JPS6332395A - Ventilation air-conditioning method in reactor housing fuel exchange bed - Google Patents

Ventilation air-conditioning method in reactor housing fuel exchange bed

Info

Publication number
JPS6332395A
JPS6332395A JP61175000A JP17500086A JPS6332395A JP S6332395 A JPS6332395 A JP S6332395A JP 61175000 A JP61175000 A JP 61175000A JP 17500086 A JP17500086 A JP 17500086A JP S6332395 A JPS6332395 A JP S6332395A
Authority
JP
Japan
Prior art keywords
ventilation
air conditioning
wind speed
floor
fuel exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61175000A
Other languages
Japanese (ja)
Inventor
浩一 吉野
宮田 駿
吾朗 増沢
隆太 岡本
三瓶 泰司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shin Nippon Kucho KK
Original Assignee
Toshiba Corp
Shin Nippon Kucho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shin Nippon Kucho KK filed Critical Toshiba Corp
Priority to JP61175000A priority Critical patent/JPS6332395A/en
Publication of JPS6332395A publication Critical patent/JPS6332395A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子力発電所の原子炉建屋燃料交換床におけ
る換気空調方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for ventilation and air conditioning in a refueling floor of a reactor building of a nuclear power plant.

〔従来の技術〕[Conventional technology]

原子炉建屋燃料交換床においては、室内で発生する熱や
浮遊粒子等の除去あるいは希釈のために換気空調装置が
設けられ、新鮮空気を燃料交換床に送風している。一般
に、この装置の容量は、室内の放射能濃度と温度の許容
値から定められているが、この種の燃料交換床が大空間
であることもあって、換気装置自体が大型のものとなっ
ている。
In the reactor building refueling floor, a ventilation air conditioning system is installed to remove or dilute heat and suspended particles generated indoors, and fresh air is blown to the fuel exchange floor. Generally, the capacity of this device is determined based on the allowable radioactivity concentration and temperature in the room, but since this type of refueling floor is a large space, the ventilation device itself is large. ing.

換気機能は換気回数および風速に依存するが、従来は換
気回数および風速が第1図の領域Xで示すような換気回
数および風速の領域がよいとされていた。
The ventilation function depends on the number of ventilations and the wind speed, and conventionally it has been thought that the range of the number of ventilations and the wind speed as shown by region X in FIG. 1 is good.

第2図および第3図に、従来の一般的な換気空調方式を
示した。すなわち、燃料交換床には原子炉ウェル1およ
び燃料貯蔵プール2が形成されている。他方、このプー
ル2の反対側の壁際には、吹出用ダクト3に連って多数
の吹出口4,4・・・が形成され、ここから大量の新鮮
空気が吹出され、プール2の同側の壁際の多数の吸込口
5,5・・・から吸込み、ダクト6を介して吸引し、処
理している。また、プール2の壁にも多数の吸込ロア、
7・・・が形成され、プール2より蒸発する放射性ミス
トを吸引捕獲し、汚染空気の拡散防止を図っている。8
は機器仮置きプールである。
Figures 2 and 3 show conventional general ventilation air conditioning systems. That is, a reactor well 1 and a fuel storage pool 2 are formed in the fuel exchange floor. On the other hand, along the wall on the opposite side of the pool 2, a large number of air outlets 4, 4, . Suction is carried out through a large number of suction ports 5, 5, . In addition, there are many suction lowers on the wall of pool 2.
7... is formed, and the radioactive mist evaporating from the pool 2 is suctioned and captured to prevent the spread of contaminated air. 8
is the equipment temporary storage pool.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、従来の換気方法では、換気回数が多いた
め、換気装置が太き(、経済的でない。
As mentioned above, in the conventional ventilation method, the number of ventilations is large, so the ventilation equipment is large (and uneconomical).

そこで、可能な限り換気回数は少い方がよい。本発明者
らは、換気回数を少くする場合、吹出風速を上げれば、
所要の換気機能を有することを、一連の研究の中で見出
している。この範囲は第1図Yの範囲である。
Therefore, it is better to keep the ventilation frequency as low as possible. The present inventors found that when reducing the number of ventilations, increasing the blowing wind speed;
A series of studies have found that it has the necessary ventilation function. This range is the range Y in FIG.

しかし、このYの範囲は、風速が高い範囲であるため、
騒音が大きくなり、また皮賓惑覚的にも良い環境条件と
は必ずしも言い得ない。
However, since this range of Y is a range of high wind speed,
The noise becomes louder, and the environmental conditions are not necessarily good for the sense of sensation.

そこで、本発明の目的は、従来全く行われていなかった
ところの天井吹出し方式によって、従来の壁吹出しとほ
ぼ同様の風速でありながら換気回数を低減できる換気空
調方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a ventilation air conditioning method that uses a ceiling blowing system, which has not been used at all in the past, to reduce the number of ventilations while providing almost the same wind speed as conventional wall blowing.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するための本発明は次の通りである。 The present invention for solving the above problems is as follows.

