KR20010045447A - Surface treatment of calcium carbonates with fluoro-compounds - Google Patents
Surface treatment of calcium carbonates with fluoro-compounds Download PDFInfo
- Publication number
- KR20010045447A KR20010045447A KR1019990048740A KR19990048740A KR20010045447A KR 20010045447 A KR20010045447 A KR 20010045447A KR 1019990048740 A KR1019990048740 A KR 1019990048740A KR 19990048740 A KR19990048740 A KR 19990048740A KR 20010045447 A KR20010045447 A KR 20010045447A
- Authority
- KR
- South Korea
- Prior art keywords
- calcium carbonate
- caco3
- concentration
- weight
- whiteness
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
- C01F11/185—After-treatment, e.g. grinding, purification, conversion of crystal morphology
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Paper (AREA)
- Cosmetics (AREA)
Abstract
Description
본 발명은 불소화합물을 이용하여 탄산칼슘의 표면을 개질하는 방법에 관한 것으로서, 구체적으로는 산업부산물인 불소화합물을 탄산칼슘과 혼합한 후 건조 및 열처리하여 탄산칼슘의 표면에 실리카(SiO2)와 형석(CaF2) 또는 불화나트륨(NaF)을 물리, 화학적으로 결합시킴으로써 우수한 내산성, 백색도 및 항균특성을 가지도록 탄산칼슘의 표면을 개질하는 방법에 관한 것이다.The present invention relates to a method for modifying the surface of calcium carbonate using a fluorine compound. Specifically, a mixture of calcium carbonate, which is an industrial by-product, with calcium carbonate, followed by drying and heat treatment, results in silica (SiO 2 ) and The present invention relates to a method of modifying the surface of calcium carbonate to have excellent acid resistance, whiteness and antibacterial properties by physically and chemically combining fluorite (CaF 2 ) or sodium fluoride (NaF).
현재 제지용 무기 충전제로는 점토(Al2O3·2SiO2·2H2O), 활석(3MgO·4SiO2·H2O), 탄산칼슘, TiO2, Al(OH)3또는 실리카(SiO2) 등이 다양하게 사용되고 있으며, 이들 중 활석과 탄산칼슘이 가장 범용적으로 사용되고 있다. 이들 무기 충전제가 고려해야 할 물리, 화학적 및 광학적 성질로서는 입자의 크기, 전하, 형상, 분포, 비표면적, 백색도, 비중 및 내산성 등을 들 수 있다.Currently, inorganic fillers for papermaking include clay (Al 2 O 3 · 2SiO 2 · 2H 2 O), talc (3MgO · 4SiO 2 · H 2 O), calcium carbonate, TiO 2 , Al (OH) 3, or silica (SiO 2). ), And talc and calcium carbonate are the most widely used. Physical, chemical and optical properties that these inorganic fillers should consider include particle size, charge, shape, distribution, specific surface area, whiteness, specific gravity and acid resistance.
한편, 중질 탄산칼슘(natural ground limestone)은 제조법이 간단하고 제조 비용이 저렴한 반면, 품질은 원석(석회석)의 종류나 분쇄기술에 절대적으로 의존하기 때문에 제품의 고급화에 한계를 갖는다. 이에, 고품위의 원석을 이용하여 구형율 0.4 이하의 입자를 80이상 함유하거나 구형율 0.01 내지 0.3의 입자를 80이상 함유하는 탄산칼슘을 제조하는 방법이 일본 특허 제 88-225521 호에 개시된 바 있으며, 중·경질 탄산칼슘의 입도 제어에 관한 연구가 다양하게 진행되어 왔으나(문헌[일본 석회석 광업협회, 84-111(1986)] 참조), 중질 탄산칼슘을 이용하여 ㎚ 수준의 평균 입도 분포를 갖는 탄산칼슘을 제조하는 것은 여전히 곤란하였다.On the other hand, while heavy calcium carbonate (natural ground limestone) is a simple manufacturing method and low manufacturing cost, the quality of the product is limited because the quality is absolutely dependent on the type of ore (limestone) or grinding technology. Accordingly, a method of producing calcium carbonate containing 80 or more particles having a spherical ratio of 0.4 or less or 80 or more having a sphere having a spherical ratio of 0.01 to 0.3 using high-quality gemstones has been disclosed in Japanese Patent No. 88-225521. Various studies have been conducted on particle size control of medium and hard calcium carbonate (see Limestone Mining Association of Japan, 84-111 (1986)), but carbonic acid having an average particle size distribution at the nm level using heavy calcium carbonate It was still difficult to produce calcium.
