JPS6332726B2 - - Google Patents

Info

Publication number
JPS6332726B2
JPS6332726B2 JP55009714A JP971480A JPS6332726B2 JP S6332726 B2 JPS6332726 B2 JP S6332726B2 JP 55009714 A JP55009714 A JP 55009714A JP 971480 A JP971480 A JP 971480A JP S6332726 B2 JPS6332726 B2 JP S6332726B2
Authority
JP
Japan
Prior art keywords
caustic soda
heat exchange
soda solution
vapor
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55009714A
Other languages
Japanese (ja)
Other versions
JPS56109817A (en
Inventor
Hidekazu Ue
Tetsuhiko Seto
Hideaki Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP971480A priority Critical patent/JPS56109817A/en
Publication of JPS56109817A publication Critical patent/JPS56109817A/en
Publication of JPS6332726B2 publication Critical patent/JPS6332726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はイオン交換膜法電解により得られる苛
性ソーダ溶液を効率よくかつ低コストにて濃縮す
ることを可能ならしめる苛性ソーダの濃縮法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for concentrating caustic soda that makes it possible to efficiently and at low cost concentrate a caustic soda solution obtained by ion exchange membrane electrolysis.

[従来の技術] イオン交換膜法電解は、イオン交換膜を挾んで
陰極と陽極を配置した電解槽で、塩化アルカリ水
溶液(ブライン)を電解することにより陰極室側
で苛性ソーダ溶液を製造する。
[Prior Art] Ion-exchange membrane electrolysis produces a caustic soda solution on the cathode chamber side by electrolyzing an aqueous alkali chloride solution (brine) in an electrolytic cell in which a cathode and an anode are arranged with an ion-exchange membrane sandwiched between them.

イオン交換膜電解により製造される苛性ソーダ
溶液は、直接実用濃度45〜50%の濃厚なものは得
られないが、食塩含有量が0.1%以下できわめて
低いのが特徴である。このイオン交換膜電解で得
られた苛性ソーダ溶液を濃縮する場合、熱源とし
て電解槽における電解による余剰熱を利用して省
エネルギーを計るのが合理的である。従来の苛性
ソーダ濃縮装置は第1図に示すように、熱源とし
て電解槽陽極室側の80〜120℃のブライン102
を利用し、電解槽陰極室側からの苛性ソーダ溶液
101と液―液熱交換を行わせる方法をとつてい
る。すなわち、イオン交換膜電解で得られた苛性
ソーダ溶液101を多段直列(図では4段直列)
の最終段の熱交換器に供給し、第3段の熱交換
から送られてきたブライン102と熱交換した
のち、蒸発缶Bに入り、そこでフラツシユして気
液分離し、発生した蒸気はこれを引き出してコン
デンサー103に送つて凝縮水とし、一方濃縮さ
れた苛性ソーダ溶液は第3段の熱交換器に入
り、そこで第2段の熱交換器からのブライン1
02と同じく熱交換したのち、蒸発缶Bに入り、
そこでフラツシユしてさらに濃縮度を高め、以下
同様の熱交換とフラツシユとを繰返し、蒸発缶A
より濃縮苛性ソーダ溶液101aとして取り出さ
れる。
Although the caustic soda solution produced by ion-exchange membrane electrolysis cannot be directly obtained in a concentrated solution with a practical concentration of 45-50%, it is characterized by an extremely low salt content of 0.1% or less. When concentrating the caustic soda solution obtained by this ion-exchange membrane electrolysis, it is reasonable to save energy by using surplus heat from electrolysis in the electrolytic cell as a heat source. As shown in Figure 1, a conventional caustic soda concentrator uses a brine 102 at 80 to 120°C on the anode chamber side of the electrolytic cell as a heat source.
A method is used to perform liquid-liquid heat exchange with the caustic soda solution 101 from the cathode chamber side of the electrolytic cell. That is, the caustic soda solution 101 obtained by ion-exchange membrane electrolysis is placed in series in multiple stages (four stages in series in the figure).
After exchanging heat with the brine 102 sent from the third stage heat exchanger, it enters the evaporator B where it is flashed and separated into gas and liquid, and the generated steam is is drawn off and sent to condenser 103 as condensate water, while the concentrated caustic soda solution enters the third stage heat exchanger where it is combined with brine 1 from the second stage heat exchanger.
After exchanging heat as in 02, it enters evaporator B.
Then, the concentration level is further increased by flashing, and the same heat exchange and flashing are repeated, and the evaporator A
A more concentrated caustic soda solution 101a is taken out.

