JPS6332727B2 - - Google Patents

Info

Publication number
JPS6332727B2
JPS6332727B2 JP56129451A JP12945181A JPS6332727B2 JP S6332727 B2 JPS6332727 B2 JP S6332727B2 JP 56129451 A JP56129451 A JP 56129451A JP 12945181 A JP12945181 A JP 12945181A JP S6332727 B2 JPS6332727 B2 JP S6332727B2
Authority
JP
Japan
Prior art keywords
calcium carbonate
reaction
hydrogen fluoride
product
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56129451A
Other languages
Japanese (ja)
Other versions
JPS5832020A (en
Inventor
Yasuji Nakaso
Hiromi Kawamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP12945181A priority Critical patent/JPS5832020A/en
Publication of JPS5832020A publication Critical patent/JPS5832020A/en
Publication of JPS6332727B2 publication Critical patent/JPS6332727B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/185After-treatment, e.g. grinding, purification, conversion of crystal morphology

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】 本発明は炭酸カルシウムをその表面フツ素化に
より改質する装置、特にフツ化水素との反応によ
り改質するのに適した装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for modifying calcium carbonate by surface fluorination, particularly an apparatus suitable for modifying calcium carbonate by reaction with hydrogen fluoride.

ゴム、プラスチツク、紙、塗料業界等で平均粒
径20μm以下の炭酸カルシウム粉末は、現在種々
の目的で大量に有効利用されているが、粉体間の
凝集を防止し、併せて被充填物との親和性をよく
するため、平均粒径1μm未満の微粒子は勿論平
均粒径1〜20μmの軽微性炭酸カルシウムおよび
重質炭酸カルシウムの一部も脂肪酸、樹脂酸等の
ナトリウム塩を主体とする表面処理が施こされて
いる。表面処理の方法としては炭酸カルシウムの
水懸濁液中に液状あるいは乳濁液状の表面処理剤
を撹拌混合することにより、炭酸カルシウム個々
の表面に処理剤を反応吸着させた後、脱水、乾
燥、粉砕、分級するか又は炭酸カルシウムの粉状
物に表面処理剤を噴霧するなどの手段が一般的に
採られている。
Calcium carbonate powder with an average particle size of 20 μm or less is currently being effectively used in large quantities for various purposes in the rubber, plastic, paper, and paint industries. In order to improve the affinity, not only fine particles with an average particle size of less than 1 μm, but also some of the minor calcium carbonate and heavy calcium carbonate with an average particle size of 1 to 20 μm, have a surface mainly composed of sodium salts such as fatty acids and resin acids. Processing is being carried out. The surface treatment method involves stirring and mixing a liquid or emulsion surface treatment agent in an aqueous suspension of calcium carbonate, so that the treatment agent is reacted and adsorbed onto the surface of each calcium carbonate, followed by dehydration, drying, and drying. Commonly used methods include pulverizing, classifying, or spraying a surface treatment agent onto powdered calcium carbonate.

しかし、この何れの場合も表面処理工程におい
て塊状物を粉砕したり、重質炭酸カルシウムの粉
末を更に細かく粉砕する様な効果は勿論望むべく
もない。
However, in any of these cases, the effect of pulverizing lumps or finely pulverizing heavy calcium carbonate powder in the surface treatment step is of course undesirable.

本発明は炭酸カルシウムとフツ化水素を水分
0.1%以下に脱湿するか、又は水の沸点以上に加
熱して、水分を凝結させない条件下で、炭酸カル
シウムと反応させることにより従来の粉砕機構に
よる物理的な方法ではなし得なかつた粒子の均一
細分化、即ち化学的処理による粉砕、解砕的操作
をフツ化水素の通過量を調製することにより、自
由に所望の粒度まで行なわせ得ると共にフツ化カ
ルシウムを粒子表面に生成させるための好適な改
質装置に関するものである。
The present invention converts calcium carbonate and hydrogen fluoride into water.
By dehumidifying it to below 0.1% or heating it above the boiling point of water to react with calcium carbonate under conditions that do not condense water, we can create particles that cannot be produced by physical methods using conventional crushing mechanisms. By adjusting the amount of hydrogen fluoride that passes through uniform fragmentation, that is, by adjusting the amount of hydrogen fluoride that passes through the process, it is possible to freely achieve the desired particle size, and it is also suitable for producing calcium fluoride on the particle surface. The present invention relates to a reforming device.

