JPS5861459A - Analyzing device for creatine and creatinine - Google Patents

Analyzing device for creatine and creatinine

Info

Publication number
JPS5861459A
JPS5861459A JP56158780A JP15878081A JPS5861459A JP S5861459 A JPS5861459 A JP S5861459A JP 56158780 A JP56158780 A JP 56158780A JP 15878081 A JP15878081 A JP 15878081A JP S5861459 A JPS5861459 A JP S5861459A
Authority
JP
Japan
Prior art keywords
creatine
enzyme
electrode
creatinine
enzyme electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56158780A
Other languages
Japanese (ja)
Other versions
JPH029302B2 (en
Inventor
Hiroyuki Miyagi
宮城 宏行
Yumiko Abe
阿部 有美子
Yoshitada Takada
高田 芳矩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56158780A priority Critical patent/JPS5861459A/en
Publication of JPS5861459A publication Critical patent/JPS5861459A/en
Publication of JPH029302B2 publication Critical patent/JPH029302B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To provide a simple analyzing device which can analyze the creatine and creatinine in the fluid of living bodies simultaneously. CONSTITUTION:A titled device is installed with the 1st enzyme electrode 1 provided with an enzyme membrane 2 immobilized with creatine aminodihydrase and sarcosine oxidase and the 2nd enzyme electrode provided with an enzyme membrane 4 immobilized with creatinine amidhydrase, creatine aminodihydrase and sarcosine oxidase and is so constituted as to determine the concn. of creatine from the output of the electrode 1 and to determine the concn. of creatinine from the difference in the outputs of the electrode 3 and the electrode 1.

Description

【発明の詳細な説明】 本発明は血液や尿などの体液中のクレアチンとクレアチ
ニンの分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for analyzing creatine and creatinine in body fluids such as blood and urine.

血液および尿中のクレアチンとクレアチニンの濃度は腎
臓機能の診断指標として重要な臨床検査項目とされてい
る。従来、フレア)とを分析するにはピクリン酸のアル
カリ性溶液中での発色反応を利用するJ’affe’反
応が用いられ、クレアチンは試料に酸を加えて加熱脱水
することによってりレアチニンに変化させてから同様に
分析していた。
The concentrations of creatine and creatinine in blood and urine are considered important clinical test items as diagnostic indicators of kidney function. Conventionally, the J'affe' reaction, which utilizes a color reaction in an alkaline solution of picric acid, has been used to analyze creatine (flare), and creatine is converted to reatinine by adding acid to the sample and heating and dehydrating it. I then analyzed it in the same way.

しかし、Jaffe’反応は必ずしもクレアチニンに特
異的ではなく他の物質とも反応する可能性があるので、
クレアチニン濃度を正確に分析することは困難とされて
いた。
However, the Jaffe' reaction is not necessarily specific to creatinine and may react with other substances.
It has been difficult to accurately analyze creatinine concentration.

近年になって酵素試薬を用いるクレアチニンの分析法が
いくつか報告されている。例えば森下氏等はクレアチニ
ンディミナーゼ(E、 C,3,5,4゜2)溶液とア
ンモニアガス電極を用いる方法を提安している(衛生検
査、28,174.1969)。
In recent years, several analytical methods for creatinine using enzyme reagents have been reported. For example, Mr. Morishita et al. proposed a method using a creatinine diminase (E, C, 3, 5, 4°2) solution and an ammonia gas electrode (Sanitary Inspection, 28, 174, 1969).

また、Mayerhoff氏等はアンモニア電極の先端
に膜を包んだ酵素溶液を装着する酵素電極を使用する方
法を提案している( Anal、 Chim、 Acr
a85.277.1976)カS1 これらはいず九も
日常分析法としては採用されていない。
In addition, Mayerhoff et al. have proposed a method using an enzyme electrode in which an enzyme solution wrapped in a membrane is attached to the tip of an ammonia electrode (Anal, Chim, Acr.
a85.277.1976) KaS1 None of these methods have been adopted as routine analytical methods.

