JPS633298A - Power plant waste-heat recovery device - Google Patents

Power plant waste-heat recovery device

Info

Publication number
JPS633298A
JPS633298A JP61146464A JP14646486A JPS633298A JP S633298 A JPS633298 A JP S633298A JP 61146464 A JP61146464 A JP 61146464A JP 14646486 A JP14646486 A JP 14646486A JP S633298 A JPS633298 A JP S633298A
Authority
JP
Japan
Prior art keywords
cooling water
power plant
recovery device
water
waste heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61146464A
Other languages
Japanese (ja)
Inventor
久保庭 孝夫
森島 秀穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61146464A priority Critical patent/JPS633298A/en
Publication of JPS633298A publication Critical patent/JPS633298A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Secondary Cells (AREA)
  • Processing Of Solid Wastes (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、復水タービンを使用した発電膜Rに係り、特
に主復水器から出る廃熱を回収し産業用及び家庭用温水
または熱水として供給するのに好適な発電所廃熱回収装
置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a power generation membrane R using a condensing turbine, and in particular, the present invention relates to a power generating membrane R using a condensing turbine. The present invention relates to a power plant waste heat recovery device suitable for supplying water as water.

〔従来の技術〕[Conventional technology]

第6図に従来のタービン発電設備の不統構成の一例を示
す。図において、1は原子1等の蒸気発生装置、2は主
蒸気配管、3は高圧タービン4から低圧タービン5への
クロスアラウンド管、6は発電機、7は高圧タービン抽
気配管、8はその抽気により蒸気発生装置1への給水を
加熱する高圧給水加熱器、9は給水配管、1oは低圧タ
ービン抽気配管、11はその抽気により給水を加熱する
低圧給水加熱器、12は給水ポンプ、13は復水器14
への冷却水配管、15はこの冷却水の循環ポンプ、16
は復水器から給水加熱器に復水を送る復水ポンプである
FIG. 6 shows an example of an unstructured configuration of a conventional turbine power generation facility. In the figure, 1 is a steam generator such as Atomic 1, 2 is a main steam pipe, 3 is a cross-around pipe from a high-pressure turbine 4 to a low-pressure turbine 5, 6 is a generator, 7 is a high-pressure turbine extraction pipe, and 8 is its extraction air. 9 is a water supply pipe, 1o is a low-pressure turbine bleed air pipe, 11 is a low-pressure feed water heater that heats the feed water by the bleed air, 12 is a water feed pump, and 13 is a recovery water heater. water container 14
cooling water piping, 15 is a circulation pump for this cooling water, 16
is a condensate pump that sends condensate from the condenser to the feedwater heater.

このような系統において、蒸気タービン5に流入した蒸
気はタービン内部で膨張し、その仕事が発電機6を回転
させ電気を発生させる。真空に近いタービン排気圧力ま
で膨張した蒸気は、復水器14に流入し冷却され復水と
なる。蒸気のもつ熱量は海水等の復水器冷却水に放出さ
れる。最新鋭発電設備においても、この放熱量は蒸気発
生熱量の50%以上を占めており、多大の損失となって
いる。
In such a system, steam flowing into the steam turbine 5 expands inside the turbine, and its work rotates the generator 6 to generate electricity. The steam expanded to a turbine exhaust pressure close to vacuum flows into the condenser 14, where it is cooled and becomes condensed water. The heat contained in the steam is released into condenser cooling water such as seawater. Even in state-of-the-art power generation equipment, this amount of heat radiation accounts for more than 50% of the amount of heat generated by steam, resulting in a large loss.