반면에, 화학적으로 합성된 경질 탄산칼슘(precipitated calcium carbonate)은 중질 탄산칼슘에 비해 입도 및 형상 제어가 용이하고 고순도로 제조가 가능(일본 특허 제 87-113719 호 참조)하여 제지 공정의 충전제로서 선호되고 있으나, 화학적 안정성(예: 내산성)과 광학적 특성(예: 백색도) 등이 뒤떨어져, 제지 방식에 있어서 약 60이상 산성 초지 제조공정에 의존하는 현여건 하에서는 저렴한 가격에도 불구하고 산성 초지의 충전제로 사용되지 못하고, 중성 및 알칼리 초지 공정의 충전제로만 사용되고 있다.On the other hand, chemically synthesized hard calcium carbonate is preferred as a filler in the papermaking process because it is easier to control particle size and shape and can be manufactured with higher purity than heavy calcium carbonate (see Japanese Patent No. 87-113719). However, due to their poor chemical stability (e.g. acid resistance) and optical properties (e.g. whiteness), they are used as fillers for acidic paper despite the low price under current conditions that depend on the acidic papermaking process of about 60 or more in papermaking. It is not used and is only used as a filler in neutral and alkaline papermaking processes.
더블유. 오거스틴(W. Augustyn)은 NH4F, KF 또는 NaF를 포함하는 불소 수용액과 탄산칼슘의 반응성 및 반응에 의해 생성되는 형석(CaF2)의 수율에 관한 연구를 보고한 바 있으나(문헌["Study of the reaction of crystalline calcium carbonate with aqueous solution of NH4F, KF and NaF", J. of Fluorine Chem., 12(1978), 281-292] 참조), 탄산칼슘의 내산성 또는 백색도의 향상 등과 같은 고기능성의 부여에 대해서는 전혀 다루지 않았다.W. Augustine reported a study on the yield of fluorite (CaF 2 ) produced by the reactivity and reaction of calcium carbonate with aqueous fluorine solutions containing NH 4 F, KF or NaF ("Study"). of the reaction of crystalline calcium carbonate with aqueous solution of NH 4 F, KF and NaF ", J. of Fluorine Chem., 12 (1978), 281-292), such as improving acid resistance or whiteness of calcium carbonate. The provision of functionality is not covered at all.
이에 본 발명자들은 예의 연구한 결과, 산업부산물인 불소화합물로 탄산칼슘을 처리하여 탄산칼슘의 표면에 실리카(SiO2)와 형석(CaF2) 또는 불화나트륨(NaF)을 형성, 결합시킴으로써 내산성이 향상되어 산성 초지의 충전제로 사용될 수 있을 뿐만 아니라 백색도 및 항균특성이 우수한 표면 개질된 탄산칼슘을 제조할 수 있음을 발견하고 본 발명을 완성하게 되었다.Accordingly, the present inventors have diligently researched and treated the calcium carbonate with an industrial by-product fluorine compound to form and combine silica (SiO 2 ) and fluorite (CaF 2 ) or sodium fluoride (NaF) on the surface of the calcium carbonate to improve acid resistance. The present invention has been found to be capable of producing surface modified calcium carbonate, which can be used as a filler of acidic paper, as well as having excellent whiteness and antibacterial properties.
