrodes in the Beckman Astra 4 and Astra 8 analyzers.
JP3375000B2 (en) Inspection device for electrode for electrochemical measurement
JPS63106552A (en) Continuous quantitative analysis of creatinine and amylase
JPS6317181B2 (en)
US20210247380A1 (en) Contoured sample path for fluid analyzer
JPS5942439A (en) Analyzing method of glucose and urea
JPS6333667B2 (en)
JPS59109198A (en) Analysis of urea using immobilized enzyme column
JPH0583862B2 (en)