本発明により得られる改質された炭酸カルシウ
ムは、極めて微粒化され高い比表面積を持つと共
に、表面上にフツ化カルシウム層が均一に形成さ
れるため酸に対する安定性が向上し、特にプラス
チツク、塗料、紙、ゴム等の充填剤として用いた
場合、優れた分散性、機械的物性、光学的性質を
与えるなど有利な効果をもたらすので斯界におい
て飛躍的用途の拡大が期待されている。
The modified calcium carbonate obtained by the present invention is extremely finely divided and has a high specific surface area, and a calcium fluoride layer is uniformly formed on the surface, so it has improved stability against acids, and is particularly useful for plastics and paints. When used as a filler for paper, rubber, etc., it brings about advantageous effects such as excellent dispersibility, mechanical properties, and optical properties, so it is expected that its use will expand dramatically in this field.

従来、炭酸カルシウムとフツ化水素ガスの接触
反応装置としては固定層型、流動層型など考えら
れるが、固定層型は局部的に反応が進行するこ
と、また流動層型は温度が均一であつて反応装置
としては好適であるが、一方ガス側の反応率が低
いこと、また、粉粒体がガスに伴われて飛び出す
などの問題があつた。
Conventionally, the contact reaction equipment for calcium carbonate and hydrogen fluoride gas has been considered to be a fixed bed type or a fluidized bed type, but the fixed bed type allows the reaction to proceed locally, while the fluidized bed type requires that the temperature is uniform. However, there were problems such as the reaction rate on the gas side being low and the powder particles flying out along with the gas.

本発明者らは、これら従来技術の欠点を解消す
べく種々研究を重ねた結果、炭酸カルシウムをア
ルミニウム製の撹拌槽型反応容器に入れ、反応温
度100℃以上で撹拌しながら、フツ化水素ガスを
流通する改質装置を見い出した。本法は粉体がガ
スに伴われて飛び出すこともなく、また、ガス側
の反応率も高く均一に反応するなど極めてすぐれ
た改質装置である。
The inventors of the present invention have repeatedly conducted various studies in order to solve the drawbacks of these conventional techniques. As a result, calcium carbonate is placed in an aluminum stirred tank type reaction vessel, and while stirring at a reaction temperature of 100°C or higher, hydrogen fluoride gas is We have discovered a reformer that can be distributed. This method is an extremely excellent reforming device, as the powder does not fly out along with the gas, and the reaction rate on the gas side is high and the reaction is uniform.

ここで、装置材料として、炭酸カルシウムとフ
ツ化水素ガスの気固反応における100℃以上とい
う温度での耐無水フツ酸材料としてはニツケル、
モネル、ハステロイ等高価な材料しか知られてお
らず、安価な鉄等は腐食がひどく使用できなかつ
た。
Here, as equipment materials, nickel, hydrofluoric anhydride resistant materials at temperatures of 100°C or higher in the gas-solid reaction of calcium carbonate and hydrogen fluoride gas are used.
Only expensive materials such as Monel and Hastelloy were known, and inexpensive materials such as iron were too corroded to be used.

本発明者等は装置材質についてくり返し検討し
た結果、驚くべきことに高温のフツ化水素雰囲気
では使用できないと考えられているアルミニウム
材料系が、この反応系に最適であることを見出し
本発明に到達したものである。
As a result of repeated studies on equipment materials, the present inventors surprisingly discovered that aluminum material, which is thought to be unusable in high-temperature hydrogen fluoride atmospheres, is optimal for this reaction system, resulting in the present invention. This is what I did.

すなわちアルミニウム材料を用いて製造した蓋
付きの反応装置に好ましくはアルミニウム製の撹
拌機を配設し、天板にフツ化水素吹込み用ノズ
ル、生成水蒸気パージ用排気口および原料投入口
を設け、反応器底部には反応製品抜き出し用バル
ブを備え、反応器外周に加熱装置を設けた装置を
用いて炭酸カルシウムとフツ化水素の反応を行え
ば装置腐食は全く起らず生成物を汚染することな
く、炭酸カルシウムを改質することができる。上
記反応器外周の加熱装置としては、燃焼炉、電気
炉、外部加熱用ヒータ等、いかなる加熱装置を用
いてもよい。
That is, a reactor with a lid manufactured using an aluminum material is preferably provided with an aluminum stirrer, and a top plate is provided with a nozzle for blowing hydrogen fluoride, an exhaust port for purging generated steam, and a raw material input port, If the reaction between calcium carbonate and hydrogen fluoride is carried out using a device equipped with a reaction product withdrawal valve at the bottom of the reactor and a heating device installed around the reactor, no corrosion of the device will occur and the product will not be contaminated. Calcium carbonate can be modified. As the heating device for the outer periphery of the reactor, any heating device such as a combustion furnace, an electric furnace, an external heater, etc. may be used.