본 발명의 목적은 탄산칼슘의 표면에 우수한 내산성, 백색도 및 항균특성을 부여함과 동시에 산업부산물을 재활용할 수 있는 탄산칼슘의 표면 개질방법을 제공하는 것이다.It is an object of the present invention to provide a surface modification method of calcium carbonate which can impart excellent acid resistance, whiteness and antibacterial property to the surface of calcium carbonate and can recycle industrial by-products.
도 1a는 표면 처리전 탄산칼슘의 주사전자 현미경 사진이며, 도 1b 내지 1d는 각각 본 발명에 따른 실시예에 의해 규불화수소산(H2SiF6), 규불화마그네슘(MgSiF6) 및 불화수소산(HF)으로 표면 처리된 탄산칼슘의 주사전자 현미경 사진이다.FIG. 1A is a scanning electron micrograph of calcium carbonate before surface treatment, and FIGS. 1B to 1D are hydrofluoric acid (H 2 SiF 6 ), magnesium silicate (MgSiF 6 ) and hydrofluoric acid ( Scanning electron micrograph of calcium carbonate surface-treated with HF).
상기 목적을 달성하기 위하여 본 발명에서는 수중의 탄산칼슘 현탁액에 산업부산물인 규불화수소산(H2SiF6), 불화수소산(HF), 규불화마그네슘(MgSiF6) 및 이들의 혼합물로 이루어진 군 중에서 선택된 불소화합물의 수용액을 혼합한 후, 생성혼합물을 통풍건조시키고 350 내지 400℃에서 열처리하는 것을 포함하는, 탄산칼슘의 표면 개질방법을 제공한다.In order to achieve the above object, the present invention is selected from the group consisting of hydrofluoric acid (H 2 SiF 6 ), hydrofluoric acid (HF), magnesium silicate (MgSiF 6 ), and mixtures thereof, which are industrial by-products in a calcium carbonate suspension in water. After mixing the aqueous solution of the fluorine compound, there is provided a method for surface modification of calcium carbonate comprising drying the product mixture by air drying and heat treatment at 350 to 400 ℃.
이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.
본 발명의 탄산칼슘 표면 개질방법에 따르면, 인산 또는 불산 제조공정에서 산업부산물로 발생되는 규불화수소산(H2SiF6) 또는 이로부터 유도되는 규불화마그네슘(MgSiF6), 또는 반도체용 에칭용액 제조공정에서 폐수로 발생되는 불화수소산(HF)의 수용액을 탄산칼슘 현탁액과 혼합함으로써 하기 반응식 1 내지 3에 도시된 반응을 통해 탄산칼슘의 표면에 실리카(SiO2)와 형석(CaF2) 또는 불화나트륨(NaF)을 형성시킨다.According to the calcium carbonate surface modification method of the present invention, hydrofluoric acid (H 2 SiF 6 ) or magnesium silicate fluoride (MgSiF 6 ) generated as an industrial by-product in the production process of phosphoric acid or hydrofluoric acid, or an etching solution for semiconductors Silica (SiO 2 ) and fluorite (CaF 2 ) or sodium fluoride on the surface of calcium carbonate through the reaction shown in Schemes 1 to 3 by mixing an aqueous solution of hydrofluoric acid (HF) generated as wastewater in the process with a calcium carbonate suspension (NaF) is formed.
본 발명의 방법에 따르면, 기재인 수중의 탄산칼슘 현탁액과 표면개질원인 불소화합물 수용액을 각각 50 내지 90 중량및 10 내지 50 중량로 혼합하여 반응시키며, 이때 탄산칼슘 현탁액의 농도는 50 내지 90, 불소화합물 수용액의 농도는 5 내지 40범위일 수 있다.According to the method of the present invention, a calcium carbonate suspension in water as a base material and an aqueous solution of a fluorine compound as a surface modifier are mixed at 50 to 90 weight and 10 to 50 weight, respectively, wherein the concentration of the calcium carbonate suspension is 50 to 90, fluorine The concentration of the aqueous solution of the compound may range from 5 to 40.