[発明が解決しようとする問題点] しかしながら、上記熱交換は液―液熱交換であ
るので、伝熱係数が小さく設備が大型となるのは
もちろんであり、NaOHやブラインに対して耐
蝕性を有する材質が必要となり、工作上において
もまたコスト的にも高価なものとなるという欠点
がある。
[Problems to be Solved by the Invention] However, since the above heat exchange is a liquid-liquid heat exchange, the heat transfer coefficient is small and the equipment becomes large. The disadvantage is that the material is expensive in terms of workmanship and cost.

本発明者らは上記の従来方法の欠点を解決し、
イオン交換膜法電解により得られる苛性ソーダ溶
液を効率よくかつ低コストにて濃縮することを可
能ならしめる苛性ソーダ溶液の濃縮法を提供する
ことを目的とする。
The present inventors solved the drawbacks of the above conventional methods,
An object of the present invention is to provide a method for concentrating a caustic soda solution, which makes it possible to efficiently concentrate a caustic soda solution obtained by ion-exchange membrane electrolysis at low cost.

(問題点を解決するための手段) 本発明は、上記の目的を達成するためにイオン
交換膜法電解によつて得られる苛性ソーダ溶液の
濃縮法において、上部に熱交換部、下部にフラツ
シユ部を一体に連結した濃縮用蒸発缶を多段に直
列に接続し、他方電解槽の陽極室側からのブライ
ンを減圧下でフラツシユさせ、その発生ベーパー
を上記蒸発缶の各熱交換部に導入するとともに電
解槽の陰極室側からの苛性ソーダ溶液を最終段の
蒸発缶の熱交換部に供給して上記ベーパーと間接
熱交換させて加熱したのち、その苛性ソーダ溶液
をフラツシユ部でフラツシユさせて蒸気と濃縮さ
れた苛性ソーダ溶液とに分離し、分離した蒸気を
抜き出すと共に濃縮された苛性ソーダ溶液を順次
前段の蒸発缶の熱交換部に移送し、そこで間接熱
交換させると共にフラツシユさせ、以後各段の蒸
発缶で加熱とフラツシユを繰り返して第1段の蒸
発缶のフラツシユ部より苛性ソーダの濃縮液を取
り出すようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for concentrating a caustic soda solution obtained by ion-exchange membrane electrolysis, in which a heat exchange part is provided in the upper part and a flash part is provided in the lower part. The concentrating evaporators connected together are connected in series in multiple stages, and the brine from the anode chamber side of the electrolyzer is flashed under reduced pressure, and the generated vapor is introduced into each heat exchange section of the evaporator and electrolyzed. The caustic soda solution from the cathode chamber side of the tank is supplied to the heat exchange section of the final stage evaporator and heated by indirect heat exchange with the vapor, and then the caustic soda solution is flashed in the flash section and concentrated into steam. It is separated into a caustic soda solution, the separated vapor is extracted, and the concentrated caustic soda solution is sequentially transferred to the heat exchange section of the evaporator in the previous stage, where it is subjected to indirect heat exchange and flashed, and then heated and heated in each evaporator. The concentrated solution of caustic soda is taken out from the flash section of the first stage evaporator by repeating flashing.

(作用) 本発明においては、苛性ソーダ溶液より沸点上
昇が極めて低い陽極室側のブラインをフラツシユ
してベーパーとすることでより高い温度のベーパ
ーを取り出すことができ、これを苛性ソーダ溶液
の熱源として用いることで有効な熱回収が行え、
しかも蒸発缶の熱交換部ではベーパーと苛性ソー
ダ溶液とを伝熱管などを介して間接熱交換させ、
そのベーパーの潜熱により苛性ソーダ溶液を加熱
することで熱交換が良好となり装置が小型できる
と共に装置材料は、苛性ソーダ溶液に対して耐蝕
性を有する材質を選べばよいため、そのコストが
安くなる。
(Function) In the present invention, by flashing the brine on the anode chamber side, whose boiling point rise is extremely lower than that of the caustic soda solution, and turning it into vapor, the vapor at a higher temperature can be taken out, and this can be used as a heat source for the caustic soda solution. can perform effective heat recovery,
Moreover, in the heat exchange section of the evaporator, vapor and caustic soda solution are indirectly heat exchanged via heat transfer tubes, etc.
By heating the caustic soda solution using the latent heat of the vapor, heat exchange is good, and the device can be made smaller. At the same time, the device material can be selected from materials that are resistant to corrosion against the caustic soda solution, which reduces the cost.