すなわち、本発明は撹拌機を具備しており、内
面がアルミニウム材質からなる蓋付き丸底の円筒
状反応容器であつて、該蓋の天板にフツ化水素導
入口、生成水蒸気パージガスの排気孔、および原
料炭酸カルシウムの投入口を有し底部には製品取
出口を具備し反応容器の外周には加熱装置を設け
て炭酸カルシウムとフツ化水素との反応を促進す
るのに充分な温度を与えるようにした炭酸カルシ
ウムの改質装置を提供する。こゝで少なくとも内
面がアルミニウム材質からなるとは、アルミニウ
ム無垢材からなる場合とアルミニウムライニング
(クラツドとかカロライジング加工)を施した場
合の両方を意味する。クラツドは例えば内部材が
アルミニウム合金、外部材が純アルミニウムから
なりカロライジングは金属材料にアルミニウムを
浸透させる。撹拌装置も同様であるが、撹拌装置
は他にテフロン等の材料を用いてもよい。
That is, the present invention is a round-bottom cylindrical reaction vessel equipped with a stirrer and with a lid whose inner surface is made of aluminum material, and a hydrogen fluoride inlet and an exhaust hole for generated steam purge gas are provided on the top plate of the lid. , and an inlet for the raw material calcium carbonate, a product outlet at the bottom, and a heating device around the outer periphery of the reaction vessel to provide a temperature sufficient to promote the reaction between calcium carbonate and hydrogen fluoride. A calcium carbonate reforming device is provided. Here, at least the inner surface is made of aluminum means both cases where it is made of solid aluminum and cases where aluminum lining (cladding or colorizing processing) is applied. For example, the inner material of the cladding is made of an aluminum alloy and the outer material is made of pure aluminum, and the colorizing process infiltrates aluminum into the metal material. The same applies to the stirring device, but the stirring device may be made of other materials such as Teflon.

本発明において原料として用いられる炭酸カル
シウムには、結晶質石灰石を粉砕分級して得られ
る重質炭酸カルシウム、軽微性膠質炭酸カルシウ
ム等プラスチツク、塗料、紙、ゴム等に用いられ
る全ての種類の20μ以下の炭酸カルシウムが対象
となり、これらに本発明の改質処理を施すと上記
のような微粉砕化、表面処理効果が加わり非常に
分散性のよい炭カル充填剤に改質できるものであ
る。
The calcium carbonate used as a raw material in the present invention includes all types of calcium carbonate of less than 20 μm used in plastics, paints, paper, rubber, etc., such as heavy calcium carbonate obtained by crushing and classifying crystalline limestone, and light colloidal calcium carbonate. When calcium carbonate is subjected to the modification treatment of the present invention, the above-mentioned pulverization and surface treatment effects are added, and it is possible to modify it into a highly dispersible carbon filler.

一方、反応に用いられるフツ化水素ガスは、
100℃以上に予熱して反応器に導入し、反応温度
は100℃以上で改質処理することが肝要である。
こゝでフツ化水素ガスを100℃以上に予熱するの
はフツ化水素ガスと炭酸カルシウムの接触時の水
分の凝結を防ぐためであり、100℃未満であると、
冷たいガスと熱い炭酸カルシウムとの接触時に局
部的に温度が下がつて水分が凝結し、反応生成物
がバインダー的に働き粒子を大きくして表面積の
増加が望めないためである。また反応温度も100
℃未満にすると、次式の反応によつて生成する水
分が凝結し、固結が起り、 CaCO3+2HF→CaF2+CO2+H2O 炭酸カルシウムの細粒化効果、比表面積の向上が
望めない。
On the other hand, the hydrogen fluoride gas used in the reaction is
It is important to preheat it to 100°C or higher before introducing it into the reactor, and to carry out the reforming treatment at a reaction temperature of 100°C or higher.
The reason for preheating the hydrogen fluoride gas to 100℃ or higher is to prevent moisture from condensing when the hydrogen fluoride gas and calcium carbonate come into contact;
This is because when cold gas and hot calcium carbonate come into contact, the temperature locally drops and moisture condenses, and the reaction product acts as a binder and enlarges the particles, making it impossible to expect an increase in surface area. Also, the reaction temperature is 100
If the temperature is below ℃, the water produced by the reaction of the following formula will condense and solidify, resulting in CaCO 3 + 2HF → CaF 2 + CO 2 + H 2 O The effect of making calcium carbonate finer and the improvement of the specific surface area cannot be expected. .