구체적으로는, 상온 조건하에서, 상기 반응식 1 및 2의 경우 개질원인 규불화수소산(H2SiF6) 또는 규불화마그네슘(MgSiF6)을 탄산칼슘과 균일하게 혼합하여 3몰의 형석(CaF2)과 1몰의 실리카(SiO2), 규불화마그네슘(MgSiF6)의 경우에는 추가로 1몰의 MgO를 탄산칼슘의 표면에 형성시키며, 상기 반응식 3의 경우 공업용 물유리(Na2SiO3)와 불화수소산(HF)을 먼저 반응시켜 생성된 반응생성물을 탄산칼슘과 균일하게 혼합하여 2몰의 불화나트륨(NaF)과 1몰의 실리카(SiO2) 및 H2O를 탄산칼슘의 표면에 형성시킨다.Specifically, under room temperature conditions, in the reaction schemes 1 and 2, 3 mol of fluorite (CaF 2 ) by uniformly mixing hydrofluoric acid (H 2 SiF 6 ) or magnesium silicate (MgSiF 6 ) as a reforming agent with calcium carbonate. In the case of 1 mole of silica (SiO 2 ) and magnesium silicate (MgSiF 6 ), an additional 1 mole of MgO is formed on the surface of calcium carbonate, and in the case of Scheme 3, industrial water glass (Na 2 SiO 3 ) and fluorinated Hydrogen acid (HF) is first reacted to uniformly mix the reaction product with calcium carbonate to form 2 mol of sodium fluoride (NaF), 1 mol of silica (SiO 2 ), and H 2 O on the surface of calcium carbonate.
본 발명의 방법에 따르면, 상기 생성된 반응혼합물을 상온 내지 105℃에서 15 내지 40시간동안 통풍건조시킨 후 350 내지 400℃에서 1 내지 3시간동안 열처리함으로써 실리카(SiO2), 형석(CaF2) 또는 불화나트륨(NaF) 등이 탄산칼슘의 표면에 물리, 화학적으로 결합된 탄산칼슘을 제조할 수 있다. 이때, 열처리온도가 400℃를 초과하면 탄산칼슘이 CaO 및 CO2로 분해되어 바람직하지 않다.According to the method of the present invention, the resultant reaction mixture is ventilated for 15 to 40 hours at room temperature to 105 ℃ and then heat treated for 1 to 3 hours at 350 to 400 ℃ silica (SiO 2 ), fluorite (CaF 2 ) Alternatively, sodium fluoride (NaF) or the like may produce calcium carbonate physically and chemically bound to the surface of calcium carbonate. At this time, when the heat treatment temperature exceeds 400 ℃ calcium carbonate is decomposed into CaO and CO 2 is not preferable.
탄산칼슘의 표면에 결합된 형석(CaF2)은 수 내지 수백 nm의 입도를 가져 탄산칼슘 입자의 형상(morphology), 비표면적 및 입도 분포(particle size distribution) 등의 향상에 기여하며, 실리카(SiO2)는 산에 강하고 95이상의 고백색도(탄산칼슘의 경우 90정도의 백색도를 가짐)를 가져 탄산칼슘의 내산성 및 백색도를 증가시키며, 불화나트륨(NaF)은 항균 특성을 탄산칼슘에 부여한다.Fluorite (CaF 2 ) bonded to the surface of calcium carbonate has a particle size of several hundreds to several hundred nm, which contributes to improvement of morphology, specific surface area and particle size distribution of calcium carbonate particles, and silica (SiO). 2 ) is acid-resistant and has high whiteness of 95 or more (about 90 degrees in case of calcium carbonate) to increase acid resistance and whiteness of calcium carbonate, and sodium fluoride (NaF) gives antibacterial properties to calcium carbonate.
