JPS6333472Y2 - - Google Patents

Info

Publication number
JPS6333472Y2
JPS6333472Y2 JP18806381U JP18806381U JPS6333472Y2 JP S6333472 Y2 JPS6333472 Y2 JP S6333472Y2 JP 18806381 U JP18806381 U JP 18806381U JP 18806381 U JP18806381 U JP 18806381U JP S6333472 Y2 JPS6333472 Y2 JP S6333472Y2
Authority
JP
Japan
Prior art keywords
electron beam
hologram
electron
sample
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18806381U
Other languages
Japanese (ja)
Other versions
JPS5894254U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18806381U priority Critical patent/JPS5894254U/en
Publication of JPS5894254U publication Critical patent/JPS5894254U/en
Application granted granted Critical
Publication of JPS6333472Y2 publication Critical patent/JPS6333472Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 (1) 考案の利用分野 本考案は、電子線ホログラフイー用光学装置の
改良に関するものである。
[Detailed Description of the Invention] (1) Field of Application of the Invention The present invention relates to improvement of an optical device for electron beam holography.

(2) 従来技術 電子線ホログラフイー用光学装置で試料の電子
線ホログラムが作成される。このホログラムには
試料を透過後の電子線のすべての情報が記録され
ているので、このホログラムにレーザー光を当て
ると、試料の像を、光学ベンチ上で、光の波面と
して再生することができる。そのため、電子顕微
鏡では得られない干渉顕微鏡像や位相顕微鏡像な
どの観察が可能となる。
(2) Prior Art An electron beam hologram of a sample is created using an optical device for electron beam holography. This hologram records all the information of the electron beam after it passes through the sample, so by shining a laser beam onto this hologram, the image of the sample can be reproduced as a light wavefront on an optical bench. . Therefore, it becomes possible to observe interference microscopic images, phase microscopic images, etc. that cannot be obtained with an electron microscope.

第1図は従来の電子線ホログラムの作成方法の
例である。電子銃1から出た電子線はコンデンサ
レンズ2で照射条件を調整され試料3を照射す
る。対物レンズ4と中間レンズ5の間にアース電
位の平行平板電極6とその中央に張られた細い芯
線7から構成された電子線プリズム8が設けられ
ている。その芯線7に正の電圧を印加すると芯線
の両側を通る電子線はそれぞれ芯線の方に曲げら
れ、下方で重畳する。この時芯線の片側に試料3
を透過した電子線を通し、もう一方には、試料の
ない部分を通つた電子線を通すと、下方で2つの
電子線が重畳し干渉パターン9が形成される。こ
れをさらに下方の中間レンズ5および投射レンズ
10等で拡大してフイルム11に記録する。これ
がホログラムとなる。
FIG. 1 is an example of a conventional method for creating an electron beam hologram. The electron beam emitted from the electron gun 1 has its irradiation conditions adjusted by a condenser lens 2 and irradiates the sample 3. An electron beam prism 8 is provided between the objective lens 4 and the intermediate lens 5, and is composed of a parallel plate electrode 6 at ground potential and a thin core wire 7 stretched at the center thereof. When a positive voltage is applied to the core wire 7, the electron beams passing on both sides of the core wire are bent toward the core wire and overlap with each other below. At this time, sample 3 is placed on one side of the core wire.
When the electron beam that has passed through the sample is passed through the other side, and the electron beam that has passed through the part where there is no sample is passed through the other side, the two electron beams overlap at the bottom and an interference pattern 9 is formed. This is further magnified by the lower intermediate lens 5, projection lens 10, etc. and recorded on the film 11. This becomes a hologram.

ホログラムに記録できる試料領域の大きさは電
子線プリズムに印加する電圧によつて調節でき
る。しかし、プリズム電圧を高くすることによつ
て、重畳領域を無制限に大きくすることはできな
い。プリズム電圧を上げると、重畳領域が大きく
なるだけでなく、ホログラムの基本周期縞の縞間
隔が小さくなる。このためまず、照射電子線の干
渉領域(R=λ/2β:λは照射電子線の波長、
βは開き角)を大きくしなければならず、より細
かい基本周期縞をフイルムに記録するために、ホ
ログラム拡大倍率を上げなければならない。こう
した理由から、干渉領域を最大に利用したホログ
ラムの大きさには上限があり、その値は電子線プ
リズムの位置によつてきまる。第2図は電子線プ
リズムの位置lと、記録できる最大の試料領域の
大きさ(W0nax)の関係を示したものである。第
2図で、W0はホログラムに記録される試料領域
の大きさ、m0は対物レンズの倍率、Lとlはそ
れぞれ対物レンズ後焦点からホログラム面および
電子線プリズム迄の距離、λは電子線の波長、d1
はフイルムの解像度、ρはフイルムが感光するた
めに必要な電荷密度、Bは照射電子線の輝度、t
は露光時間である。
The size of the sample area that can be recorded in the hologram can be adjusted by adjusting the voltage applied to the electron beam prism. However, by increasing the prism voltage, it is not possible to increase the overlapping area without limit. Increasing the prism voltage not only increases the overlapping area but also decreases the stripe spacing of the fundamental periodic fringes of the hologram. For this reason, first, the interference region of the irradiated electron beam (R=λ/2β: λ is the wavelength of the irradiated electron beam,
β is the aperture angle) must be increased, and in order to record finer fundamental periodic fringes on the film, the hologram magnification must be increased. For these reasons, there is an upper limit to the size of a hologram that makes maximum use of the interference area, and that value depends on the position of the electron beam prism. FIG. 2 shows the relationship between the position l of the electron beam prism and the maximum recordable sample area size (W 0nax ). In Figure 2, W 0 is the size of the sample area recorded in the hologram, m 0 is the magnification of the objective lens, L and l are the distances from the objective lens rear focus to the hologram surface and the electron beam prism, respectively, and λ is the electron wavelength of the line, d 1
is the resolution of the film, ρ is the charge density required for the film to be exposed, B is the brightness of the irradiated electron beam, t
is the exposure time.