以下、本発明を具体的に説明する。 The present invention will be specifically explained below.

反応容器はアルミニウム製で蓋付き、丸底の円
筒状反応器で蓋にはフツ化水素の導入口、生成水
蒸気の排出口および原料炭酸カルシウムを装入す
る投入口を備え、かつ底部に改質された炭酸カル
シウムの取出口を設け、反応器周囲は加熱装置、
例えば電気ヒーター、熱風ジヤケツト等を配置し
ている。
The reaction vessel is made of aluminum and has a lid. It is a cylindrical reactor with a round bottom. The lid has an inlet for hydrogen fluoride, an outlet for the generated steam, and an inlet for charging the raw material calcium carbonate. A heating device is installed around the reactor.
For example, electric heaters, hot air jackets, etc. are installed.

該反応容器内に改質させる量の炭酸カルシウム
を原料投入口より供給し10〜40rpmで撹拌しなが
ら反応器外周の加熱源により100℃以上に加熱、
昇温したのち、フツ化水素を反応温度が100℃以
下に下がらない程度に予熱し反応器上部の導入ノ
ズルから供給する。
The amount of calcium carbonate to be modified is fed into the reaction vessel from the raw material inlet, and heated to 100°C or higher using a heating source around the reactor while stirring at 10 to 40 rpm.
After raising the temperature, hydrogen fluoride is preheated to such an extent that the reaction temperature does not drop below 100°C, and is supplied from the introduction nozzle at the top of the reactor.

反応は予熱したフツ化水素のみ連続的に供給す
る流通式反応方法を採り、理論量の1.0〜1.5倍当
量のフツ化水素を流通し気固反応を行うが本反応
は発熱反応であるため急激な反応は温度コントロ
ールが困難なのでフツ化水素流速は急激な温度上
昇の起こらないよう例えば100〜300℃の適度な領
域で行うのが好ましくまた使用するフツ化水素は
不活性ガスにより希釈したものの使用も可能であ
り、表面のフツ素化率(フツ素含有量)は可変で
その目標とする諸物性により選択すればよい。反
応終了後はフツ化水素導入口からフツ化水素の代
りに脱湿空気または不活性ガスを導入し、容器内
の残留フツ化水素ガスを置換した後、撹拌しなが
ら抜き出しバルブを開放することによつて流動性
のよい改質炭酸カルシウムが抜き出せる。一方、
反応時に生ずる水蒸気及び炭酸ガスは反応器上部
に設けた排気口より連続的に例えば−2〜−5mm
Aqの負圧で排気すれば系内は乾燥状態に保たれ
材質的侵食は全く起らない。
The reaction uses a flow reaction method in which only preheated hydrogen fluoride is continuously supplied, and 1.0 to 1.5 times the theoretical amount of hydrogen fluoride is passed through to conduct a gas-solid reaction, but since this reaction is an exothermic reaction, it is rapid. Since it is difficult to control the temperature in such a reaction, it is preferable to conduct the hydrogen fluoride flow rate at a moderate range of, for example, 100 to 300°C to prevent a sudden temperature rise.The hydrogen fluoride used should be diluted with an inert gas. The fluorination rate (fluorine content) of the surface can be varied and may be selected depending on the target physical properties. After the reaction is complete, introduce dehumidified air or inert gas instead of hydrogen fluoride from the hydrogen fluoride inlet to replace the residual hydrogen fluoride gas in the container, and then open the extraction valve while stirring. Therefore, modified calcium carbonate with good fluidity can be extracted. on the other hand,
The water vapor and carbon dioxide gas generated during the reaction are continuously discharged from the exhaust port provided at the top of the reactor, for example, by -2 to -5 mm.
If the system is evacuated with a negative pressure of Aq, the inside of the system will be kept dry and no material erosion will occur.