이와 같이 본 발명의 방법에 의해 표면이 개질된 탄산칼슘은 1 내지 5㎛의 입도를 가지며, 내산성 및 백색도가 향상되고 항균 특성이 부여되어 충전제(특히 산성 초지의 충전제), 코팅제 또는 항균제로서 종이, 치약, 화장품 또는 안료에 유용하게 사용될 수 있으며, 환경적인 측면에서 산업부산물을 재활용할 수 있다는 장점을 갖는다. 안료에 사용하는 경우, 탄산칼슘 입자의 입도는 1 내지 2.5㎛ 범위로 미세하고 입도분포가 좁은 것이 바람직하다.As such, the calcium carbonate surface modified by the method of the present invention has a particle size of 1 to 5 μm, has improved acid resistance and whiteness, and is given antibacterial properties such as fillers (particularly acidic paper fillers), coating agents or paper as antibacterial agents, It can be usefully used in toothpaste, cosmetics or pigments, and has the advantage of recycling industrial by-products from the environmental aspects. When used for pigments, the particle size of the calcium carbonate particles is preferably in the range of 1 to 2.5 µm and narrow in particle size distribution.
이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 만으로 제한되는 것은 아니며, 탄산칼슘의 각종 특성 평가는 다음과 같은 방법으로 실시하였다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited only to these examples. Various characteristics of calcium carbonate were evaluated by the following method.
(1) 백색도(1) whiteness
반사율 방식인 분체용 백색계 C-100(주식회사 KETT 연구소, 일본)을 사용하여 표면 처리전 및 처리후의 탄산칼슘의 백색도를 3회 측정하여 평균값울 구하였다.The whiteness of the calcium carbonate before and after the surface treatment was measured three times using a powder-based white system C-100 (KETT Laboratories, Japan), which reflects the average value.
(2) 산용해도(내산성)(2) acid solubility (acid resistance)
표면 처리전 또는 처리후의 탄산칼슘 시료 30g을 황산(H2SO4, pH 4) 100g에 첨가하여 120분간 함침시킨 후 여과하였다. 여과물(filter cake)을 물로 세척하여 잔류하는 황산을 제거한 다음, 50℃에서 항량이 될 때까지 건조하여 무게를 측정하였다. 황산 처리 전과 후의 시료의 무게변화를 비교하여 감소된 중량를 구하였다.30 g of calcium carbonate sample before or after the surface treatment was added to 100 g of sulfuric acid (H 2 SO 4 , pH 4), impregnated for 120 minutes, and filtered. The filter cake was washed with water to remove residual sulfuric acid, dried at 50 ° C. until weighed, and weighed. The reduced weight was obtained by comparing the weight change of the sample before and after sulfuric acid treatment.
실시예 1 내지 3Examples 1 to 3
농도 50의 수중의 탄산칼슘 현탁액과 농도 20의 규불화수소산(H2SiF6) 수용액을 하기 표 1에 나타낸 중량비로 상온에서 균일하게 혼합한 후, 혼합물을 50℃에서 24시간동안 통풍건조시킨 다음 400℃에서 2시간동안 열처리하여, 표면이 개질된 탄산칼슘을 얻었다. 표면처리전과 처리후의 탄산칼슘의 물리적, 화학적 및 광학적인 특성을 측정하여 하기 표 1에 나타내었다.The calcium carbonate suspension in water at a concentration of 50 and an aqueous solution of hydrofluoric acid (H 2 SiF 6 ) at concentration 20 were uniformly mixed at room temperature in the weight ratio shown in Table 1, and then the mixture was air dried at 50 ° C. for 24 hours. Heat treatment was carried out at 400 ° C. for 2 hours to obtain calcium carbonate with a modified surface. Physical, chemical and optical properties of calcium carbonate before and after the surface treatment were measured and shown in Table 1 below.
실시예 4 내지 6Examples 4-6
규불화수소산 대신에 규불화마그네슘(MgSiF6)을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 수행하여 표면이 개질된 탄산칼슘을 얻었으며, 이의 특성을 측정하여 하기 표 1에 나타내었다.Except for using magnesium silicate (MgSiF 6 ) instead of hydrofluoric acid was carried out in the same manner as in Example 1 to obtain a surface-modified calcium carbonate, its properties are shown in Table 1 below.