第2図では電子線プリズムを対物レンズの後焦
点に近づけるほど、すなわちプリズム位置lを小
さくするほど、広い試料領域のホログラムを作成
できることを示している。しかし一般には、装置
上の制約から電子線プリズムはホログラム面に近
い所に設けられており、光軸方向に移動させるこ
とは困難である。このため、この方法では、広い
試料領域のホログラム作成はできない。一方、電
子線プリズムを対物レンズの後焦点に近い位置に
設けると、ホログラム面に近い位置に設けた場合
に比べホログラム中の干渉縞の縞間隔が大きくな
り、高い解像度のホログラムを得ることができな
い。
FIG. 2 shows that the closer the electron beam prism is to the back focal point of the objective lens, that is, the smaller the prism position l, the wider the sample area hologram can be created. However, generally, due to equipment limitations, the electron beam prism is provided close to the hologram surface, and it is difficult to move it in the optical axis direction. Therefore, with this method, it is not possible to create a hologram over a wide sample area. On the other hand, if the electron beam prism is placed close to the back focal point of the objective lens, the spacing between the interference fringes in the hologram will be larger than if it is placed close to the hologram surface, making it impossible to obtain a high-resolution hologram. .

すなわち、従来装置で広い視野のホログラムと
高い解像度のホログラムの両方を得るためには、
電子線プリズムの位置を対物レンズの後焦点近く
から、ホログラム面近くまで可変できる機構を備
えていなければならない。それは、実装上の制約
から極めて困難である。
In other words, in order to obtain both a wide field of view hologram and a high resolution hologram using conventional equipment,
A mechanism must be provided that can change the position of the electron beam prism from near the back focus of the objective lens to near the hologram surface. This is extremely difficult due to implementation constraints.

(3) 考案の目的 本考案は、ホログラムに記録する試料領域の大
きさを自由に、かつ容易に変えることができる電
子線ホログラフイー用光学装置を提供するもので
ある。
(3) Purpose of the invention The present invention provides an optical device for electron beam holography that allows the size of a sample area to be recorded in a hologram to be freely and easily changed.

以下、本考案の一実施例を第3図により説明す
る。電界放射形電子銃12とコンデンサレンズ2
等よる成る照射系部と対物レンズ4と中間レンズ
5と投射レンズ10等より成る拡大系部とで構成
された光学装置において、電子線プリズム8は中
間レンズ5と投射レンズ10の間に設けられてお
り、試料3と電子線プリズム8の間に2個の電子
レンズが配置された構成になつている。本実施例
によれば、電子線プリズム8直下のホログラム面
13における試料像の倍率を、対物レンズ4と中
間レンズ5の励磁電流を調整するだけで、縮小か
ら拡大まで、容易かつ広範囲に変化させることが
可能となる。第3図は縮小モードで対物レンズと
中間レンズを動作させた時の光路図を示したもの
である。このように試料像の倍率を変えること
は、第2図の縦軸のm0を変えることと等価であ
るため、本実施例によれば電子線プリズムの位置
が固定の状態でもホログラムに記録できる試料領
域の大きさを自由に選ぶことができる。
An embodiment of the present invention will be described below with reference to FIG. Field emission type electron gun 12 and condenser lens 2
In the optical device, the electron beam prism 8 is provided between the intermediate lens 5 and the projection lens 10. The structure is such that two electron lenses are arranged between the sample 3 and the electron beam prism 8. According to this embodiment, the magnification of the sample image on the hologram surface 13 directly below the electron beam prism 8 can be easily and widely changed from reduction to enlargement by simply adjusting the excitation current of the objective lens 4 and intermediate lens 5. becomes possible. FIG. 3 shows an optical path diagram when the objective lens and intermediate lens are operated in the reduction mode. Changing the magnification of the sample image in this way is equivalent to changing m 0 on the vertical axis in Figure 2, so according to this example, it is possible to record in a hologram even when the position of the electron beam prism is fixed. The size of the sample area can be freely selected.