反応器の蓋の内側は腐食の起り易い部分である
ため必要によりテフロン張りなどにすればより耐
食性は向上する。本反応器に用いる撹拌機として
は底板の形状に沿つた形状を有する櫂型タイプが
好ましくスケーリングの起らぬよう工夫すること
が望ましい。
Since the inside of the reactor lid is prone to corrosion, corrosion resistance can be further improved by coating it with Teflon, if necessary. As for the stirrer used in this reactor, a paddle-type stirrer having a shape that follows the shape of the bottom plate is preferably used, and it is desirable to take measures to prevent scaling.

本発明の気固反応は極めて簡単な反応で更にア
ルミニウム製の装置を用いても装置材料の腐食は
ないため、高品質の改質炭酸カルシウムを効率よ
く安価に製造することができ、特に加熱装置が反
応器の外周に設けられているので、製品を汚染す
ることなく、内圧・温度等の制御を容易に行なう
ことができる。
The gas-solid reaction of the present invention is an extremely simple reaction, and even if aluminum equipment is used, there is no corrosion of the equipment material, so high quality modified calcium carbonate can be produced efficiently and at low cost. Since the reactor is provided around the outer periphery of the reactor, internal pressure, temperature, etc. can be easily controlled without contaminating the product.

以下実施例を挙げて本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 1 添付の図面に示すアルミニウム製反応器1
(800mmφ)に重質炭酸カルシウム(平均粒径4μ
m)100Kgを投入口5(300mmφ)よりアルミニウ
ム製撹拌翼2で25rpmで撹拌しながら(モーター
Mにより回転)供給し、この原料が150℃になる
よう加熱炉8で加熱されている熱風9→10によ
り反応器を加熱した。該温度に昇温後、100℃に
予熱したフツ化水素を導入口3(25mmφ)より12
Kg/時の速度で3時間流通し、150℃で反応を行
つた。フツ化水素の供給を停止した後、脱湿空気
を導入口3より導入し、反応器内の残留フツ化水
素を置換した。更に撹拌を続けながらバルブ7に
て抜き出し口6(150mmφ)を開放し、フツ化水
素による表面改質炭酸カルシウムを抜き出した。
排気口4からは反応で生成した水蒸気4.8Kg/時、
CO211.7Kg/時および未反応HF0.13Kg/時を排出
させた。11は熱電対保護管である。反応後の装
置に腐食は全く認められず、生成炭酸カルシウム
は極めて流動性に富み不純物のない製品として得
られた。
Example 1 Aluminum reactor 1 shown in the attached drawings
(800mmφ) and heavy calcium carbonate (average particle size 4μ)
m) 100Kg is supplied from the input port 5 (300mmφ) while being stirred at 25 rpm by the aluminum stirring blade 2 (rotated by the motor M), and the hot air 9 is heated in the heating furnace 8 so that the temperature of this raw material reaches 150°C. The reactor was heated by 10 min. After raising the temperature to the above temperature, hydrogen fluoride preheated to 100℃ was introduced into the inlet port 3 (25mmφ) for 12 hours.
The reaction was carried out at 150° C. by flowing at a rate of Kg/hour for 3 hours. After stopping the supply of hydrogen fluoride, dehumidified air was introduced from the inlet 3 to replace the remaining hydrogen fluoride in the reactor. Further, while stirring was continued, the outlet port 6 (150 mmφ) was opened using the valve 7, and the surface-modified calcium carbonate with hydrogen fluoride was extracted.
From exhaust port 4, 4.8 kg/hour of water vapor generated by the reaction,
11.7Kg/hour of CO 2 and 0.13Kg/hour of unreacted HF were discharged. 11 is a thermocouple protection tube. No corrosion was observed in the equipment after the reaction, and the produced calcium carbonate was obtained as a product with extremely high fluidity and no impurities.

本製品のBET比表面積は次の通りであつた。 The BET specific surface area of this product was as follows.

本 製 品 68m2/g(F:36.9%) 比較用無処理品 3m2/g 実施例 2 実施例1と同様な装置を用い、重質炭酸カルシ
ウム100Kgを250℃に加熱した後、100℃に予熱し
たHFを4Kg/時で1時間流通し、250℃で反応
を行なつた。反応後の装置に腐食は全く認められ
ず、生成炭酸カルシウムは流動性に富む不純物の
ない製品として得られた。
This product 68m 2 /g (F: 36.9%) Untreated product for comparison 3m 2 /g Example 2 Using the same equipment as in Example 1, 100Kg of heavy calcium carbonate was heated to 250℃, and then heated to 100℃. The reaction was carried out at 250° C. by flowing HF preheated to 4 kg/hour for 1 hour. No corrosion was observed in the equipment after the reaction, and the produced calcium carbonate was obtained as a highly fluid product free of impurities.