실시예 7 내지 9Examples 7-9
공업용 물유리(Na2SiO3)와 불화수소산(HF)을 반응시켜 생성된 농도 5의 반응생성물 수용액과 농도 50의 수중의 탄산칼슘 현탁액을 하기 표 1에 나타낸 중량비로 상온에서 균일하게 혼합한 후, 상기 실시예 1과 동일한 방법을 수행하여 표면이 개질된 탄산칼슘을 얻었으며, 이의 특성을 측정하여 하기 표 1에 나타내었다.After mixing industrial water glass (Na 2 SiO 3 ) with a hydrofluoric acid (HF) and a reaction product aqueous solution of concentration 5 and a suspension of calcium carbonate in water at a concentration of 50 in a weight ratio shown in Table 1 below, The same method as in Example 1 was carried out to obtain a modified calcium carbonate surface, and the properties thereof were measured and shown in Table 1 below.
상기 표 1로부터, 불소화합물로 표면처리된 탄산칼슘은 처리되지 않은 탄산칼슘에 비해 입자 형상과 입도 분포 등의 물리적인 특성, 백색도 등의 광학적인 특성, 및 내산성과 항균성 등의 화학적인 특성이 모두 개선되었음을 알 수 있다. 또한, 도 1a는 표면 처리전 탄산칼슘의 주사전자 현미경 사진이고, 도 1b 내지 1d는 각각 실시예 3, 6 및 9에 의해 규불화수소산(H2SiF6), 규불화마그네슘(MgSiF6) 및 불화수소산(HF)으로 표면 처리된 탄산칼슘의 주사전자 현미경 사진으로서, 불소화합물로의 표면처리에 따른 탄산칼슘의 입자 형상, 비표면적 및 입도 분포 등의 개선을 확인할 수 있다.From Table 1, the calcium carbonate surface-treated with the fluorine compound has all of the physical properties such as particle shape and particle size distribution, optical properties such as whiteness, and chemical properties such as acid resistance and antimicrobial properties, compared to calcium carbonate untreated. It can be seen that the improvement. 1A is a scanning electron micrograph of calcium carbonate before surface treatment, and FIGS. 1B to 1D show hydrofluoric acid (H 2 SiF 6 ), magnesium silicate (MgSiF 6 ), and the examples according to Examples 3, 6, and 9, respectively. As a scanning electron micrograph of calcium carbonate surface-treated with hydrofluoric acid (HF), improvement in particle shape, specific surface area and particle size distribution of calcium carbonate due to surface treatment with fluorine compounds can be confirmed.
본 발명에 따라 표면 개질된 탄산칼슘은 내산성 및 백색도가 향상되고 항균 특성이 부여되어 충전제, 코팅제 또는 항균제로서 종이, 치약, 화장품 또는 안료에 유용하게 사용될 수 있으며, 본 발명에 따른 탄산칼슘의 표면 개질방법은 산업부산물을 재활용할 수 있다는 장점을 갖는다.The surface modified calcium carbonate according to the present invention can be used in paper, toothpaste, cosmetics or pigments as fillers, coatings or antimicrobial agents to improve the acid resistance and whiteness and impart antimicrobial properties, surface modification of calcium carbonate according to the present invention The method has the advantage of recycling industrial by-products.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990048740A KR20010045447A (en) | 1999-11-05 | 1999-11-05 | Surface treatment of calcium carbonates with fluoro-compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990048740A KR20010045447A (en) | 1999-11-05 | 1999-11-05 | Surface treatment of calcium carbonates with fluoro-compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20010045447A true KR20010045447A (en) | 2001-06-05 |
Family
ID=19618636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990048740A KR20010045447A (en) | 1999-11-05 | 1999-11-05 | Surface treatment of calcium carbonates with fluoro-compounds |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20010045447A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2572699A1 (en) * | 2011-09-23 | 2013-03-27 | Louis Tsu SA | Powder for use in a method for tooth treatment |
WO2013041711A2 (en) | 2011-09-23 | 2013-03-28 | Louis Tsu Sa | Powder for dental powder blasting |
KR20200076289A (en) | 2018-12-19 | 2020-06-29 | (주)드림라임 | The method for producing a silica-modified calcium carbonate surface coating |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5832020A (en) * | 1981-08-20 | 1983-02-24 | Central Glass Co Ltd | Device for modifying calcium carbonate |