また、原子力発電設備においても、上記と同様に、原子
炉で発生する熱量の50%以上が復水器から海に排出さ
れているのが現状である。特に原子力発電の場合は、こ
の廃熱が環境への温排水の影響として取り上げられ、立
地に対する制約条件の一つとなっている。原子力発電設
備から系外に排出される熱の回収方法が種々検討されて
いる。
Furthermore, in nuclear power generation facilities, as mentioned above, the current situation is that more than 50% of the heat generated in the nuclear reactor is discharged from the condenser into the sea. Particularly in the case of nuclear power generation, this waste heat is considered as an impact of heated wastewater on the environment, and is one of the constraints on location. Various methods of recovering heat discharged outside the system from nuclear power generation equipment are being studied.

しかし、最も新しい技術においても、特開昭60−86
494号に示されるように、原子炉冷却材浄化設備等の
廃熱回収量は、全体の1%にも満たないものであり、全
体の50%以上を占める主復水器からの廃熱は回収され
ないままになっている。
However, even with the newest technology,
As shown in No. 494, the amount of waste heat recovered from reactor coolant purification equipment, etc. is less than 1% of the total, and the amount of waste heat recovered from the main condenser, which accounts for more than 50% of the total, is It remains uncollected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、環境への配慮から、主復水器から放
出する海水温度を40℃以下と低温にしているために、
他の装置等に廃熱利用できず、結局は50%以上の熱を
海水(冷却水)に廃でることになっている。
In the above conventional technology, the temperature of the seawater discharged from the main condenser is kept at a low temperature of 40 degrees Celsius or less due to environmental considerations.
Waste heat cannot be used for other equipment, and more than 50% of the heat ends up being discarded into seawater (cooling water).

一方、この冷却水温度を上げようとすると、復水器の真
空度が悪化してしまい、タービン発電機の効率が低下し
、本来の目的である発電に対し廃熱回収がデメリットと
なる欠点があった。
On the other hand, if you try to raise the temperature of this cooling water, the degree of vacuum in the condenser will deteriorate, which will reduce the efficiency of the turbine generator, and the disadvantage is that waste heat recovery will be a disadvantage compared to the original purpose of power generation. there were.

本発明の目的は、タービン−f@maの効率を低下させ
ずに、現状では復水器から海水等に排出されている廃熱
を回収する発電所廃熱回収装置を提供することである。
An object of the present invention is to provide a power plant waste heat recovery device that recovers waste heat that is currently discharged from a condenser to seawater or the like without reducing the efficiency of a turbine-f@ma.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、復水器への冷却
水供給配管を閉ループとし、タービンの抽気を加熱源と
する冷却水加熱用熱交換器を冷却水供給配管の復水器下
流側に設置し、この熱交換器で加熱された冷却水を加熱
源とし系外に供給する水を加熱する熱水供給用熱交換器
をその下流に設け、系外の水と熱交換した冷却水を再び
復水器に送る@環水ポンプを更に下流に設けた発電所用
廃熱回収装置を提叢するものである。
In order to achieve the above object, the present invention makes the cooling water supply piping to the condenser a closed loop, and installs a cooling water heating heat exchanger using turbine extraction air as a heating source downstream of the condenser in the cooling water supply piping. A hot water supply heat exchanger is installed on the side, and a hot water supply heat exchanger is installed downstream of the hot water supply heat exchanger, which uses the cooling water heated by this heat exchanger as a heating source to heat the water supplied outside the system. A waste heat recovery system for a power plant is installed further downstream with a ring water pump that sends water back to the condenser.

〔作用〕[Effect]

主復水器出口の冷却水は40℃程度であるが、これをタ
ービン5@電機の抽気により加熱すると。
The cooling water at the outlet of the main condenser is about 40°C, but if it is heated by the bleed air from the turbine 5@electric machine.

100″C程度まで上げられる。この熱水を温水供給側
の熱交換器に供給すれば、熱が回収される。
The temperature can be raised to about 100''C. If this hot water is supplied to the heat exchanger on the hot water supply side, the heat is recovered.