本発明は生体液中のクレアチンとクレアチニンを同時に
分析できる簡便な分析装置を提供することを目的とし、
その特徴とするところは、クレアチンアミジノヒドロラ
ーゼとザルコシンオキシダーゼを固定化した酵素膜を感
応面に装着した第1の酵素電極と、クレアチニンアミド
ヒドロラーゼとクレアチンアミジノヒドロラーゼとザル
コシンオキシダーゼを固定化した酵素膜を感応面に装着
した第2の酵素電極とを設置し、第1の酵素電極の出力
よりクレアチンの濃度を求め、第2の酵素電極と第1の
酵素電極の出力差よりクレアチニンの濃度を求めるごと
く構成したことにある。
The purpose of the present invention is to provide a simple analyzer that can simultaneously analyze creatine and creatinine in biological fluids.
Its features include the first enzyme electrode, which has an enzyme membrane on which creatinine amidinohydrolase and sarcosine oxidase are immobilized, and the enzyme membrane with which creatinine amidinohydrolase, creatine amidinohydrolase, and sarcosine oxidase are immobilized. A second enzyme electrode attached to the sensitive surface is installed, the concentration of creatine is determined from the output of the first enzyme electrode, and the concentration of creatinine is determined from the difference in output between the second enzyme electrode and the first enzyme electrode. The reason lies in the fact that it is structured as follows.

第1図は本発明の一実施例である分析装置の系統図であ
る。試料溶液11を収容した測定容器19には第1酵素
電極1と第2酵素電極3とが垂直に挿入されており、第
1酵素電極1の下端は次の物質を含む感応膜で封止され
ている。
FIG. 1 is a system diagram of an analyzer that is an embodiment of the present invention. A first enzyme electrode 1 and a second enzyme electrode 3 are vertically inserted into a measurement container 19 containing a sample solution 11, and the lower end of the first enzyme electrode 1 is sealed with a sensitive membrane containing the following substances. ing.

クレアチンアミジノヒドロラーゼ(E、 C,3,5゜
3.3.以後CIと記す)とザルコシンオキシダーゼ(
E、 C,1,5,3,1,以後SOD、Je−t’)
を含む感応膜で、以後Cl−8OD膜2と記す。
Creatine amidinohydrolase (E, C, 3,5°3.3.hereinafter referred to as CI) and sarcosine oxidase (
E, C, 1, 5, 3, 1, hereafter SOD, Je-t')
This is a sensitive film containing Cl-8OD film 2, hereinafter referred to as Cl-8OD film 2.

また、第2酵素電極3の下端は次の物質を含む感応膜で
封止されている。
Further, the lower end of the second enzyme electrode 3 is sealed with a sensitive membrane containing the following substance.

上記CIとSODにクレアチニンアミドヒドロラーゼ(
E、 C,3,5,2,n、以後CNと記す)を追加し
た感応膜で、以後CN−Cl−8OD膜4と記す。
Creatinine amide hydrolase (
E, C, 3, 5, 2, n, hereinafter referred to as CN), and hereinafter referred to as CN-Cl-8OD film 4.

なお、これらの感応膜は次のような酵素接触反応を行う
Note that these sensitive membranes perform the following enzyme contact reaction.

クレアチニン+H2OCNクレアチン ・・曲(1)ク
レアチン+H20CN尿素+ザルコシン・・・(2)ザ
ルコシン+02+H20□SODホルムアルデヒド+グ
リシン+H20・・・・・・・・・・・・・・・(3)
即ち、(2)、 (3)の反応を利用して(3)式の0
□を検出してクレアチンを求める。なお、この場合は酸
素電極を用いて02を検出しているが、過酸化水素電極
を用いた時はH20□を検出することになる。
Creatinine + H2OCN Creatine... Song (1) Creatine + H20CN Urea + Sarcosine... (2) Sarcosine + 02 + H20 SOD Formaldehyde + Glycine + H20... (3)
That is, by using the reactions (2) and (3), 0 in equation (3)
Detect □ to determine creatine. In this case, 02 is detected using an oxygen electrode, but when a hydrogen peroxide electrode is used, H20□ is detected.

また、クレアチニンの分析は(1)〜(3)式によりC
N、CI、SOD酵素を利用し、クレアチンと同じ検出
法で分析することができる。なお、検出器としては上記
のごとく酸素電極および過酸化水素電極を用いることが
感応膜との組合わせ上適当で、第1酵素電極11第2酵
素電極3はいずれかの電極を内蔵している。
In addition, the analysis of creatinine is performed using formulas (1) to (3).
It can be analyzed using the same detection method as creatine using N, CI, and SOD enzymes. As a detector, it is appropriate to use an oxygen electrode and a hydrogen peroxide electrode as described above in combination with a sensitive membrane, and the first enzyme electrode 11 and the second enzyme electrode 3 have either one of them built-in. .

このように構成された第1酵素電極1の出力は第1増幅
器15に送られて増幅され演算器17に入力される。同
様に第2酵素電極3の出力は第2増幅器16に送られて
増幅され演算器17に入る。
The output of the first enzyme electrode 1 configured as described above is sent to the first amplifier 15, amplified, and input to the arithmetic unit 17. Similarly, the output of the second enzyme electrode 3 is sent to the second amplifier 16, amplified, and input to the arithmetic unit 17.