(実施例) 次に本発明の好適実施例を添付図面によつて説
明する。
(Embodiments) Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第2図において、1は電解槽で、イオン交換膜
により陽極室側1bと陰極室側1aとに区画さ
れ、各室1a,1bには図示していないが電極が
設けられており、ブライン中の塩化ナトリウムの
電気分解により陰極室側1aで苛性ソーダが製造
される。
In Fig. 2, 1 is an electrolytic cell, which is divided into an anode chamber side 1b and a cathode chamber side 1a by an ion exchange membrane.Each chamber 1a, 1b is equipped with an electrode (not shown), and is in brine. Caustic soda is produced in the cathode chamber side 1a by electrolysis of sodium chloride.

この苛性ソーダを濃縮装置は多段な蒸発缶V1
V2,V3からなつている。各蒸発缶V1,V2,V3
は、上部にシエルアンドキユーブ式の熱交換部
E1,E2,E3と、その下部に一体に設けられたフ
ラツシユ部F1,F2,F3とからなつている。
The device for concentrating this caustic soda is a multi-stage evaporator V 1 ,
It consists of V 2 and V 3 . Each evaporator V 1 , V 2 , V 3
Has a shell-and-cube heat exchanger on the top.
It consists of E 1 , E 2 , E 3 and flash portions F 1 , F 2 , F 3 integrally provided below them.

先ず電解槽1の陽極室1bからのブライン3が
フラツシユー4に導入され、そこで減圧下でフラ
ツシユされてベーパー5を発生させる。このベー
パー5は、各蒸発缶V1,V2,V3のそれぞれの熱
交換部E1,E2,E3に導入される。またフラツシ
ヤー4でフラツシユ後のブライン3aは電解槽1
に戻される。
First, brine 3 from the anode chamber 1b of the electrolytic cell 1 is introduced into a flash 4, where it is flashed under reduced pressure to generate vapor 5. This vapor 5 is introduced into the respective heat exchange parts E 1 , E 2 , E 3 of the evaporators V 1 , V 2 , V 3 . Furthermore, the brine 3a after being flashed by the flasher 4 is in the electrolytic tank 1.
will be returned to.

一方、電解槽1の陰極側1aで製造された苛性
ソーダ溶液2は、最終段、すなわち第3段の蒸発
缶V3の熱交換部E3に供給され、そこでフラツシ
ヤー4より導入されたベーパー5との間接熱交換
により、加熱され、ついでフラツシユ部F3でフ
ラツシユすることで、蒸気と濃縮された苛性ソー
ダ溶液とに気液分離される。蒸気6は蒸発缶V3
から抜きだされ、コンデンサ7で凝縮され凝縮水
となる。一方濃縮された苛性ソーダ溶液は、適宜
その蒸発缶3を循環されると共に第2段の蒸発缶
V2の熱交換部E2にされ、搬送され、そこで同じ
くフラツシヤー4より導入されたベーパー5との
間接熱交換により加熱され、下方のフラツシユ部
F2でフラツシユして気液分離され、蒸気6と濃
縮された苛性ソーダ溶液となり、蒸気6が抜き出
されると共に濃縮された苛性ソーダ溶液が第1段
の蒸発缶V1の熱交換部E1に導入され、上述のよ
うに加熱されると共にフラツシユ部F1でフラツ
シユされて気液分離され、そのフラツシユ部F1
より濃縮苛性ソーダ溶液2aが取り出される。
On the other hand, the caustic soda solution 2 produced on the cathode side 1a of the electrolytic cell 1 is supplied to the heat exchange section E3 of the final stage, that is, the third stage evaporator V3 , where it is mixed with the vapor 5 introduced from the flasher 4. It is heated by indirect heat exchange, and then flashed in the flashing section F3 to separate gas and liquid into steam and concentrated caustic soda solution. Steam 6 is evaporator V 3
It is extracted from the water and condensed in the condenser 7 to become condensed water. On the other hand, the concentrated caustic soda solution is appropriately circulated through the evaporator 3 and sent to the second stage evaporator.
It is transported to the heat exchange section E 2 of V 2 , where it is heated by indirect heat exchange with the vapor 5 also introduced from the flasher 4, and is transferred to the lower flash section.
It is flashed with F2 and separated into gas and liquid to become steam 6 and a concentrated caustic soda solution.The steam 6 is extracted and the concentrated caustic soda solution is introduced into the heat exchange section E1 of the first stage evaporator V1 . is heated as described above and flashed in the flashing section F1 to separate gas and liquid, and the flashing section F1
A more concentrated caustic soda solution 2a is taken out.