熱の回収が終った冷却水すなわち温度が低下した冷却水
は、@環ポンプにより再び復水器に冷却水として供給さ
れる。その結果、従来の発電設備では廃熱として廃てら
れている50%以上の熱がほぼ回収され、有効に利用さ
れることになる。
The cooling water whose heat has been recovered, that is, the cooling water whose temperature has decreased, is again supplied to the condenser as cooling water by the @ring pump. As a result, more than 50% of the heat that is wasted as waste heat in conventional power generation equipment will be recovered and effectively used.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。蒸気
発生装置、例えば原子炉1で発生した蒸気は、高圧ター
ビン4ど低圧タービン5で仕事をして、主復水器14で
冷却され復水となる。従来の発電設備では、この冷却が
海水で行われている。
An embodiment of the present invention will be described below with reference to FIG. Steam generated in a steam generator, for example, a nuclear reactor 1, performs work in a high pressure turbine 4 and a low pressure turbine 5, is cooled in a main condenser 14, and becomes condensed water. In conventional power generation equipment, this cooling is performed using seawater.

これに対し、本発明では、主復水器14に冷却水を供給
する冷却水配¥f13に冷却水加熱用熱交換器19と、
加熱された冷却水を工場又は家庭にしている。また、加
熱蒸気は低圧タービン5の抽気蒸気とし、蒸気供給配管
17を通して前記加熱用熱交換器19に供給し、加熱が
終了した凝縮水、は加熱蒸気戻り配管20により主復水
器14に回収する。
In contrast, in the present invention, the cooling water distribution line f13 that supplies cooling water to the main condenser 14 is provided with a cooling water heating heat exchanger 19,
The heated cooling water is used in factories or homes. The heated steam is extracted steam from the low-pressure turbine 5 and is supplied to the heating heat exchanger 19 through the steam supply pipe 17, and the condensed water after heating is recovered to the main condenser 14 through the heated steam return pipe 20. do.

本実施例では、タービン発電機の抽気により復水器出口
冷却水温度を100℃程度まで上げ、系外の工場や家庭
に供給する水を加熱終了後、その抽気も主復水器に回収
するので、回収率が高い。
In this example, the temperature of the condenser outlet cooling water is raised to about 100°C by the bleed air from the turbine generator, and after the water to be supplied to factories and homes outside the system has been heated, the bleed air is also recovered to the main condenser. Therefore, the recovery rate is high.

すなわち、従来廃棄していた発電設備発熱量の50%以
上を回収できる。従って、従来プラントの効率が最高で
も45%程度だったものが90%まで上がる。また、復
水冷却系が閉ループ化した本発明では、海水への廃熱の
大壁放出が不要になり、発電設備を海岸に!!!a接さ
せる制約がなくなり、内陸への設置が可能となる。また
、内陸設置発電設備で廃熱放出のために設けられていた
クーリングタワーが不要となり、設備費の低減に有効で
ある。
In other words, more than 50% of the calorific value of the power generation equipment, which was conventionally discarded, can be recovered. Therefore, the efficiency of conventional plants, which was about 45% at best, will increase to 90%. In addition, the present invention, which has a closed-loop condensate cooling system, eliminates the need for large-scale discharge of waste heat into seawater, allowing power generation equipment to be located on the coast! ! ! There is no longer a restriction that the equipment be placed in contact with the equipment, and it becomes possible to install it inland. In addition, the cooling tower that was installed in inland power generation facilities to release waste heat is no longer necessary, which is effective in reducing equipment costs.

他の実施例を第2図に示す6本実施例は、加熱用熱交換
器19の加熱源を高圧タービン抽気蒸気として、蒸気供
給配管23を設置したものである。
Another embodiment is shown in FIG. 2. In this embodiment, the heat source of the heating heat exchanger 19 is high pressure turbine extracted steam, and a steam supply pipe 23 is installed.

これにより、熱水供給用熱交換器20への供給水を20
0℃程度まで上げることができる。従って、工場又は家
庭等で高温水又は蒸気が必要な場合は本実施例が有効で
ある。
As a result, the supply water to the hot water supply heat exchanger 20 is reduced to 20%.
It can be raised to about 0°C. Therefore, this embodiment is effective when high-temperature water or steam is required in factories, homes, etc.