原子炉建屋燃料交換床の天井の換気空調用吹出口から新
鮮空気を吹出し、床部の吸込口から吸込んで換気空調を
行うものであって、次記(1)弐の関係式の吹出風速を
もつ換気空調を行うことを特徴とする原子炉建屋燃料交
換床にお・ける換気空調方法。
Fresh air is blown out from the ventilation and air conditioning outlet in the ceiling of the reactor building fuel exchange floor and sucked in through the floor inlet for ventilation and air conditioning. A method for ventilation and air conditioning in a refueling floor of a nuclear reactor building, which is characterized by providing ventilation and air conditioning.

・・・(1) ただし、vo :吹出風速(m/5ec)X :床から
天井までの高さくm) ■ :室容積(m3) C:換気回数(回/hr) Δt:吹出温度と室内温度との差(” deg)N :
換気空調用吹出口の個数 t8 :吹出温度(’C) h :居住域の高さくm) 〔作 用〕 本発明に従って、上記(1)式の関係を満すと、換気回
数を低減することができ、また新鮮空気を室内全域にわ
たって供給することができるから、室内放射能4度の低
減を図ることができ、しかも所定の温度を容易に維持で
きる。
...(1) However, vo: Outlet wind speed (m/5ec) Difference from temperature ("deg) N:
Number of ventilating air conditioning outlets t8: Outlet temperature ('C) h: Height of living area (m) [Function] According to the present invention, if the relationship of equation (1) above is satisfied, the number of ventilations can be reduced. Moreover, since fresh air can be supplied throughout the room, indoor radioactivity can be reduced by 4 degrees Celsius, and a predetermined temperature can be easily maintained.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面を参照しながら実験過程と共にさらに
詳説する。
Hereinafter, the present invention will be explained in further detail along with experimental steps with reference to the drawings.

本発明者らは、換気回数および風速が換気機能にどのよ
うに影響するか調べた。しかしながら、実設備では試験
が困難であるため、第4図および第5図に示すような、
実際の原子炉建屋燃料交換床の縮尺の1710の相似模
型を製作した。
The present inventors investigated how ventilation frequency and wind speed affect ventilation function. However, since it is difficult to test with actual equipment, as shown in Figures 4 and 5,
A 1710-scale model similar to the actual reactor building refueling floor was constructed.

ここで言うところの相似模型とは、室内空気分布を予測
する方法として既に公知である、気流現象を相似にする
無次元数としてアルキメデス数(Ar数)を一致させた
模型を言い、具体的にはという基準の温度差(θ)、基
準の長さく/り、基準の吹出風速(u)を縮率(n)で
表わした関係式、つまり相似式に従って作られた模型で
ある。
The similar model referred to here refers to a model in which the Archimedean number (Ar number) is matched as a dimensionless number that makes airflow phenomena similar, which is already known as a method for predicting indoor air distribution. This is a model made according to a relational expression in which the reference temperature difference (θ), the reference length/r, and the reference blowing wind speed (u) are expressed by the reduction ratio (n), that is, a similar equation.

そして、本発明では縮率の組合せとしてを採用して模型
を製作した。
In the present invention, a model was manufactured using a combination of reduction ratios.

なお、上記模型の外に、縮尺(nt ) =−の相似模
型を製作、使用し、可視化粉体を気流中に飛散させて目
視観察を行った。まず、縮尺1/25の模型に基いて気
流観察の結果について説明する。
In addition to the above model, a similar model with a scale (nt) = - was manufactured and used, and visual observation was performed by scattering visualization powder into an air flow. First, the results of airflow observation will be explained based on a 1/25 scale model.

第6図〜第10図は、従来の換気回数C= 2.3回/
hrおよびその1/3のC= 0.8回/hrで、吹出
風速■。を15m/s 、6m/sおよび3 m/sに
変えた場合の結果で、図中矢印は風向を示したものであ
る。この結果によると、風速が速いと、吹出気流が床面
で跳ね返ってそれぞれの吹出部分で循環気流を形成して
おり、床面に溜った放射性ダストや燃料プールからの蒸
発ミストを巻き上げる可能性がある。
Figures 6 to 10 show the conventional ventilation frequency C = 2.3 times/
hr and 1/3 C = 0.8 times/hr, blowing wind speed ■. These are the results when the velocity was changed to 15 m/s, 6 m/s, and 3 m/s, and the arrows in the figure indicate the wind direction. According to the results, when the wind speed is high, the airflow bounces off the floor and forms a circulating airflow at each outlet, which can potentially stir up radioactive dust accumulated on the floor and evaporated mist from the fuel pool. be.