このようにブラインをフラツシヤー4でフラツ
シユさせ、そこで発生したベーパー5を苛性ソー
ダ溶液2の加熱熱源として用いることで有効な熱
回収が行える。特にブラインの沸点上昇は、苛性
ソーダ溶液の沸点上昇より極めて少なく、例えば
大気圧下でのブラインの沸点上昇は+3℃である
のに対し、苛性ソーダ溶液では+20℃であり、従
つてフラツシヤー4から発生するベーパー5は、
減圧度が少なく、しかも温度降下の少ない高い熱
量のベーパー5が得られる。またベーパー5は、
上述のようにブラインの沸点上昇が極めて小さい
ため、塩化物を含まない水蒸気となり、蒸発缶
V1,V2,V3の熱交換部E1,E2,E3は、ベーパー
5側の腐食を考慮せずに苛性ソーダ溶液に対する
腐食のみを考慮した材料を選べばよい。従つて、
熱交換部V1,V2,V3をシエルアンドチユーブで
構成する場合、シエル側は鋼材とし苛性ソーダ溶
液の通るチユーブ側はNi材などを用いればよく、
そのコストを低減できる。
Effective heat recovery can be achieved by flashing the brine in the flasher 4 and using the vapor 5 generated there as a heat source for heating the caustic soda solution 2. In particular, the boiling point increase of brine is much smaller than that of caustic soda solution; for example, the boiling point increase of brine under atmospheric pressure is +3°C, whereas that of caustic soda solution is +20°C, so that the boiling point increase generated from flasher 4 Vapor 5 is
Vapor 5 having a high calorific value with a small degree of pressure reduction and a small temperature drop can be obtained. Also, Vapor 5 is
As mentioned above, the increase in the boiling point of brine is extremely small, so it becomes water vapor that does not contain chlorides, and the boiling point rises in the brine.
For the heat exchange parts E 1 , E 2 , and E 3 of V 1 , V 2 , and V 3 , materials may be selected taking into consideration only corrosion against the caustic soda solution without considering corrosion on the vapor 5 side. Therefore,
When the heat exchange parts V 1 , V 2 , and V 3 are configured with shell and tubes, the shell side may be made of steel, and the tube side through which the caustic soda solution passes may be made of Ni material, etc.
The cost can be reduced.

さらにベーパー5と苛性ソーダ溶液とが間接熱
交換するにおいてベーパー5はチユーブ外面で凝
縮し、水膜をつくつて流下するが、この水膜は充
分薄いため全体が液の場合の伝熱係数より充分高
い伝熱係数となるため、その熱交換率もきわめて
高く装置を小形化できる。
Furthermore, when the vapor 5 and the caustic soda solution exchange indirect heat, the vapor 5 condenses on the outer surface of the tube and flows down forming a water film, but this water film is sufficiently thin that the heat transfer coefficient is sufficiently higher than that of the case where the entire liquid is a liquid. Since it has a heat transfer coefficient, its heat exchange rate is also extremely high and the device can be made smaller.

尚上述の実施例においては蒸発缶3段の例で説
明したが段数はこれに限定されるものではない。
In the above-mentioned embodiment, an example of three stages of evaporators has been described, but the number of stages is not limited to this.

[発明の効果] 以上説明したきたことから明らかなように本発
明によれば次のごとき優れた効果を発揮する。
[Effects of the Invention] As is clear from the above explanation, the present invention exhibits the following excellent effects.

(1) 省エネルギーに寄与する。(1) Contributes to energy conservation.

(2) 装置が小型化され、コストダウンを可能とす
る。
(2) The device becomes smaller and costs can be reduced.

(3) 蒸発缶の熱交換部における苛性ソーダ溶液濃
縮のための熱交換はブラインのフラツシユベー
パーを加熱源とする気―液熱交換であるので、
ベーパー側の材料は高級材料を使う必要はな
く、カーボンスチールで充分耐蝕性があり、か
つ熱交換の効果はきわめて大である。
(3) The heat exchange for concentrating the caustic soda solution in the heat exchange section of the evaporator is a gas-liquid heat exchange using brine flash vapor as the heating source.
The material on the vapor side does not need to be a high-grade material; carbon steel is sufficiently resistant to corrosion, and the heat exchange effect is extremely large.