他の実施例を第3図に示す0本実施例は、第1図と同様
な構成で、冷却水加熱用熱交換器19への蒸気供給配管
17に流量制御弁18を設置したものである。これによ
り、熱水供給用熱交換器22への供給水の温度を100
℃程度から50℃程度まで調節可能である。
Another embodiment is shown in FIG. 3. This embodiment has the same configuration as that in FIG. 1, with a flow rate control valve 18 installed in the steam supply pipe 17 to the cooling water heating heat exchanger 19. . As a result, the temperature of the water supplied to the hot water supply heat exchanger 22 is reduced to 100%.
It can be adjusted from about ℃ to about 50℃.

他の実施例を第4図に示す。本実施例は、第2図と同様
な構成で、冷却水加熱用熱交換器19への蒸気供給配管
23に流量制御弁24を設置したものである。これによ
り、熱水供給用熱交換器20への供給水の温度を200
℃程度から50℃程度まで調節可能である。
Another embodiment is shown in FIG. This embodiment has the same configuration as that shown in FIG. 2, with a flow rate control valve 24 installed in the steam supply pipe 23 to the cooling water heating heat exchanger 19. As a result, the temperature of the water supplied to the hot water supply heat exchanger 20 is increased to 200.
It can be adjusted from about ℃ to about 50℃.

他の実施例を第5図に示す。本実施例は、加熱用熱交換
器19の加熱源を、高圧タービン4の抽気蒸気及び低圧
タービン5の抽気蒸気の両者とし、それぞれの供給配管
17.23に流量制御弁18゜24を設置したものであ
る。これにより、熱水供給用熱交換器20への供給温度
のうち、50℃程度から100℃程度までを低圧タービ
ン5の抽気蒸気に、100aC程度から200℃程度ま
でを高圧タービン4の抽気蒸気に分担させることができ
るので、流量制御弁18及び19の制御範囲を広くとる
必要がなくなり、弁の構造及び制御方式が単純になる。
Another embodiment is shown in FIG. In this embodiment, the heat source of the heating heat exchanger 19 is both the extracted steam of the high-pressure turbine 4 and the extracted steam of the low-pressure turbine 5, and a flow control valve 18.24 is installed in each supply pipe 17.23. It is something. As a result, among the temperatures supplied to the hot water supply heat exchanger 20, from about 50°C to about 100°C is used as extracted steam from the low-pressure turbine 5, and from about 100 aC to about 200°C is used as extracted steam from the high-pressure turbine 4. Since they can be shared, there is no need to widen the control range of the flow rate control valves 18 and 19, and the valve structure and control method become simple.