本考案によれば、電子線プリズム位置が固定の
状態でも、試料と電子線プリズムの間に配置され
た電子レンズの励磁電流を調整することにより、
ホログラムに記録できる試料領域の大きさを容易
かつ、広範囲に選ぶことが可能となる。実施例で
は試料と電子線プリズムの間に2個の電子レンズ
を配置した例について説明したが、3個以上の電
子レンズを配置しても同等の効果が得られる。
According to the present invention, even when the electron beam prism position is fixed, by adjusting the excitation current of the electron lens placed between the sample and the electron beam prism,
It becomes possible to easily and widely select the size of the sample area that can be recorded in the hologram. In the embodiment, an example was explained in which two electron lenses were arranged between the sample and the electron beam prism, but the same effect can be obtained even if three or more electron lenses are arranged.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の電子線ホログラフイー用光学
装置の例を示す図、第2図は、従来装置の例にお
いて、電子線プリズムの位置とホログラムに記録
できる試料領域の大きさの関係を示す図、第3図
は本考案の一実施例を示す図である。 12……電界放射形電子銃、2……コンデンサ
レンズ、3……試料、4……対物レンズ、5……
中間レンズ、8……電子線プリズム、10……投
射レンズ、11……フイルム。
Fig. 1 shows an example of a conventional optical device for electron beam holography, and Fig. 2 shows the relationship between the position of the electron beam prism and the size of the sample area that can be recorded in a hologram in an example of the conventional device. FIG. 3 is a diagram showing an embodiment of the present invention. 12... Field emission electron gun, 2... Condenser lens, 3... Sample, 4... Objective lens, 5...
Intermediate lens, 8...electron beam prism, 10...projection lens, 11...film.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電子銃12およびコンデンサレンズ系2を有す
る電子線照射系部と、該電子線照射系部により電
子線照射される試料3と、該試料に関して上記電
子線照射系部と反射側にあり複数の電子レンズ
4,5,10および電子線プリズム8を有する拡
大系部とで構成された電子光学装置において、試
料3と電子線プリズム8との間に2個以上の電子
レンズ4,5が配置されたことを特徴とする電子
線ホログラフイー用光学装置。
an electron beam irradiation system section having an electron gun 12 and a condenser lens system 2; a sample 3 to be irradiated with an electron beam by the electron beam irradiation system section; In an electron optical device composed of lenses 4, 5, 10 and a magnifying system section having an electron beam prism 8, two or more electron lenses 4, 5 are arranged between the sample 3 and the electron beam prism 8. An optical device for electron beam holography characterized by the following.
JP18806381U 1981-12-18 1981-12-18 Optical device for electron beam holography Granted JPS5894254U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18806381U JPS5894254U (en) 1981-12-18 1981-12-18 Optical device for electron beam holography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18806381U JPS5894254U (en) 1981-12-18 1981-12-18 Optical device for electron beam holography

Publications (2)

Publication Number Publication Date
JPS5894254U JPS5894254U (en) 1983-06-25
JPS6333472Y2 true JPS6333472Y2 (en) 1988-09-06

Family

ID=30102875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18806381U Granted JPS5894254U (en) 1981-12-18 1981-12-18 Optical device for electron beam holography

Country Status (1)

Country Link
JP (1) JPS5894254U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4512183B2 (en) * 2004-03-31 2010-07-28 独立行政法人理化学研究所 Electron beam interference device
JP4807592B2 (en) * 2005-02-21 2011-11-02 国立大学法人京都工芸繊維大学 Electron microscope and compound irradiation lens
JP4978065B2 (en) * 2006-06-12 2012-07-18 株式会社日立製作所 Electron microscope application equipment

Also Published As

Publication number Publication date
JPS5894254U (en) 1983-06-25

Similar Documents

Publication Publication Date Title
EP0052892B2 (en) Laser beam scanning system
EP0378237B1 (en) Reflection electron holography apparatus
JP4512180B2 (en) Interfering device
US3605593A (en) Optical apparatus including a pair of mosaics of optical imaging elements
US3677634A (en) Contactless mask pattern exposure process and apparatus system having virtual extended depth of focus
JPH065663B2 (en) Semiconductor exposure method and apparatus
JPS6333472Y2 (en)
JPH05505032A (en) Manufacture of flat panel displays
Tomita et al. Off-axis electron micro-holography
Leitenberger et al. Microscopic imaging and holography with hard X-rays using Fresnel zone-plates
JPH0777924A (en) Holography reconstructing method and device
JP2000259070A (en) Hologram forming device and method therefor
USRE28162E (en) Optical apparatus includino a pair op mosaics of optical imaging elements
JPH10199464A (en) Electronic interference measuring device
JPS62232611A (en) Laser exposing device for image scanning and recording device
JP2943375B2 (en) Optical pickup and optical disk device
JP3278086B2 (en) Electron beam drawing method and electron beam drawing apparatus
DE2041922A1 (en) Process for the production of light point grids for the purpose of storing data
JPH0511454A (en) Hologram plotting device
Anderton Point-projection X-ray microscopy
JP3438300B2 (en) Planar holographic stereogram, method for producing the same, and apparatus therefor
JP3324141B2 (en) Hologram manufacturing method
JPS59226592A (en) Solid display device
KR100194595B1 (en) Combined binary phase hologram and method of manufacturing the same
JPH02103082A (en) Holographic method