本発明は以上のごとく、イオン交換膜法電解に
より得られる苛性ソーダ溶液を効率よくかつ低コ
ストにて濃縮することを可能ならしめる苛性ソー
ダ溶液の濃縮法を提供するもので、その工業的価
値はきわめて大きい。
As described above, the present invention provides a method for concentrating a caustic soda solution that makes it possible to efficiently and at low cost concentrate a caustic soda solution obtained by ion-exchange membrane electrolysis, and its industrial value is extremely large. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のイオン交換膜法電解で得られる
苛性ソーダ溶液の加熱源としてブラインを使用す
る液―液熱交換による濃縮方法の一例のフローシ
ート、第2図は本発明のブラインのフラツシユベ
ーパーを加熱源として使用する気―液熱交換によ
る苛性ソーダ溶液の濃縮方法を実施する装置の一
実施例のフローシートである。 図中、1は電解槽、1aは陰極室側、1bは陽
極室側、2は苛性ソーダ溶液(未濃縮)、2は濃
縮苛性ソーダ溶液、3はブライン、3aはブライ
ン(フラツシユ後)、4はフラツシヤー、5はブ
ラインのフラツシユーベーパー、6は蒸気、7は
コンデンサー、V1,V2,V3は濃縮用蒸発缶、
E1,E2,E3は熱交換部、F1,F2,F3はフラツシ
ユ部である。
Figure 1 is a flow sheet of an example of a concentration method by liquid-liquid heat exchange using brine as a heating source for a caustic soda solution obtained by conventional ion-exchange membrane electrolysis, and Figure 2 is a flow sheet of a brine flash vapor of the present invention. 1 is a flow sheet of an example of an apparatus for carrying out a method for concentrating a caustic soda solution by gas-liquid heat exchange using a gas-liquid heat exchanger as a heating source. In the figure, 1 is the electrolytic cell, 1a is the cathode chamber side, 1b is the anode chamber side, 2 is the caustic soda solution (unconcentrated), 2 is the concentrated caustic soda solution, 3 is the brine, 3a is the brine (after flashing), 4 is the flasher , 5 is a brine flash vapor, 6 is steam, 7 is a condenser, V 1 , V 2 , V 3 are evaporators for concentration,
E 1 , E 2 , and E 3 are heat exchange parts, and F 1 , F 2 , and F 3 are flash parts.

Claims (1)

【特許請求の範囲】[Claims] 1 イオン交換膜法電解によつて得られる苛性ソ
ーダ溶液の濃縮法において、上部に熱交換部、下
部にフラツシユ部を一体に連結した濃縮用蒸発缶
を多段に直列に接続し、他方電解槽の陽極室側か
らのブラインを減圧下でフラツシユさせ、その発
生ベーパーを上記蒸発缶の各熱交換部に導入する
とともに電解槽の陰極室側からの苛性ソーダ溶液
を最終段の蒸発缶の熱交換部に供給して上記ベー
パーと間接熱交換させて加熱したのち、その苛性
ソーダ溶液をフラツシユ部でフラツシユさせて蒸
気と濃縮された苛性ソーダ溶液とに分離し、分離
した蒸気を抜き出すと共に濃縮された苛性ソーダ
溶液を順次前段の蒸発缶の熱交換部に移送し、そ
こで間接熱交換させると共にフラツシユさせ、以
後各段の蒸発缶で加熱とフラツシユを繰り返して
第1段の蒸発缶のフラツシユ部より苛性ソーダの
濃縮液を取り出すことを特徴とする苛性ソーダ溶
液の濃縮法。
1. In a method for concentrating a caustic soda solution obtained by ion-exchange membrane electrolysis, concentrating evaporators each having a heat exchange section in the upper part and a flash section in the lower part integrally connected are connected in series in multiple stages, and the anode of the electrolytic cell is connected in series in multiple stages. The brine from the chamber side is flashed under reduced pressure, and the generated vapor is introduced into each heat exchange section of the evaporator, and the caustic soda solution from the cathode chamber side of the electrolyzer is supplied to the heat exchange section of the final stage evaporator. After heating by indirect heat exchange with the vapor, the caustic soda solution is flashed in a flashing section and separated into vapor and concentrated caustic soda solution.The separated vapor is extracted and the concentrated caustic soda solution is sequentially transferred to the previous stage. The concentrated solution of caustic soda is transferred to the heat exchange section of the first evaporator, where it is subjected to indirect heat exchange and flashed, and then heating and flashing are repeated in each stage of the evaporator to take out the concentrated solution of caustic soda from the flash section of the first stage evaporator. A method for concentrating caustic soda solution characterized by:
JP971480A 1980-01-30 1980-01-30 Concentrating method for caustic soda solution Granted JPS56109817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP971480A JPS56109817A (en) 1980-01-30 1980-01-30 Concentrating method for caustic soda solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP971480A JPS56109817A (en) 1980-01-30 1980-01-30 Concentrating method for caustic soda solution