なお、上記各実施例においては、蒸気発生装置を原子炉
として説明したが、本発明を火力発電所等の他の熱源に
よる方式の復水タービンにも適用できることは明らかで
あろう。
In each of the above embodiments, the steam generator is described as a nuclear reactor, but it is obvious that the present invention can also be applied to condensing turbines using other heat sources such as thermal power plants.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、復水タービンを使用している従来の蒸
気タービン発電設備では廃棄されていた50%以上の熱
をほとんど回収し有効に利用できるので、発電設備全体
の熱効率を90%程度まで高めら九る。
According to the present invention, most of the 50% or more heat that was wasted in conventional steam turbine power generation equipment using condensing turbines can be recovered and effectively used, increasing the thermal efficiency of the entire power generation equipment to around 90%. It's expensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による発電所廃熱回収装置をf、′3え
た原子力発電プラントの一実施例を示す系統図、第2図
〜第5図は本発明の他の実施例をそれぞれ示す系統図、
第6図は従来のタービン発電プラントの一例を示す系統
図である。 1・・・蒸気発生装置、2・・主蒸気配管、3・・・ク
ロスアラウンド管、4・・高圧タービン、5・・・低圧
タービン、6・・・発電機、7・・高圧タービン抽気配
管、8・・・高圧給水加熱器、9・・・給水配管、10
・・・低圧タービン抽気配管、11・・・低圧給水加熱
器、12・・・給水ポンプ、13・・・冷却水配管、1
4・・・復水器、15・・・循環水ポンプ、16・・・
復水ポンプ、17・・・低圧抽気供給配管、18・・・
流量制御弁、19・・・冷却水加熱用熱交換器、20・
・・加熱蒸気ドレン配管、21・・・熱水供給配管、2
2・・・熱水供給用熱交換器、23・・・高圧抽気供給
配管、24・・・流量制御弁。
Fig. 1 is a system diagram showing an embodiment of a nuclear power plant equipped with power plant waste heat recovery equipment according to the present invention, and Figs. 2 to 5 are system diagrams showing other embodiments of the present invention. figure,
FIG. 6 is a system diagram showing an example of a conventional turbine power generation plant. DESCRIPTION OF SYMBOLS 1... Steam generator, 2... Main steam piping, 3... Cross-around pipe, 4... High pressure turbine, 5... Low pressure turbine, 6... Generator, 7... High pressure turbine extraction piping , 8... High pressure water supply heater, 9... Water supply piping, 10
...Low pressure turbine extraction piping, 11...Low pressure feed water heater, 12... Water supply pump, 13... Cooling water pipe, 1
4... Condenser, 15... Circulating water pump, 16...
Condensate pump, 17...Low pressure extraction air supply piping, 18...
Flow rate control valve, 19... Heat exchanger for heating cooling water, 20.
・・Heating steam drain piping, 21 ・・Hot water supply piping, 2
2... Heat exchanger for hot water supply, 23... High pressure extraction air supply piping, 24... Flow rate control valve.

Claims (1)

【特許請求の範囲】 1、蒸気を駆動源とするタービン発電設備の復水器から
排出される廃熱を回収する発電所廃熱回収装置において
、閉じたループを形成し前記復水器に冷却水を供給する
冷却水配管と、この冷却水配管の復水器下流側に設置さ
れ前記タービンの抽気を加熱源とし前記冷却水を加熱す
る冷却水加熱用熱交換器と、前記タービンの抽気を前記
熱交換器に供給する抽気供給配管と、前記熱交換器の下
流側に設置され加熱された冷却水を加熱源とし系外に供
給する水を加熱する熱水供給用熱交換器と、更にその下
流側に設置され系外の水と熱交換した冷却水を再び復水
器に送る循環水ポンプとからなることを特徴とする発電
所廃熱回収装置。 2、特許請求の範囲第1項において、前記抽気供給配管
が、低圧タービンからの抽気を供給する配管であること
を特徴とする発電所廃熱回収装置。 3、特許請求の範囲第1項において、前記抽気供給配管
が、高圧タービンからの抽気を供給する配管であること
を特徴とする発電所発熱回収装置。 4、特許請求の範囲第1項において、前記抽気供給配管
が、低圧タービン及び高圧タービンからの抽気を供給す
る配管であることを特徴とする発電所廃熱回収装置。 5、特許請求の範囲第2項〜第4項のいずれか一項にお
いて、前記抽気供給配管が流量制御弁を備えたことを特
徴とする発電所廃熱回収装置。
[Claims] 1. In a power plant waste heat recovery device that recovers waste heat discharged from a condenser of a turbine power generation facility using steam as a driving source, a closed loop is formed and the waste heat is cooled to the condenser. A cooling water pipe that supplies water, a cooling water heating heat exchanger that is installed downstream of the condenser in the cooling water pipe and heats the cooling water using the air extracted from the turbine as a heat source, and A bleed air supply pipe that supplies the heat exchanger; a hot water supply heat exchanger that is installed downstream of the heat exchanger and uses heated cooling water as a heat source to heat water that is supplied outside the system; A power plant waste heat recovery device characterized by comprising a circulating water pump that is installed downstream of the circulating water pump and sends the cooling water that has undergone heat exchange with water outside the system to the condenser again. 2. A power plant waste heat recovery device according to claim 1, wherein the extraction air supply piping is a piping that supplies extraction air from a low-pressure turbine. 3. The power plant heat recovery device according to claim 1, wherein the bleed air supply pipe is a pipe that supplies bleed air from a high-pressure turbine. 4. A power plant waste heat recovery device according to claim 1, wherein the extraction air supply piping is a piping that supplies extraction air from a low pressure turbine and a high pressure turbine. 5. A power plant waste heat recovery device according to any one of claims 2 to 4, wherein the bleed air supply pipe is provided with a flow rate control valve.
JP61146464A 1986-06-23 1986-06-23 Power plant waste-heat recovery device Pending JPS633298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61146464A JPS633298A (en) 1986-06-23 1986-06-23 Power plant waste-heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61146464A JPS633298A (en) 1986-06-23 1986-06-23 Power plant waste-heat recovery device