この演算器17では所定の演算を行ってクレアチンおよ
びクレアチニンの分析値を同時に表示する。
This calculator 17 performs predetermined calculations and simultaneously displays the analytical values of creatine and creatinine.

上記は測定系であるが、この分析操作を円滑に行うため
には次のような操作系が用いられている。
Although the above is a measurement system, the following operation system is used to smoothly perform this analysis operation.

即ち、感応膜であるCl−8OD膜2.CN−Cl−8
OD膜4に新鮮な試料溶液11を常に接触させるだめの
スターク−10を用い、その攪拌子9を測定容器19中
に設置している。また、血清・尿等の試料5と緩衝溶液
6の吸引管を分注器7に接続し、分注器7の吐出ノズル
8は測定容器19内に開口させている。一方、測定終了
した排液14は測定容器19の試料溶液11内に先端を
挿入した吸引ノズル12よりジッパ13を作動されるこ
とによって排液容器内に、排出される。
That is, the Cl-8OD film 2. which is a sensitive film. CN-Cl-8
A Stark-10 is used to keep the fresh sample solution 11 in contact with the OD membrane 4, and its stirrer 9 is placed in the measurement container 19. Further, suction tubes for a sample 5 such as serum or urine and a buffer solution 6 are connected to a dispenser 7, and a discharge nozzle 8 of the dispenser 7 is opened into a measurement container 19. On the other hand, the drained liquid 14 after the measurement is discharged into the drained liquid container by operating the zipper 13 from the suction nozzle 12 whose tip is inserted into the sample solution 11 of the measurement container 19.

この分析装置による分析法の概略を次に説明する。試料
5とその緩衝溶液6は分注器7によって測定容器19中
に送られ、スターラー10を作動させて攪拌子9を回転
させることによって常に新鮮な液をC1,−8OD膜2
やCN−Cl−8OD膜4に接触させる。この時試料中
のクレアチニンは酵素CIおよびSODの接触作用で分
解され、(3)式によって感応膜中の酸素濃度は減少し
、過酸化水素が生成する。したがって、指示電極として
酸素電極を用いる場合は、第1酸素電極はクレアチン濃
度に関係する負の信号が得られ、また、過酸化水素電極
を用いればクレアチン濃度に関する正の信号が得られる
ので、これらの内いずれかの出力信号を増幅器16に導
いて増幅した後、演算器17で濃度換算し、表示器18
にクレアチン濃度として表示する。
An outline of the analysis method using this analyzer will be explained next. The sample 5 and its buffer solution 6 are sent into the measurement container 19 by the dispenser 7, and by operating the stirrer 10 and rotating the stirrer 9, a fresh solution is constantly supplied to the C1, -8OD membrane 2.
or CN-Cl-8OD film 4. At this time, creatinine in the sample is decomposed by the contact action of enzymes CI and SOD, the oxygen concentration in the sensitive membrane decreases according to equation (3), and hydrogen peroxide is produced. Therefore, when an oxygen electrode is used as the indicator electrode, the first oxygen electrode provides a negative signal related to the creatine concentration, and when a hydrogen peroxide electrode is used, a positive signal related to the creatine concentration is obtained. After guiding the output signal of one of them to the amplifier 16 and amplifying it, the arithmetic unit 17 converts it into concentration, and displays it on the display 18.
Displayed as creatine concentration.

一方、CN−Cl−8OD膜4を装着した第2酵素電極
3では(1)〜(3)式によりクレアチニンが分解され
るが、同時にクレアチンも(2)、 (3)式によって
分解される。したがって、第2酵素電極3ではクレアチ
ンとクレアチニ/の合量に関する信号が得られるので、
この出力信号を増幅した後演算器17にてはこの信号と
第1酵素電極lの信号との差をクレアチニン濃度と定め
て表示する。
On the other hand, in the second enzyme electrode 3 equipped with the CN-Cl-8OD membrane 4, creatinine is decomposed according to equations (1) to (3), and at the same time, creatine is also decomposed according to equations (2) and (3). Therefore, the second enzyme electrode 3 can obtain a signal regarding the total amount of creatine and creatinine.
After amplifying this output signal, the arithmetic unit 17 determines the difference between this signal and the signal from the first enzyme electrode 1 as the creatinine concentration and displays it.

第2図は第1図の分析装置による検量線図で、横軸はク
レアチン又はクレアチニンの濃度をmg/ d /=で
示し、縦軸にはそれらの成分のピーク高さを示している
。この場合の試料を希釈する緩衝溶液にはリン酸緩衝溶
液pH7,5を用い、固定化酵素膜は第6図(B)に示
している2層製造のものを過酸化水素電極に装着して使
用した。
FIG. 2 is a calibration curve diagram obtained by the analyzer shown in FIG. 1, in which the horizontal axis shows the concentration of creatine or creatinine in mg/d/=, and the vertical axis shows the peak heights of these components. In this case, a phosphate buffer solution pH 7.5 was used as the buffer solution for diluting the sample, and the immobilized enzyme membrane was a two-layered one shown in Figure 6 (B) and attached to the hydrogen peroxide electrode. used.

なお、この検量線を作成するに当って予めザルコシンの
溶液を緩衝溶液の流れに注入し、第1酵素雷極1と第2
酵素電極2の出力感度の比較を行い、クレアチニン濃度
を分析する場合は第1酵素電極の出力を校正した後で差
を求めた。第2図に示すごとくクレアチンはクレアチニ
ンよりも高感度で検出されるが、共に良好な比例性を示
している。
In addition, when creating this calibration curve, a solution of sarcosine was injected into the flow of the buffer solution in advance, and the first enzyme lightning electrode 1 and the second
The output sensitivity of enzyme electrode 2 was compared, and when analyzing creatinine concentration, the difference was determined after calibrating the output of the first enzyme electrode. As shown in FIG. 2, creatine is detected with higher sensitivity than creatinine, but both show good proportionality.

本実施例の分析装置は、測定容器に収容された試料溶液
中にCl−8OD膜を取付けた第1酵素電極とCN−C
l−8OD膜を取付けた第2酵素電極を浸漬して試料溶
液を攪拌し、各酵素電極の出力信号を増幅・演算処理し
て表示することにより、試料中のクレアチン、クレアチ
ニンの濃度を同時に高精度に分析することができるとい
う効果が得られる。
The analyzer of this example consists of a first enzyme electrode equipped with a Cl-8OD film and a CN-C
The concentration of creatine and creatinine in the sample can be simultaneously increased by immersing the second enzyme electrode with the l-8OD membrane attached, stirring the sample solution, and amplifying, calculating and displaying the output signals of each enzyme electrode. The effect of being able to analyze with precision is obtained.

第1図の装置はディスクリート方式の分析装置であり微
小量の試料でも測定可能であるが、試料5を緩衝溶液6
で希釈しているので低濃度試料の場合はS/N比が低下
することがアリ、十分な分析精度は得られない。これを
改善したのが次の実施例である。
The device shown in Figure 1 is a discrete analyzer and is capable of measuring even minute amounts of samples.
Since the sample is diluted with water, the S/N ratio may decrease in the case of a low-concentration sample, making it impossible to obtain sufficient analysis accuracy. The following embodiment improves this problem.

第3図は本発明の他の実施例である分析装置の系統図で
あり、第1図と同じ部分には同一符号を付しである。こ
の場合はフロ一方式を採用しており、キャリアー溶液2
0を送液ポンプ21で吸引圧送して第1酵素電極1を収
容する第1フローセル23aと、第2酵素電極3を収容
する第2フローセル23bとで構成されている。なお、
キャリアー溶液20は第1図の場合の緩衝溶液を使用す
ることができる。
FIG. 3 is a system diagram of an analyzer according to another embodiment of the present invention, in which the same parts as in FIG. 1 are given the same reference numerals. In this case, a one-flow system is used, and the carrier solution
The first flow cell 23a accommodates the first enzyme electrode 1 and the second flow cell 23b accommodates the second enzyme electrode 3. In addition,
As the carrier solution 20, the buffer solution shown in FIG. 1 can be used.

試料5は試料注入部22に注入されてキャリアー溶液2
0の流れに乗り、まず第1フローセル23aに運ばれる
。第1フローセル23aにはCl−8OD膜2が装着さ
れた第1酵素市極1が設置されており、Cl−801)
膜2は試料流に接触する。したがって、第1酵素電極1
ではクレアチン濃度に関する信号が得られる。
The sample 5 is injected into the sample injection part 22 and the carrier solution 2
0 flow and is first carried to the first flow cell 23a. In the first flow cell 23a, a first enzyme market 1 equipped with a Cl-8OD membrane 2 is installed, and a Cl-801)
Membrane 2 is in contact with the sample stream. Therefore, the first enzyme electrode 1
will give you a signal regarding creatine concentration.