本製品のBET比表面積は次の通りである。 The BET specific surface area of this product is as follows.

本 製 品 7m2/g(F:3.7%) 比較用無処理品 3m2/g 実施例 3 実施例1と同様な装置を用い、軽質炭酸カルシ
ウム(平均粒径5μm)100Kgを100℃に加熱した
後、100℃に予熱したHFを8Kg/時で3時間流
通し150℃で反応を行なつた。反応後の装置は腐
食は全く認められず、生成炭酸カルシウムは極め
て流動性に富み不純物のない製品として得られ
た。
This product 7m 2 /g (F: 3.7%) Untreated product for comparison 3m 2 /g Example 3 Using the same equipment as in Example 1, 100Kg of light calcium carbonate (average particle size 5μm) was heated to 100℃. After that, HF preheated to 100°C was passed through at 8 kg/hour for 3 hours to carry out the reaction at 150°C. No corrosion was observed in the equipment after the reaction, and the produced calcium carbonate was obtained as a product with extremely high fluidity and no impurities.

本製品のBET比表面積は次の通りである。 The BET specific surface area of this product is as follows.

本 製 品 28m2/g(F:21.0%) 比較用無処理品 4.5m2/g 実施例 4 実施例1と同様な装置を用い、コロイダル炭酸
カルシウム(平均粒径7μm)100Kgを150℃に加
熱した後、100℃に予熱したHFを10Kg/時で0.5
時間流通し150℃で反応を行なつた。反応後の装
置に腐食は全く認められず、生成炭酸カルシウム
は極めて流動性に富み不純物のない製品として得
られた。
This product 28 m 2 /g (F: 21.0%) Untreated product for comparison 4.5 m 2 /g Example 4 Using the same equipment as in Example 1, 100 kg of colloidal calcium carbonate (average particle size 7 μm) was heated to 150°C. After heating, 10Kg/hour of HF preheated to 100℃ is 0.5
The reaction was carried out at 150°C for a certain period of time. No corrosion was observed in the equipment after the reaction, and the produced calcium carbonate was obtained as a product with extremely high fluidity and no impurities.

本製品のBET比表面積は次の通りである。 The BET specific surface area of this product is as follows.

本 製 品 14m2/g(F:3.9%) 比較用無処理品 9m2/g 実施例 5 実施例1と同様な装置を用い、重質炭酸カルシ
ウム(平均粒径4μm)100Kgを150℃に加熱した
後、100℃に予熱したHFおよびN2の混合ガス
(HF6Kg/時、N28.4Kg/時)を6時間流通し、
150℃で反応を行なつた。反応後の装置に腐食は
全く認められず生成炭酸カルシウムは極めて流動
性に富み不純物のない製品であつた。
This product 14 m 2 /g (F: 3.9%) Untreated product for comparison 9 m 2 /g Example 5 Using the same equipment as in Example 1, 100 kg of heavy calcium carbonate (average particle size 4 μm) was heated to 150°C. After heating, a mixed gas of HF and N2 (HF6Kg/hour, N2 8.4Kg/hour) preheated to 100℃ was passed through for 6 hours.
The reaction was carried out at 150°C. No corrosion was observed in the apparatus after the reaction, and the produced calcium carbonate was a product with extremely high fluidity and no impurities.

本製品のBET比表面積は次の通りである。 The BET specific surface area of this product is as follows.

本 製 品 60m2/g(F:32.0%) 比較用無処理品 3m2/g This product 60m 2 /g (F: 32.0%) Untreated product for comparison 3m 2 /g

【図面の簡単な説明】[Brief explanation of the drawing]