JPS58115022A (en) * | 1981-12-28 | 1983-07-08 | Toyo Denka Kogyo Kk | Preparation of calcium carbonate |
KR900001460A (en) * | 1988-07-30 | 1990-02-27 | 고형열 | Machine tool spindle micro-movement machine with eccentric color |
-
1999
- 1999-11-05 KR KR1019990048740A patent/KR20010045447A/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5832020A (en) * | 1981-08-20 | 1983-02-24 | Central Glass Co Ltd | Device for modifying calcium carbonate |
JPS58115022A (en) * | 1981-12-28 | 1983-07-08 | Toyo Denka Kogyo Kk | Preparation of calcium carbonate |
KR900001460A (en) * | 1988-07-30 | 1990-02-27 | 고형열 | Machine tool spindle micro-movement machine with eccentric color |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2572699A1 (en) * | 2011-09-23 | 2013-03-27 | Louis Tsu SA | Powder for use in a method for tooth treatment |
WO2013041711A2 (en) | 2011-09-23 | 2013-03-28 | Louis Tsu Sa | Powder for dental powder blasting |
KR20200076289A (en) | 2018-12-19 | 2020-06-29 | (주)드림라임 | The method for producing a silica-modified calcium carbonate surface coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1930107B (en) | Particles of aluminum salt hydroxide containing organic acid anion, method for production thereof and use thereof | |
KR102403301B1 (en) | Titanium dioxide composite pigments containing calcium phosphate and method for the production thereof | |
CN101218395A (en) | Method for coating cellulose particles, coated cellulose particles, and use thereof in paper and board production | |
CN102597127A (en) | Precipitated magnesium carbonate | |
JP2006512461A (en) | Method for producing water-dispersible titanium dioxide pigment useful in paper lamination | |
CA2939418C (en) | Process for producing high grade hydromagnesite and magnesium oxide | |
WO2015154194A1 (en) | Process for producing high grade hydromagnesite and magnesium oxide | |
AU2016228408B2 (en) | Composite pigments containing aluminium hydroxide and method for the production thereof | |
KR20010045447A (en) | Surface treatment of calcium carbonates with fluoro-compounds | |
JP3510210B2 (en) | Use of titanium dioxide as a UV inhibitor in rubber compositions | |
WO1997008249A1 (en) | Acid resistant calcium carbonate composition containing an aluminum salt and uses therefor | |
JP4034982B2 (en) | Calcium carbonate production method, flue gas desulfurization method or sulfuric acid neutralization method | |
US4226636A (en) | Production of calcium silicate having high specific bulk volume and calcium silicate-gypsum composite | |
JP2000233924A (en) | Magnesium hydroxide particle and its production | |
US5814143A (en) | Zirconium modified synthetic alkali metal silicate pigment and method of making | |
KR100413086B1 (en) | Magnesium hydroxide having uniformity and high dispersibility and method for preparing the same | |
JPS63260815A (en) | Production of calcium carbonate having aragonite crystal form | |
JP3957660B2 (en) | Method for synthesizing reactive oxygen species inclusion materials | |
JP4074445B2 (en) | Method for producing composite particles | |
JP4027631B2 (en) | Titanium oxide-calcium carbonate composite particles and production method thereof | |
JP3711318B2 (en) | Method for producing alumina particles | |
JP2556699B2 (en) | Method for producing aragonite crystalline calcium carbonate | |
KR100562048B1 (en) | A method for preparing copper carbonate basic from acid copper etchant | |
KR950001788B1 (en) | Method of preparaing aragonite form of caco3 | |
JP3970208B2 (en) | Method for synthesizing reactive oxygen species inclusion materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |