JPS6333516A - Production of timepiece parts - Google Patents

Production of timepiece parts

Info

Publication number
JPS6333516A
JPS6333516A JP17481986A JP17481986A JPS6333516A JP S6333516 A JPS6333516 A JP S6333516A JP 17481986 A JP17481986 A JP 17481986A JP 17481986 A JP17481986 A JP 17481986A JP S6333516 A JPS6333516 A JP S6333516A
Authority
JP
Japan
Prior art keywords
wire rod
carbon steel
wire
cutting
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17481986A
Other languages
Japanese (ja)
Inventor
Isao Kuboki
久保木 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP17481986A priority Critical patent/JPS6333516A/en
Publication of JPS6333516A publication Critical patent/JPS6333516A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce inexpensive timepiece parts having good finish appearance and stable quality by heating a middle carbon steel contg. a specific ratio of carbon to a specific temp., then hardening and tempering the steel and turning the steel to a desired shape. CONSTITUTION:The raw wire of the free-cutting middle carbon steel contg., by weight, 0.3-0.6% carbon is subjected to annealing and drawing repeatedly 3 times to form a wire rod 5. The wire rod 5 is taken up by a torque motor 2 from such wire rod coil 6 and is held at the Ac3 transformation point or above in a soaking zone 4 of a high temp. furnace 1 in which an N2 atmosphere is maintained, then the wire rod is quickly cooled in a cooling tank 3 and is thus hardened. The wire rod 5 is thereafter tempered at 500-700 deg.C in a tempering furnace 7 in which the N2 atmosphere is maintained. The wire rod 5 taken up on the torque motor 2 is straightened to a bar and is then subjected to centerless working. The structure in which spheroidal cementite is uniformly dispersed by aggregation into the fine equiaxed ferrite grains and the grain boundaries is thereby obtd. and the bar having an excellent free-cutting property and strength is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、時計部品の製造方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing timepiece parts.

C発明の概要〕 かなに代表される極めて小さく、複雑形状を存し、高寸
法精度の要求される時計部品を製造するために、重量比
で0.3〜0.6%の炭素を含む(以下%Cとする)中
炭素鋼をAcff変態点以上に加熱保持後、焼入れさら
に焼戻しを行い、続いて自動旋盤にて加工するようにし
たものである。
C. Summary of the Invention] In order to manufacture watch parts such as Kana, which are extremely small and have a complicated shape, and which require high dimensional accuracy, a watch component containing 0.3 to 0.6% carbon by weight ( After heating and holding medium carbon steel (hereinafter referred to as %C) above the Acff transformation point, it is quenched and tempered, and then processed using an automatic lathe.

〔従来の技術〕[Conventional technology]

従来、自動旋盤にて加工される時計部品用炭素鋼は、伸
線、焼鈍処理を数回繰り返し、所望する寸法近くまでの
寸法とした後、その線材を直線加工及びセンタレス加工
し、所望の寸法の棒材として使用している。
Conventionally, carbon steel for watch parts, which is processed using automatic lathes, is drawn and annealed several times to obtain dimensions close to the desired dimensions, and then the wire is linearly processed and centerless processed to obtain the desired dimensions. It is used as a bar material.

従って、上記従来の方法で加工した時計部品用炭素鋼は
、伸線工程中の焼鈍時に炭素鋼中のセメンタイトが粒径
2〜3μ程度に球状化しく以下球状セメンタイトとする
)、フェライト地中にこのFJi状セメンタイトが個々
に独立して分散するようになる。また球状セメンタイト
粒度を調整するためには、伸線工程中に球状化焼鈍を行
っている。
Therefore, in the carbon steel for watch parts processed by the above-mentioned conventional method, the cementite in the carbon steel becomes spheroidized to a grain size of about 2 to 3 μm during annealing during the wire drawing process (hereinafter referred to as spherical cementite), and the cementite in the carbon steel is spheroidized to a ferrite ground. This FJi-like cementite becomes individually and independently dispersed. In addition, in order to adjust the particle size of spherical cementite, spheroidizing annealing is performed during the wire drawing process.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来のこのような加工方法による金属組織のま
まであると、中炭素鋼は球状セメンタイト盪がフェライ
トに比較して少なくなる。しかも伸線工程中の焼鈍では
、原綿パーライト相中の炭素原子のフェライト中への拡
散が充分に行われず、球状セメンタイトが均一に分散せ
ず、炭素成分の多い部分に集合するようになる。これに
より、球状セメンタイトの分散が少ない。フェライト地
のみの部分の割合が非常に多くなり、このフェライトが
伸線方向に延ばされて、フェライトバンドのような状態
で存在するようになる。
However, if the metal structure obtained by the conventional processing method is maintained, medium carbon steel will have less spheroidal cementite cracking than ferrite. Furthermore, during the annealing during the wire drawing process, the carbon atoms in the pearlite phase of the raw cotton do not sufficiently diffuse into the ferrite, and the spherical cementite is not uniformly dispersed but aggregates in areas with a high carbon content. This results in less dispersion of spherical cementite. The proportion of only ferrite base becomes very large, and this ferrite is stretched in the wire drawing direction, so that it exists in a state like a ferrite band.

フェライトは非常に軟らかく粘い性質を存しており、伸
線による加工応力が残留している。このようなフェライ
トの多い炭素鋼は、切削抵抗を小さく、切削速度を速く
することはできるが、亀裂の発生場所は、比較的粒径の
大きい硬い相との界面が最も存効に働くので、このよう
な相の存在しない組織では切くず処理性が悪く、また、
強伸線加工を加えても強度、耐摩耗性を充分に高くする
ことができず、旋削加工時のハイド圧により材料に負荷
がかかり偏心回転が生し、寸法精度のバラツキが大きく
なったり、表面仕上がり性が著しく劣る。また、フェラ
イトバンド状のものの存在により、硬さのバラツキ、被
削性のバラツキも生しる。
Ferrite is extremely soft and sticky, and processing stress from wire drawing remains. Carbon steel with a large amount of ferrite can reduce cutting force and increase cutting speed, but cracks occur most effectively at the interface with a hard phase with a relatively large grain size. A structure without such a phase has poor chip control, and
Even if strong wire drawing is applied, strength and wear resistance cannot be sufficiently increased, and the hide pressure during turning places a load on the material, causing eccentric rotation, resulting in large variations in dimensional accuracy. The surface finish is extremely poor. Furthermore, the presence of ferrite band-like materials causes variations in hardness and machinability.

そこで、本発明は従来のこのような欠点を解決するため
に、旋削加工時に中炭素鋼の伸線だけでは得られない強
度と、長時間連続旋削加工を可能にした安価な精密加工
部品の製造方法を提供することを目的としたものである
Therefore, in order to solve these conventional drawbacks, the present invention aims to manufacture inexpensive precision-machined parts that have strength that cannot be obtained only by drawing medium carbon steel during turning, and that enable continuous turning for long periods of time. The purpose is to provide a method.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するためにこの発明は、0.3〜0.
6%Cを含む中炭素鋼をAC:l変態点以上の温度に加
熱保持後、焼入れさらに焼戻しを行い続いて旋削加工を
行うようにした。
In order to solve the above-mentioned problems, the present invention provides a 0.3-0.
A medium carbon steel containing 6% C was heated and maintained at a temperature equal to or higher than the AC:l transformation point, then quenched and tempered, and then turned.

〔作用〕[Effect]

中炭素!4(亜共析鋼)をA0変態点以上の温度より急
冷しアルテンサイド化した後、500〜700℃で焼戻
しを行うと、微細等軸フェライト粒内及び粒界に球状セ
メンタイトが凝集し、均一分散した組織となる。
Medium carbon! 4 (hypo-eutectoid steel) is rapidly cooled to a temperature above the A0 transformation point to form altenside, and then tempered at 500 to 700°C, spheroidal cementite aggregates within the fine equiaxed ferrite grains and at the grain boundaries, creating a uniform structure. Become a dispersed organization.