この試料5を含むキャリアー溶液200層は第2フロー
セル23bに導入される。この第2フローセル23bに
はCN−Cl−8OD膜4を装着した第2酵素雷極3が
設置されており、クレアチンとクレアチニンの含量に関
係する信号が得られる。第1酵素電極1と第2酵素電極
3の出力信号は夫々増幅され、演算器17で第1酵素電
極1の出力はクレアチン濃度に、また、第1酵素電極と
第2酵素電極の出力信号の差がクレアチニン濃度に換算
され、夫々の値が表示器18に表示される。
A carrier solution 200 layer containing this sample 5 is introduced into the second flow cell 23b. A second enzyme lightning electrode 3 equipped with a CN-Cl-8OD membrane 4 is installed in the second flow cell 23b, and a signal related to the contents of creatine and creatinine can be obtained. The output signals of the first enzyme electrode 1 and the second enzyme electrode 3 are each amplified, and the output of the first enzyme electrode 1 is converted into the creatine concentration by the arithmetic unit 17, and the output signals of the first enzyme electrode and the second enzyme electrode are The difference is converted into a creatinine concentration, and each value is displayed on the display 18.

第4図は第3図の分析装置の記録線図であり、第1酵素
電極1の出力をA、第2酵素電極3の出力をBとすると
、この2つのピークは完全に分離しており、均斉のとれ
たピーク形状を示している。
Figure 4 is a recording diagram of the analyzer shown in Figure 3. If the output of the first enzyme electrode 1 is A and the output of the second enzyme electrode 3 is B, these two peaks are completely separated. , showing a well-balanced peak shape.

また、一度の異なる数種の試料を分析した時は、第2図
と同様にそのピーク高さは良好な直線性が得られること
を確認した。
Furthermore, when several different types of samples were analyzed at the same time, it was confirmed that the peak heights had good linearity as shown in FIG. 2.

本実施例の分析装置は、一対のフローセルを連通させ、
第1のフローセルにはCl−8OD膜を取付けた第1酵
素電極を設置し、第2のフローセルにはCN−Cl−8
OD膜を取付けた第2酵素電極を設置して試料成分を測
定することによって、極めて小量の試料でも迅速正確に
分析できるという効果が得られる。
The analyzer of this example communicates a pair of flow cells,
A first enzyme electrode equipped with a Cl-8OD membrane was installed in the first flow cell, and a CN-Cl-8 OD membrane was installed in the second flow cell.
By installing a second enzyme electrode equipped with an OD membrane and measuring sample components, it is possible to quickly and accurately analyze even an extremely small amount of sample.

第5図は第3図の変形例であるフローセルの説明図で、
この場合は第1酵素電極1と第2酵素電極3を1個のフ
ローセル24に並設しである。このようにすればフロー
セル24の設置場所が節約できると共に流路25が短縮
されるので、更に短時間で分析できるという利点が得ら
れる。
FIG. 5 is an explanatory diagram of a flow cell that is a modification of FIG.
In this case, the first enzyme electrode 1 and the second enzyme electrode 3 are arranged side by side in one flow cell 24. In this way, the installation space of the flow cell 24 can be saved and the flow path 25 can be shortened, so that an advantage can be obtained that analysis can be performed in a shorter time.

上記のCl−8OD膜2堂CN−Cl−8OD−膜4等
の酵素膜を作成する時は、例えば多孔性膜内に各酵素を
注入して膜母材と架橋結合させる方法、酵素溶液を2枚
の多孔性膜内に封し込める方法、多孔性膜表面にゲル状
の酵素を塗布する方法等各種の酵素膜製法が適用できる
。また、上記のごとく複数種の酵素を一枚の膜内に固定
化する場合は、次のような方法も用いられる。
When creating enzyme membranes such as the above-mentioned Cl-8OD membrane 2 and CN-Cl-8OD-membrane 4, there are methods, for example, injecting each enzyme into a porous membrane and crosslinking it with the membrane base material, or using an enzyme solution. Various enzyme membrane manufacturing methods can be applied, such as a method in which the enzyme is sealed within two porous membranes, and a method in which a gel-like enzyme is applied to the surface of the porous membrane. Furthermore, when multiple types of enzymes are immobilized within a single membrane as described above, the following method may also be used.

第6図は複数種の酵素を一枚の酵素膜内に固定化した状
態の説明図で、第6図(A)はCN、CI。
Figure 6 is an explanatory diagram of a state in which multiple types of enzymes are immobilized within a single enzyme membrane, and Figure 6 (A) shows CN and CI.