添付の図面は、本発明装置の一具体比例の構造
を示す縦断面図である。
The accompanying drawing is a longitudinal cross-sectional view showing a specific proportional structure of the device of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 撹拌機を具備しており、内面がアルミニウム
材質からなる蓋付き丸底の円筒状反応容器であつ
て、該蓋の天板にフツ化水素導入口、生成水蒸気
パージガスの排気孔、および原料炭酸カルシウム
の投入口を有し底部には製品取出口を具備し反応
容器の外周には加熱装置を設けてなる炭酸カルシ
ウムの改質装置。
1 A cylindrical reaction vessel with a round bottom and a lid, equipped with a stirrer and whose inner surface is made of aluminum, with a hydrogen fluoride inlet on the top plate of the lid, an exhaust hole for generated steam purge gas, and a raw material carbonate A calcium carbonate reforming device comprising a calcium inlet, a product outlet at the bottom, and a heating device around the outer periphery of the reaction vessel.
JP12945181A 1981-08-20 1981-08-20 Device for modifying calcium carbonate Granted JPS5832020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12945181A JPS5832020A (en) 1981-08-20 1981-08-20 Device for modifying calcium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12945181A JPS5832020A (en) 1981-08-20 1981-08-20 Device for modifying calcium carbonate

Publications (2)

Publication Number Publication Date
JPS5832020A JPS5832020A (en) 1983-02-24
JPS6332727B2 true JPS6332727B2 (en) 1988-07-01

Family

ID=15009800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12945181A Granted JPS5832020A (en) 1981-08-20 1981-08-20 Device for modifying calcium carbonate

Country Status (1)

Country Link
JP (1) JPS5832020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078111Y2 (en) * 1989-01-10 1995-03-01 マツダ株式会社 Gear shaft disassembly / assembly device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010045447A (en) * 1999-11-05 2001-06-05 노재성 Surface treatment of calcium carbonates with fluoro-compounds
CN103510423B (en) * 2013-07-02 2016-01-27 九鼎环保纸业股份有限公司 Paper modified calcium carbonate that a kind of ring crush intensity is high and preparation method thereof
CN113461042A (en) * 2021-07-19 2021-10-01 合肥工业大学 Optimization method of modification process of nano calcium carbonate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390199A (en) * 1977-01-20 1978-08-08 Shiraishi Kogyo Kaisha Ltd Method of modifying calcium carbonate
JPS53119299A (en) * 1977-03-29 1978-10-18 Shiraishi Kogyo Kaisha Ltd Surfacee modified material of cubic calcium carbonate having diameters of 0*1 to 1*0 micro meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390199A (en) * 1977-01-20 1978-08-08 Shiraishi Kogyo Kaisha Ltd Method of modifying calcium carbonate
JPS53119299A (en) * 1977-03-29 1978-10-18 Shiraishi Kogyo Kaisha Ltd Surfacee modified material of cubic calcium carbonate having diameters of 0*1 to 1*0 micro meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078111Y2 (en) * 1989-01-10 1995-03-01 マツダ株式会社 Gear shaft disassembly / assembly device

Also Published As

Publication number Publication date
JPS5832020A (en) 1983-02-24

Similar Documents

Publication Publication Date Title
JP3816141B2 (en) Method for producing lithium sulfide
US6562314B2 (en) Methods of producing substantially anatase-free titanium dioxide with silicon halide addition
US5976480A (en) Pyrogenic silica, process for the production thereof and use
KR100438228B1 (en) Doped and pyrolyzed oxides
US3130008A (en) Method of preparing metallic oxides by hydrolysis of metallic halides
US2856268A (en) Method of preparing low density gels
US3385663A (en) Preparation of high surface area, waterdispersible alumina monohydrate from low surface area alumina trihydrate
JPS61183119A (en) Manufacture of calcium hydroxide
US20070172414A1 (en) Process for producing titanium dioxide
JPH05508144A (en) Injection of liquid carbon dioxide into exothermic chemical reactions
US1451399A (en) Process of producing halogen acids
US6416862B1 (en) Ultrafine particulate zinc oxide and production process thereof
JPS6332727B2 (en)
US3304154A (en) Process for producing spheroidal alkaline earth metal carbonates
JP2002201382A (en) Zinc oxide microparticle for ultraviolet screening
AU765840B2 (en) Highly white zinc oxide fine particles and method for preparation thereof
US3674430A (en) Process for the pyrogenic making of highly dispersed silicon dioxide
US2802719A (en) Process of preparing completely carbonated lime
US3346333A (en) Dehydration of magnesium chloride utilizing fluid bed spray drying in atmosphere of hci
US3855401A (en) Process for manufacturing aluminum fluoride
US3112210A (en) Process for the manufacture of ceramic grade titanium dioxide
US4282117A (en) Method for producing electrically conductive zinc oxide
WO2019193936A1 (en) Chemical heat storage material and method for producing same
US2739904A (en) Preparation of neutral inorganic oxide pigments
US3036926A (en) Process for improving titanium dioxide pigments