このようなフェライトと凝集セメンタイトの二相混合鋼
は、切削加工すると凝集セメンタイト相が変形し難いこ
とに起因して、切削くずせん新城において軟らかいフェ
ライト相に歪が集中し、加工硬化によってミクロクラッ
クが生成して容易に細片化するため、切削くず処理性が
著しく向上する。この際、せん新城は混在する凝集セメ
ンタイトが障害となって縮小され、切削工具に加わる切
削抵抗が減少する。
In such a two-phase mixed steel of ferrite and agglomerated cementite, the agglomerated cementite phase is difficult to deform during cutting, so strain concentrates on the soft ferrite phase in the cutting process, and microcracks occur due to work hardening. Since it is easily broken down into small pieces, the ability to dispose of cutting chips is significantly improved. At this time, the agglomerated cementite mixed therein acts as an obstacle and reduces the size of the new castle, reducing the cutting resistance applied to the cutting tool.

本発明は、中炭素鋼を上記特徴を有するフェライトと凝
集セメンタイトの二相混合相にすることによる。
The present invention is achieved by converting medium carbon steel into a two-phase mixed phase of ferrite and agglomerated cementite having the above characteristics.

〔実施例〕〔Example〕

以下に実施例によって本発明を詳述する。 The present invention will be explained in detail with reference to Examples below.

第1図は従来の方法による製造工程と本発明の方法によ
る製造工程を示した図であり、第2図は本発明に用いた
線材連続熱処理装置の概略図を示したものである。
FIG. 1 is a diagram showing a manufacturing process according to a conventional method and a manufacturing process according to the method of the present invention, and FIG. 2 is a diagram showing a schematic diagram of a continuous wire heat treatment apparatus used in the present invention.

実施例−1 第1表 本発明に使用した供試材の化学成分を第1表に示す。こ
の複合快削中炭素鋼のφ5.5Nの原綿を焼鈍、伸線加
工を3回繰り返し、φ1.5鶴の線材としたものを第2
図に示した線材連続焼入装置にセントする。焼入れ処理
は、第2図のトルクモーター2でテンションをかけて巻
き取りながら、880℃に保持したN2雰囲気の高温炉
1の均熱帯4を5分に通過するような速度で送り、同炉
内のN2ガスカーテンでしきられている別室に設けられ
た油槽中を通し急冷を行った後、650℃に保持したN
2雰囲気の焼戻し炉7中を通し、焼戻しを行った。トル
クモーター2で巻き取られた線材はコイルのまま直線機
にセットされ、直線加工を行い棒材とした後、寸法出し
のためのセンターレス加工を行った。本発明は伸線後焼
入れ処理を行うため、伸線工程中の熱処理条件が複雑な
球状化焼鈍を削除することができる。
Example-1 Table 1 Table 1 shows the chemical components of the test materials used in the present invention. The raw material of this composite free-cutting medium carbon steel with a diameter of 5.5N was annealed and wire-drawn three times, and a wire rod with a diameter of 1.5N was made into a second wire.
Insert into the wire continuous quenching equipment shown in the figure. The quenching process is performed by applying tension with the torque motor 2 shown in Figure 2 and winding it up at a speed that passes through the soaking zone 4 of the high-temperature furnace 1 in a N2 atmosphere maintained at 880°C in 5 minutes. After cooling rapidly through an oil tank in a separate room separated by an N2 gas curtain, the N2 gas was kept at 650°C.
Tempering was performed by passing through a tempering furnace 7 with two atmospheres. The wire rod wound by the torque motor 2 was set in a straightening machine as a coil, and after straightening it into a bar material, centerless processing was performed to obtain the dimensions. Since the present invention performs quenching treatment after wire drawing, it is possible to eliminate spheroidizing annealing, which requires complicated heat treatment conditions during the wire drawing process.

このようにして得られた被加工材の材料強度、特に旋削
加工に要求される特性について従来材との比較を示した
ものが第2表である。
Table 2 shows a comparison of the material strength of the workpiece obtained in this manner, particularly the properties required for turning, with conventional materials.

第2表 従来から複雑形状の精密部品用細線材は、旋削加工用と
して引張り強さ100kg/mm、硬さ1lv300程
度が要求されてきた。本発明は従来を上回る強度が得ら
れ、従来品では対応できなかった複雑形状部品の加工も
可能となった。
Table 2 Thin wire rods for precision parts with complex shapes have traditionally been required to have a tensile strength of 100 kg/mm and a hardness of about 1 lv300 for turning processing. The present invention has greater strength than conventional products, and it has also become possible to process parts with complex shapes that were not possible with conventional products.