SOD等を混合して膜母材に一様に含ませて固定化した
もの、第6図(B)は2層よりなる酵素膜で、例えば試
料に接する側にはCNとCIの酵素を混合して固定化し
、電極に接する側にはSODを固定した場合は好結果が
得られる。第4図((Jは3層構造の酵素膜で、試料に
接する側にはCN、中間層にはCI、電極側にはSOD
を固定化したものである。これはCN−Cl−8OD膜
4の場合であるが、Cl−8OD膜20時は、第4図(
A)。
Figure 6 (B) is an enzyme membrane consisting of two layers, in which SOD, etc. is mixed and uniformly impregnated in the membrane base material, and for example, CN and CI enzymes are mixed on the side that contacts the sample. Good results can be obtained if SOD is immobilized on the side in contact with the electrode. Figure 4 (J is a three-layered enzyme membrane, with CN on the side in contact with the sample, CI on the middle layer, and SOD on the electrode side.
is fixed. This is the case of CN-Cl-8OD film 4, but in the case of Cl-8OD film 20, as shown in Fig. 4 (
A).

第4図(B)の方法が採用できるし、第4図(B)の場
合は試料側にはC11電極側にSODを固定化する。
The method shown in FIG. 4(B) can be adopted, and in the case of FIG. 4(B), SOD is immobilized on the C11 electrode side on the sample side.

本発明のクレアチンとクレアチニンの分析装置は、CI
とSODを固定化した酵素膜を感応面に装着した第1酵
素電極と、CIとSODとCNを固定化した酵素膜を感
応面に装着した第2酵素電極とが試料液と接触する際に
生じる出力信号を処理することにより、迅速正確にその
目的を達することができるという効果が得られる。
The creatine and creatinine analyzer of the present invention is a CI
When the first enzyme electrode has a sensitive surface equipped with an enzyme membrane on which CI, SOD, and CN are immobilized, and the second enzyme electrode has a sensitive surface equipped with an enzyme membrane on which CI, SOD, and CN are immobilized, when they come into contact with the sample solution. By processing the resulting output signals, the advantage is that the objective can be achieved quickly and precisely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である分析装置の系統図、第
2図は第1図の分析装置による検量線図、第3図は本発
明の他の実施例である分析装置の系統図、第4図は第3
図の分析装置の記録線図、第5図は第3図の変形例であ
るフローセルの説明図、第6図は複数種の酵素を一枚の
酵素膜内に固定した状態の説明図である。 1・・・第1酵素電極、2・・・Cl−8OD膜、3・
・・第2酵素電極、4・・・CN−Cl−8OD膜、5
・・・試料、6・・・緩衝溶液、7・・・分注器、8・
・・吐出ノズ7t、、9・・・攪拌子、10・・・スタ
ーラー、11・・・試料溶液、12吸引ノズル、13・
・・シラ、C114・・・排液、15.16・・・増幅
器、17・・・演算器、18・・・表示器、19・・・
測定容器、20・・・キャリアー溶液、21・・・送液
ポンプ、22・・・試料注入部、23゜24・・・フロ
ーセル、25・・・流路。 代理人 弁理士 高橋明夫 冴 1 図 業 20 笛lA目 一ン吟關 1!Jj口 鴬 5 図 ′R6目
Figure 1 is a system diagram of an analyzer that is an embodiment of the present invention, Figure 2 is a calibration curve diagram of the analyzer shown in Figure 1, and Figure 3 is a system diagram of an analyzer that is another embodiment of the present invention. Figure 4 is the third
Fig. 5 is an explanatory diagram of a flow cell which is a modification of Fig. 3; Fig. 6 is an explanatory diagram of a state in which multiple types of enzymes are immobilized within a single enzyme membrane. . 1... First enzyme electrode, 2... Cl-8OD membrane, 3...
...Second enzyme electrode, 4...CN-Cl-8OD membrane, 5
...Sample, 6.Buffer solution, 7.Dispenser, 8.
...Discharge nozzle 7t, 9... Stirrer, 10... Stirrer, 11... Sample solution, 12 Suction nozzle, 13...
...Silla, C114...Drainage, 15.16...Amplifier, 17...Arithmetic unit, 18...Display unit, 19...
Measurement container, 20...Carrier solution, 21...Liquid pump, 22...Sample injection part, 23°24...Flow cell, 25...Flow path. Agent Patent Attorney Akio Sae Takahashi 1 Business 20 Fue lAme Ichiin Ginkan 1! Jj Kuchiho 5 Figure'R6th

Claims (1)