Publications (2)

Publication Number Publication Date
JPS56109817A JPS56109817A (en) 1981-08-31
JPS6332726B2 true JPS6332726B2 (en) 1988-07-01

Family

ID=11727924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP971480A Granted JPS56109817A (en) 1980-01-30 1980-01-30 Concentrating method for caustic soda solution

Country Status (1)

Country Link
JP (1) JPS56109817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103628085A (en) * 2013-11-22 2014-03-12 新汶矿业集团有限责任公司泰山盐化工分公司 Method for cyclic utilization of water resources in chlor-alkali production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8317994B2 (en) 2008-08-07 2012-11-27 Westlake Vinyl Corporation Method of concentrating an aqueous caustic alkali using a catholyte heat recovery evaporator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113299A (en) * 1977-03-15 1978-10-03 Asahi Glass Co Ltd Method of concentrating caustic alkaline sulution for ion exchange membrane electrolysis
JPS5428297A (en) * 1977-08-04 1979-03-02 Ebara Corp Effective heat utilization method in caustic soda producing plant by ion exchange or electrolytic method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113299A (en) * 1977-03-15 1978-10-03 Asahi Glass Co Ltd Method of concentrating caustic alkaline sulution for ion exchange membrane electrolysis
JPS5428297A (en) * 1977-08-04 1979-03-02 Ebara Corp Effective heat utilization method in caustic soda producing plant by ion exchange or electrolytic method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103628085A (en) * 2013-11-22 2014-03-12 新汶矿业集团有限责任公司泰山盐化工分公司 Method for cyclic utilization of water resources in chlor-alkali production
CN103628085B (en) * 2013-11-22 2016-10-05 新汶矿业集团有限责任公司泰山盐化工分公司 Water resource circulation utilization method in chlor-alkali production

Also Published As

Publication number Publication date
JPS56109817A (en) 1981-08-31

Similar Documents

Publication Publication Date Title
US4209369A (en) Process for electrolysis of sodium chloride by use of cation exchange membrane
CN102171148B (en) Catholyte heat recovery evaporator and method of use
WO2006094437A1 (en) A method and an multi-effect evaporation for waste water of alkylene oxides
CN210683206U (en) Waste acid treatment system
US4090932A (en) Method for concentrating aqueous caustic alkali solution
JPH03262585A (en) Ultra-pure water generating apparatus
CN201834781U (en) Single-stage vacuum distillation seawater desalination device
CN110451596A (en) A kind of carrier gas extraction HPE vapo(u)rization system
JPS6332726B2 (en)
CN103628085B (en) Water resource circulation utilization method in chlor-alkali production
US4145265A (en) Process for concentration of caustic alkali solution produced by ion exchange membrane type electrolysis
JP6419470B2 (en) Electrolytic treatment method and electrolytic treatment apparatus
KR800000527B1 (en) Method for concentrating aqueons caustic alkalic
CN208087250U (en) The device that high-salt wastewater low-temperature evaporation is concentrated using hot industry waste water
RU2171862C2 (en) Method for recovering bromine out of bromine-containing solutions and installation for performing the same
CN220002966U (en) Liquid alkali evaporation concentration system
RU98123657A (en) METHOD FOR REMOVING BROMINE FROM BROMS-CONTAINING SOLUTIONS AND INSTALLATION FOR ITS IMPLEMENTATION
CN108249499A (en) The method and device concentrated using hot industry waste water to high-salt wastewater low-temperature evaporation
CN214495787U (en) Device for producing desalted water by steam stripping
CN211366982U (en) Sodium chloride and sodium sulfate evaporation and separation device
JPS5829175Y2 (en) Header of electrolytic cell
JP3281727B2 (en) Heavy water production equipment
CN217077262U (en) Zero-emission seawater desalination system
CN213679906U (en) Device for evaporating and concentrating high-salinity wastewater at low temperature by using high-temperature industrial wastewater
CN118007190A (en) Recycling device and method for electrolyzed dilute brine