Publications (1)

Publication Number Publication Date
JPS633298A true JPS633298A (en) 1988-01-08

Family

ID=15408228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61146464A Pending JPS633298A (en) 1986-06-23 1986-06-23 Power plant waste-heat recovery device

Country Status (1)

Country Link
JP (1) JPS633298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137450A (en) * 2010-12-28 2012-07-19 Hitachi-Ge Nuclear Energy Ltd Cogeneration nuclear power generation system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573096A (en) * 1980-06-09 1982-01-08 Tokyo Shibaura Electric Co Atomic power plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573096A (en) * 1980-06-09 1982-01-08 Tokyo Shibaura Electric Co Atomic power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137450A (en) * 2010-12-28 2012-07-19 Hitachi-Ge Nuclear Energy Ltd Cogeneration nuclear power generation system

Similar Documents

Publication Publication Date Title
AU2010326107B2 (en) Utilizing steam and/or hot water generated using solar energy
KR960705134A (en) DEVICE FOR COOLING THE GAS-TURBINE COOLANT IN A COMBINED GAS AND STEAM TURBINE INSTALLATION
CN108443906B (en) Flue gas waste heat utilization system and method based on multi-energy level and recirculated heating cold air
EP2348197A2 (en) Latent heat recovery generator system
US20170275190A1 (en) System using heat energy to produce power and pure water
CN202102727U (en) Closed type cooling water system for nuclear power plant
CN202349992U (en) System for recovering steam exhaust residual heat of power station and heating boiler feed water by using absorptive heat pump
JPS633298A (en) Power plant waste-heat recovery device
JP2002122006A (en) Power generation equipment utilizing low-temperature exhaust heat
CN213300061U (en) Heat and power cogeneration cooling water heat step recovery system
CN210688281U (en) Flue gas treatment system
JP2017500492A (en) Steam power plant with liquid-cooled generator
CN213270009U (en) Lime kiln flue gas waste heat power generation system
JPS58138213A (en) Power generation device
JP2022176464A (en) Power-generating plant
JPS6275299A (en) Condenser exhaust-heat utilizer for nuclear power plant
JPH0447103A (en) Thermal power plant
JPH0626310A (en) Waste heat recovery method in wet sulfurization system
JPH04292757A (en) Cogeneration plant system
JP3068288B2 (en) Auxiliary cooling water system for nuclear power plants
JPH0152720B2 (en)
CZ35794U1 (en) Heat pump connection to an energy condensing steam engine system
RU2002121972A (en) METHOD FOR HEAT RELEASE FROM TWO-CIRCUIT NUCLEAR POWER PLANTS WITH WATER-COOLED REACTORS (OPTIONS)
JPH08312905A (en) Combined cycle power generating facility
RU89622U1 (en) HEAT ELECTRIC STATION