逆に風速があまり低いと、その虞れはないものの、作業
域まで新鮮空気が到達しない危険性もある。
On the other hand, if the wind speed is too low, there is a risk that fresh air will not reach the work area, although there is no risk of this happening.

次に、縮尺1/10の相似模型により換気回数C=0.
8〜2.3回/hrの温度分布について調べた結果につ
いて説明する。
Next, the number of ventilations C=0 using a similar model with a scale of 1/10.
The results of investigating the temperature distribution from 8 to 2.3 times/hr will be explained.

第1)図は吹出風速■。が9 m/sの場合の温度分布
の結果である。この温度分布結果によれば、従来の換気
回数(,2,0〜2.2回/hr)を1.5回/hrに
低減しても、各床レベル16点の平均4厘に殆んど変化
がみられないこと、また従来の換気回数を約半分に減ら
しても、室内温度が約0.5〜1degあがる程度であ
ることから、本発明方式に従って、従来の換気回数に対
してその約半分に減らしても、所定の温度を十分に維持
できることが判る。
Figure 1) shows the outlet wind speed. These are the results of temperature distribution when is 9 m/s. According to this temperature distribution result, even if the conventional ventilation frequency (2.0 to 2.2 times/hr) is reduced to 1.5 times/hr, the air exchange rate is almost 4 liters on average at 16 points on each floor level. In addition, even if the conventional ventilation frequency is reduced to about half, the indoor temperature will only rise by about 0.5 to 1 degree. Therefore, according to the method of the present invention, It can be seen that even if the temperature is reduced by about half, the predetermined temperature can be sufficiently maintained.

次に、縮尺1/25の相似模型を使って、従来の換気回
数に対してその約半分の1回/hrに低減し1こ場合の
適切な吹出風速を検討した。その結果、最適な吹出風速
は7.7m/s ≧■。≧5.0 m/sの範囲が好ま
しいことが判った。次いで、この風速範囲についての温
度分布を調べたところ第12図の通りであった。その結
果、同範囲では設計室温を維持できることが判った。
Next, using a similar model with a scale of 1/25, we reduced the conventional ventilation frequency to about half, 1 time/hr, and examined the appropriate blowout speed in this case. As a result, the optimal blowing wind speed was 7.7 m/s ≧■. It has been found that a range of ≧5.0 m/s is preferable. Next, the temperature distribution in this wind speed range was investigated, and the results were as shown in FIG. As a result, it was found that the designed room temperature could be maintained within the same range.

その地条(の実験から第1図のZ範囲および(1)式の
範囲が好ましいことが判った。
From experiments on the striations, it was found that the Z range shown in FIG. 1 and the range expressed by formula (1) are preferable.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、従来と同様の風速であり
ながら、換気容量を低減できるので、経済的となる。
As described above, according to the present invention, the ventilation capacity can be reduced while maintaining the same wind speed as in the past, making it economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の好適、な風速範囲を示す換気回数・風
速相関図、第2図は従来設備の平面図、第3図はそのm
−m線矢視図、第4図は本発明に係る天井吹出による設
備の平面図、第5図はその中央側断面図、第6図〜第1
0図は気流観察結果図、第1)図および第12図は温度
分布の実験結果を示す図である。 i・・・原子炉ウェル、2・・・燃料貯蔵プール、3・
・・吹出用ダクト、4・・・吹出口、5・・・吸込口、
6・・・排気用ダクト、7・・・吸込口、8・・・機器
仮置きプール。 第1図 1.0         2.0 廉vt、 I!IK C(1/hr) 第2図 第4図 第5図 ス 。、2.3゜7h、  第6図 Va−15,0m/s 。、2.3!I/hr   第7図 vo1)6.○rn/s 。32.3ヨ71、  第8図 Vo *3.Om/s 。、。、8目、h、  第9図 Vo+++5.0m/s
Figure 1 is a ventilation frequency/wind speed correlation diagram showing the preferred wind speed range of the present invention, Figure 2 is a plan view of the conventional equipment, and Figure 3 is the m
-M line arrow view, Figure 4 is a plan view of the equipment with ceiling blowing according to the present invention, Figure 5 is a sectional view of the center side thereof, and Figures 6 to 1.
Figure 0 is a diagram showing the results of airflow observation, and Figures 1) and 12 are diagrams showing the experimental results of temperature distribution. i...Reactor well, 2...Fuel storage pool, 3.
...Blowout duct, 4...Blowout port, 5...Suction port,
6...Exhaust duct, 7...Suction port, 8...Equipment temporary storage pool. Figure 1 1.0 2.0 Renvt, I! IK C (1/hr) Figure 2, Figure 4, Figure 5. , 2.3°7h, Fig. 6 Va-15,0m/s. , 2.3! I/hr Figure 7 vol1)6. ○rn/s. 32.3yo71, Figure 8 Vo *3. Om/s. ,. , 8th, h, Figure 9 Vo+++5.0m/s