被旋削加工性試験は、腕時計用部品で最も寸法精度、外
観仕上げ性を要求されるかな部品を自動旋盤にて加工し
、その時の切りくずと、仕上がり外観を従来材と比較す
ることにより行った。
The turning machinability test was conducted by machining the kana parts, which require the highest dimensional accuracy and appearance finish among watch parts, using an automatic lathe, and comparing the chips and finished appearance with conventional materials. .

本発明の切りくずは、1〜211程度の長さに細かく分
断され、従来材のそれが101程度であるのと較べ、著
しく細かかった。また、仕上がり外観も、従来材と較べ
凹凸が少なくなめらかであった。
The chips of the present invention were finely divided into lengths of about 1 to 211, and were significantly finer than the length of the conventional material, which was about 101. Additionally, the finished appearance was smoother with fewer irregularities than conventional materials.

実施例−2 ここで、本発明に0.3〜0.6%C範囲の炭素鋼を使
用したのは、0.3%C以下であると、材料強度と切削
性を両立させることが難しく 、0.6%C以上である
と、焼入れ硬さが非常に硬くなるので焼入れ焼戻しの連
続熱処理するのが難しくなるためである。
Example 2 Here, carbon steel with a carbon content in the range of 0.3 to 0.6% C was used in the present invention because if the carbon content is 0.3% or less, it is difficult to achieve both material strength and machinability. , 0.6%C or more, the quenching hardness becomes extremely hard, making it difficult to perform continuous heat treatment of quenching and tempering.

0.3%Cと0.6%Cの炭素鋼細線を使用し、0゜3
%C炭素鋼は、900℃焼入れ、500°C焼戻しを行
い、0.6%C炭素鋼は840℃焼入れ、700“C焼
戻しを行ったところ、硬さはそれぞれHv280. I
Iν300となり、切りくず形状、仕上がり外観も実施
例−1と同様に良好であった。
Using 0.3%C and 0.6%C carbon steel wire, 0°3
%C carbon steel was quenched at 900°C and tempered at 500°C, and 0.6%C carbon steel was quenched at 840°C and tempered at 700°C, resulting in a hardness of Hv280.I.
The Iv300 was obtained, and the chip shape and finished appearance were also good as in Example-1.

実施例−3 快削成分を含まない0.5%Cの炭素鋼細線を使用し、
実施例−1と同様な方法で処理を行ったところ硬さはH
v292であり、快削成分を含んだ材料とほぼ変わらな
かった。切りくず形状、仕上がり外観も実施例−1と同
様に良好であった。
Example-3 Using 0.5% C carbon steel fine wire that does not contain free-cutting components,
When treated in the same manner as in Example-1, the hardness was H.
v292, which was almost the same as a material containing a free-cutting component. The chip shape and finished appearance were also good as in Example-1.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、従来がな等に用いる中
炭素鋼細線は、伸線のままの強度、切削性が不充分の状
態で用いられていたが、この中炭素鋼を伸線後、AB3
変態点以上の温度域から焼入れした後、500〜700
℃の温度域で焼戻しを行うことにより、中炭素鋼の伸線
加工では達し得ない強度を得ることができ、その優れた
快削性を生かすことにより、精密加工部品においてネッ
クとされていた長時間連続加工を可能にし、仕上がり外
観が良好な、品質の安定した安価な精密部品の製造方法
を提供できるという効果を有する。
As explained above, the present invention has been developed by using thin medium carbon steel wires, which are conventionally used in wire-drawn wires, with insufficient strength and machinability as they are drawn. , AB3
After quenching from the temperature range above the transformation point, 500 to 700
By tempering in the temperature range of °C, it is possible to obtain strength that cannot be achieved by wire drawing of medium carbon steel, and by taking advantage of its excellent free machinability, it is possible to improve the length, which has been a bottleneck in precision machined parts. The present invention has the effect of providing a method for manufacturing precision parts with stable quality and low cost, which enables continuous processing over time and has a good finished appearance.