【特許請求の範囲】 1、酵素電極を用いたクレアチンとクレアチニンの分析
装置において、クレアチンアミジノヒドロラーゼとザル
コシンオキシダーゼを固定化した酵素膜を感応面に装着
した第1の酵素電極と、クレアチニンアミドヒドロラー
ゼとクレアチンアミジノヒドロラーゼとザルコシンオキ
シダーゼを固定化した酵素膜を感応面に装着した第2の
酵素電極とを設置し、上記第1の酵素電極の出力より上
記クレアチンの濃度を求め、上記第2の酵素電極と上記
第1の酵素電極の出力差より上記クレアチニンの濃度を
求めるごとく構成したことを特徴とするクレアチンとク
レアチニンの分析装置。 2、 上記第1の酵素電極と第2の酵素電極が、測定容
器中に並列して挿入され、その酵素膜を試料溶液に浸漬
している電極である特許請求の範囲第1項記載のクレア
チンとクレアチニンの分析装置。 3、上記第1の酵素電極と第2の酵素電極が、直列に連
通させたフロルセルのキャリアーン溶液流路にその酵素
膜を浸漬して設置された電極である特許請求の範囲第1
項記載のクレアチンとクレアチニンの分析装置。   
、 4、上記酵素電極が、酵素電極である特許請求の範囲第
1項記載のクレアチンとクレアチニンの分析装置。 5、上記酵素電極が、過酸化水素電極である特許請求の
範囲第1項記載のクレアチンとクレアチニンの分析装置
[Scope of Claims] 1. A creatine and creatinine analyzer using an enzyme electrode, a first enzyme electrode having an enzyme membrane on which creatine amidinohydrolase and sarcosine oxidase are immobilized is mounted on the sensitive surface, and creatinine amidinohydrolase. and a second enzyme electrode whose sensitive surface is equipped with an enzyme membrane on which creatine amidinohydrolase and sarcosine oxidase are immobilized, the concentration of creatine is determined from the output of the first enzyme electrode, and the concentration of creatine is determined from the output of the first enzyme electrode. A device for analyzing creatine and creatinine, characterized in that it is configured to determine the concentration of creatinine from the output difference between the enzyme electrode and the first enzyme electrode. 2. The creatine according to claim 1, wherein the first enzyme electrode and the second enzyme electrode are electrodes that are inserted in parallel into a measurement container and whose enzyme membranes are immersed in a sample solution. and creatinine analyzer. 3. Claim 1, wherein the first enzyme electrode and the second enzyme electrode are electrodes whose enzyme membranes are immersed in a carrier solution flow path of a Florcell connected in series.
Creatine and creatinine analyzer as described in section.
4. The creatine and creatinine analyzer according to claim 1, wherein the enzyme electrode is an enzyme electrode. 5. The creatine and creatinine analyzer according to claim 1, wherein the enzyme electrode is a hydrogen peroxide electrode.
JP56158780A 1981-10-07 1981-10-07 Analyzing device for creatine and creatinine Granted JPS5861459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56158780A JPS5861459A (en) 1981-10-07 1981-10-07 Analyzing device for creatine and creatinine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56158780A JPS5861459A (en) 1981-10-07 1981-10-07 Analyzing device for creatine and creatinine

Publications (2)

Publication Number Publication Date
JPS5861459A true JPS5861459A (en) 1983-04-12
JPH029302B2 JPH029302B2 (en) 1990-03-01

Family

ID=15679164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56158780A Granted JPS5861459A (en) 1981-10-07 1981-10-07 Analyzing device for creatine and creatinine

Country Status (1)