Claims (1)

【特許請求の範囲】[Claims] (1)原子炉建屋燃料交換床の天井に設けた換気空調用
吹出口から新鮮空気を吹出し、側壁の吸込口から吸込ん
で換気空調を行うものであって、次記(1)式の関係式
の吹出風速をもって換気空調を行うことを特徴とする原
子炉建屋燃料交換床における換気空調方法。 {(18.79x^3−198.0[CV△t/N(2
73+t_s)]x^2)(CV/N)^−^3^/^
2}^2^/^3}≧v_0≧{[18.79(x−h
)^3−198.0[CV△t/N(273+t_s)
](x−h)^2](CV/N)^−^3^/^2}・
・・(1) ただし、v_0:吹出風速(m/sec) x:床から天井までの高さ(m) V:室容積(m^3) C:換気回数(回/hr) Δt:吹出温度と室内温度との差(゜deg) N:換気空調用吹出口の個数 t_s:吹出温度(℃) h:居住域の高さ(m)
(1) Fresh air is blown out from the ventilation air conditioning outlet installed in the ceiling of the fuel exchange floor of the reactor building, and fresh air is sucked in through the inlet on the side wall to perform ventilation air conditioning, and the following relational expression (1) is used. A method for ventilation and air conditioning in a fuel exchange floor of a nuclear reactor building, characterized by performing ventilation and air conditioning with a blowout air velocity of . {(18.79x^3-198.0[CV△t/N(2
73+t_s)] x^2) (CV/N)^-^3^/^
2}^2^/^3}≧v_0≧{[18.79(x-h
)^3-198.0[CV△t/N(273+t_s)
] (x-h)^2] (CV/N)^-^3^/^2=・
...(1) However, v_0: Outlet wind speed (m/sec) x: Height from floor to ceiling (m) V: Room volume (m^3) C: Ventilation frequency (times/hr) Δt: Outlet temperature and the indoor temperature (°deg) N: Number of ventilation and air conditioning outlets t_s: Outlet temperature (°C) h: Height of living area (m)
JP61175000A 1986-07-25 1986-07-25 Ventilation air-conditioning method in reactor housing fuel exchange bed Pending JPS6332395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61175000A JPS6332395A (en) 1986-07-25 1986-07-25 Ventilation air-conditioning method in reactor housing fuel exchange bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61175000A JPS6332395A (en) 1986-07-25 1986-07-25 Ventilation air-conditioning method in reactor housing fuel exchange bed

Publications (1)

Publication Number Publication Date
JPS6332395A true JPS6332395A (en) 1988-02-12

Family

ID=15988462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61175000A Pending JPS6332395A (en) 1986-07-25 1986-07-25 Ventilation air-conditioning method in reactor housing fuel exchange bed

Country Status (1)

Country Link
JP (1) JPS6332395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107184B2 (en) 2008-01-10 2012-01-31 Pioneer Corporation Operation control apparatus, operation control method, operation control program controlling operation of magnetic disc device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107184B2 (en) 2008-01-10 2012-01-31 Pioneer Corporation Operation control apparatus, operation control method, operation control program controlling operation of magnetic disc device

Similar Documents

Publication Publication Date Title
JPH0136009B2 (en)
JP5626588B2 (en) Air conditioning system
US5160481A (en) Ozone generation apparatus
JPS6332395A (en) Ventilation air-conditioning method in reactor housing fuel exchange bed
Hales et al. Experimental verification of linear combination model for relating indoor-outdoor pollutant concentrations
JP2017146086A (en) Push-pull ventilation type local exhaust device
JPS5944538A (en) Clean unit and clean room system for cleaning room
JPS6124933A (en) Air-conditioning system
Cheong Deposition of aerosol particles in ductwork
CN107246699A (en) A kind of fresh air purifier
JPH0533759B2 (en)
Woods et al. Evaluation of capture efficiencies of large push-pull ventilation systems with both visual and tracer techniques
JPS62299641A (en) Air circulation method for clean room
JPS61101732A (en) Clean room
JPS6483452A (en) Ventilator and air conditioner for vehicle
Zaki et al. Overview of HVAC system: operational significance of HVAC provision for pharmaceutical facilities
JPS61128044A (en) Air cleaning device
JPH09159239A (en) Clean room
Lu et al. A Study on Ventilation Systems for Removing Indoor House Dust
Michel Technology and ispection of air conditioning systems
Zhivov Guide for Air Supply Strategies in Spaces
JPH0438184Y2 (en)
JPS60129540A (en) Low air speed vertical laminar flow type clean room
JPH05296507A (en) Air cleaner
JPS5829803Y2 (en) Air conditioning blowout device