【図面の簡単な説明】 第1図は従来の方法と本発明の方法による製造工程を示
した工程図、第2図は本発明に用いた線材連続焼入れ焼
戻し装置の概略図である。 1・・・高温炉 2・・・トルクモーター 3・・・冷却槽 4・・・均熱帯 5・・・炭素鋼細線 6・・・炭素鋼細線コイル 7・・・焼戻し炉 以上
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process diagram showing manufacturing steps according to a conventional method and the method of the present invention, and FIG. 2 is a schematic diagram of a continuous wire rod quenching and tempering apparatus used in the present invention. 1... High temperature furnace 2... Torque motor 3... Cooling tank 4... Soaking zone 5... Carbon steel thin wire 6... Carbon steel thin wire coil 7... Tempering furnace or higher

Claims (3)

【特許請求の範囲】[Claims] (1)重量比で0.3〜0.6%の炭素を含む炭素鋼を
Ac_3変態点以上の温度にいたらしめた後、焼入れ焼
戻しを行い、続いて所望の形状に旋削加工を行うことを
特徴とする時計部品の製造方法。
(1) Carbon steel containing 0.3 to 0.6% carbon by weight is brought to a temperature above the Ac_3 transformation point, then quenched and tempered, and then turned into the desired shape. Characteristic manufacturing method for watch parts.
(2)焼戻し温度は、500〜700℃であることを特
徴とする特許請求の範囲第1項記載の時計部品の製造方
法。
(2) The method for manufacturing a timepiece component according to claim 1, wherein the tempering temperature is 500 to 700°C.
(3)炭素鋼は、快削成分もしくは快削化の目的で添加
した成分を含む快削炭素鋼であることを特徴とする特許
請求の範囲第1項記載の時計部品の製造方法。
(3) The method for manufacturing a timepiece component according to claim 1, wherein the carbon steel is a free-cutting carbon steel containing a free-cutting component or a component added for the purpose of free-cutting.
JP17481986A 1986-07-25 1986-07-25 Production of timepiece parts Pending JPS6333516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17481986A JPS6333516A (en) 1986-07-25 1986-07-25 Production of timepiece parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17481986A JPS6333516A (en) 1986-07-25 1986-07-25 Production of timepiece parts

Publications (1)

Publication Number Publication Date
JPS6333516A true JPS6333516A (en) 1988-02-13

Family

ID=15985217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17481986A Pending JPS6333516A (en) 1986-07-25 1986-07-25 Production of timepiece parts

Country Status (1)

Country Link
JP (1) JPS6333516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946897A (en) * 1997-06-05 1999-09-07 Sumitomo Wiring Systems, Ltd. Production unit for twisted cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946897A (en) * 1997-06-05 1999-09-07 Sumitomo Wiring Systems, Ltd. Production unit for twisted cable

Similar Documents

Publication Publication Date Title
JPS62192532A (en) Production of steel wire
CN109628713B (en) Spheroidizing annealing method of low-carbon steel
JPH03240919A (en) Production of steel wire for wiredrawing
JPS6333516A (en) Production of timepiece parts
JPS6233289B2 (en)
KR20020093403A (en) Method for Spheroidization of Carbon Steel by Equal Channel Angular Pressing
JPS63130716A (en) Production of timepiece parts
JPS62196327A (en) Manufacture of high-carbon wire bar for cold forging
JPS62274027A (en) Production of timepiece parts
JPH0559527A (en) Production of steel excellent in wear resistance and rolling fatigue characteristic
JPS62194483A (en) Preparation of clock parts
JP3864492B2 (en) Spheroidizing annealing method for steel
JPS62287015A (en) Production of time piece parts
CN109593929B (en) Spheroidizing annealing method of cold forging steel
JPS6372832A (en) Production of oil tempered wire having oxide film of good formability
JP2647754B2 (en) Method for producing austempered spheroidal graphite cast iron with excellent machinability
JPS626612B2 (en)
JP3167550B2 (en) Cold forging steel with excellent workability
JPS62112725A (en) Manufacture of timepiece parts
JPH0559526A (en) Production of steel excellent in wear resistance and rolling fatigue characteristic
JP2672116B2 (en) High strength spring material manufacturing method
JP2866107B2 (en) Method for producing high-carbon hot-rolled steel sheet in which carbides are uniformly dispersed
JPH0243319A (en) Production of case hardening cr-mo steel
JPH05105984A (en) Austempered spheroidal graphite cast iron and its production
JPS6386815A (en) Production of steel having excellent cold workability