Country Link
JP (1) JPS5861459A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085359A (en) * 1983-10-14 1985-05-14 Matsushita Electric Works Ltd Substance quantification
JPS6353461A (en) * 1986-08-22 1988-03-07 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind Measurement of peptide
EP0771867A3 (en) * 1995-10-30 1998-09-02 Ciba-Geigy Japan Limited Enzyme electrode
AT409040B (en) * 2000-08-11 2002-05-27 Roche Diagnostics Gmbh CREATININSENSOR CALIBRATION
JP2003533679A (en) * 2000-05-16 2003-11-11 エフ.ホフマン−ラ ロシュ アーゲー Creatinine biosensor
JP2007524094A (en) * 2004-02-16 2007-08-23 ピー エー コンサルティング サービシーズ リミテッド Analyte testing apparatus and method
EP2261647A1 (en) * 2001-05-31 2010-12-15 Instrumentation Laboratory Company Cross-linked enzyme matrix and uses thereof
JP2021527194A (en) * 2019-04-05 2021-10-11 インストゥルメンテーション ラボラトリー カンパニー How to improve the calibration accuracy of the creatinine / creatine sensor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570102B2 (en) * 1983-10-14 1993-10-04 Matsushita Electric Works Ltd
JPS6085359A (en) * 1983-10-14 1985-05-14 Matsushita Electric Works Ltd Substance quantification
JPS6353461A (en) * 1986-08-22 1988-03-07 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind Measurement of peptide
EP0771867A3 (en) * 1995-10-30 1998-09-02 Ciba-Geigy Japan Limited Enzyme electrode
JP2003533679A (en) * 2000-05-16 2003-11-11 エフ.ホフマン−ラ ロシュ アーゲー Creatinine biosensor
JP4755802B2 (en) * 2000-08-11 2011-08-24 エフ.ホフマン−ラ ロシュ アーゲー Calibration of creatinine sensor
WO2002014533A3 (en) * 2000-08-11 2002-07-18 Hoffmann La Roche Creatinine sensor calibration
JP2004506224A (en) * 2000-08-11 2004-02-26 エフ.ホフマン−ラ ロシュ アーゲー Calibration of creatinine sensor
US7371314B2 (en) 2000-08-11 2008-05-13 Roche Diagnostics Operations, Inc. Creatinine sensor calibration
US7815788B2 (en) 2000-08-11 2010-10-19 Roche Diagnostics Operations, Inc. Creatinine sensor calibration
AT409040B (en) * 2000-08-11 2002-05-27 Roche Diagnostics Gmbh CREATININSENSOR CALIBRATION
EP2261647A1 (en) * 2001-05-31 2010-12-15 Instrumentation Laboratory Company Cross-linked enzyme matrix and uses thereof
US8426192B2 (en) 2001-05-31 2013-04-23 Instrumentation Laboratory Company Composite membrane containing a cross-linked enzyme matrix for a biosensor
US9388503B2 (en) 2001-05-31 2016-07-12 Instrumentation Laboratory Company Cross-linked enzyme matrix and uses thereof
JP2007524094A (en) * 2004-02-16 2007-08-23 ピー エー コンサルティング サービシーズ リミテッド Analyte testing apparatus and method
JP2021527194A (en) * 2019-04-05 2021-10-11 インストゥルメンテーション ラボラトリー カンパニー How to improve the calibration accuracy of the creatinine / creatine sensor
JP2021528640A (en) * 2019-04-05 2021-10-21 インストゥルメンテーション ラボラトリー カンパニー Compositions and methods for improved creatinine measurement accuracy and their use

Also Published As

Publication number Publication date
JPH029302B2 (en) 1990-03-01

Similar Documents

Publication Publication Date Title
US4452682A (en) Apparatus for measuring clinical emergency check items of blood
US3707455A (en) Measuring system
US7816145B2 (en) Method, device and apparatus for measuring the concentration of creatinine, and method, device and apparatus for measuring the amount of salt using the same
JP2630005B2 (en) Liquid component measuring device and measuring method
JPS5861459A (en) Analyzing device for creatine and creatinine
JPS59160746A (en) Method and device for analyzing urea
Meyerhoff et al. Polymer-membrane electrode-based potentiometric sensing of ammonia and carbon dioxide in physiological fluids.
JPS6325301B2 (en)
US4149949A (en) Electrochemical analysis apparatus employing single ion measuring sensor
US20010051109A1 (en) Enzymatic analysis system
US11213228B2 (en) Stacked sensor assembly for fluid analyzer
JPS6224141A (en) Chemical substance detector
RU2696499C1 (en) Biosensor for simultaneous glucose and blood lactate determination
JPS59168371A (en) Analyzing method and apparatus for biochemical components of blood
Campanella et al. Determination of hydrogen peroxide in disinfectant solutions using a biosensor with two antagonist enzymes
US20210247380A1 (en) Contoured sample path for fluid analyzer
JPS6120279B2 (en)
JPS5816674A (en) Apparatus for simultaneous analysis of creatine and creatinine
JPS59187249A (en) Analyzing device of urea nitrogen
Thavarungkul et al. A Flow-Through Enzyme Reactor System for Urea Determination in Blood Serum Using Conductimetric Measurement
JP3469289B2 (en) Method for measuring potassium concentration in flour
Hicks et al. An evaluation of the Beckman chloride/carbon dioxide analyzer.
JPS60165552A (en) Automatic biochemical analysis device
Fiserova-Bergerova Polarographic determination—cholinesterase activity
Razumiene et al. Development of multi-parameter analyser based on electrochemical urea biosensors and electrolyte electrodes for monitoring of hemodialysis patients