JPH0533759B2 - - Google Patents

Info

Publication number
JPH0533759B2
JPH0533759B2 JP61174999A JP17499986A JPH0533759B2 JP H0533759 B2 JPH0533759 B2 JP H0533759B2 JP 61174999 A JP61174999 A JP 61174999A JP 17499986 A JP17499986 A JP 17499986A JP H0533759 B2 JPH0533759 B2 JP H0533759B2
Authority
JP
Japan
Prior art keywords
ventilation
pool
wind speed
fuel
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61174999A
Other languages
Japanese (ja)
Other versions
JPS6332394A (en
Inventor
Koichi Yoshino
Shun Myata
Goro Masuzawa
Ryuta Okamoto
Taiji Sanpei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61174999A priority Critical patent/JPS6332394A/en
Publication of JPS6332394A publication Critical patent/JPS6332394A/en
Publication of JPH0533759B2 publication Critical patent/JPH0533759B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Ventilation (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子力発電所の原子炉建屋燃料交換
床の換気空調方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for ventilating and air-conditioning a refueling floor of a nuclear reactor building in a nuclear power plant.

〔従来の技術〕[Conventional technology]

原子炉建屋燃料交換床においては、室内で発生
する熱や浮遊粒子等の除去あるいは希釈のために
換気空調装置が設けられ、新鮮空気を燃料交換床
に送風している。一般に、この装置の容量は室内
の放射能濃度と温度の許容値から定められている
が、この種の燃料交換床が大空間であることもあ
つて、換気装置自体が大型のものとなつている。
In the reactor building refueling floor, a ventilation air conditioning system is installed to remove or dilute heat and suspended particles generated indoors, and fresh air is blown to the fuel exchange floor. Generally, the capacity of this device is determined based on the allowable radioactivity concentration and temperature in the room, but since this type of fuel exchange floor is a large space, the ventilation device itself is large. There is.

換気機能は、換気回数および吹出風速に依存す
るが、従来は概略的な把握から、換気回数および
風速が第1図の領域Xで示すような換気回数およ
び低風速の領域がよいとされていた。
The ventilation function depends on the number of ventilations and the wind speed, but from a rough understanding, it was previously thought that a region with a low ventilation frequency and wind speed as shown in area X in Figure 1 is best. .

第2図および第3図に、従来の一般的な換気空
調方式を示した。すなわち、燃料交換床には原子
炉ウエル1および燃料貯蔵プール2が形成されて
いる。他方、このプール2の反対側の壁際には、
吹出用ダクト3に連つて多数の吹出口4,4…が
形成され、ここから大量の新鮮空気が吹出され、
プール2の同側の壁際の多数の吸込口5,5…か
ら吸込み、ダクト6を介して吸引し、処理してい
る。また、プール2の壁にも多数の吸込口7,7
…が形成され、プール2より蒸発する放射性ミス
トを吸引捕獲し、汚染空気の拡散防止を図つてい
る。8は機器仮置プールである。
Figures 2 and 3 show conventional general ventilation air conditioning systems. That is, a reactor well 1 and a fuel storage pool 2 are formed on the fuel exchange floor. On the other hand, on the opposite wall of this pool 2,
A large number of air outlets 4, 4... are formed adjacent to the air outlet duct 3, from which a large amount of fresh air is blown out.
Suction is carried out through a large number of suction ports 5, 5, . In addition, there are many suction ports 7, 7 on the wall of the pool 2.
... is formed and the radioactive mist that evaporates from the pool 2 is suctioned and captured to prevent the spread of contaminated air. 8 is a device temporary storage pool.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、従来の換気方法は換気回数が多
いため、換気装置が大きく、経済的でない。他方
で、プールの壁に設けられている吸込口7は、プ
ールからの蒸発ミストを積極的に吸込むには十分
といえない。また、吸込口7を設けた場合、プー
ル2からの蒸発湿分が水滴となつて吸込口7から
排気ダクト6に吸込まれる虞れがあるとともに、
床下に吸込口を形成せねばならないので、施工が
困難で経済的でない。
As mentioned above, the conventional ventilation method requires a large number of ventilations, requires a large ventilation device, and is not economical. On the other hand, the suction port 7 provided on the wall of the pool is not sufficient to actively suck in the evaporative mist from the pool. In addition, when the suction port 7 is provided, there is a risk that evaporated moisture from the pool 2 becomes water droplets and is sucked into the exhaust duct 6 from the suction port 7.
Since the suction port must be formed under the floor, construction is difficult and uneconomical.

そこで、本発明の目的は、換気装置を小型化す
るにもかかわらず、十分な換気能力を発揮できる
換気空調方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a ventilation air conditioning method that can exhibit sufficient ventilation capacity even though the ventilation device is downsized.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するための本発明は、原子炉
建屋燃料交換床の燃料貯蔵プールと反対側の壁際
に配置された吹出口から換気用空気を吹出し、燃
料貯蔵プールと同側の壁際に配置された吸込口か
ら吸込む換気空調方法において、換気回数および
吹出風速を添付図面第1図のゾーンZ域内に設定
するとともに、燃料貯蔵プールのプール壁を通す
吸込みは行わないことを特徴とするものである。
In order to solve the above problems, the present invention blows out ventilation air from an outlet placed on the wall on the opposite side of the fuel storage pool on the fuel exchange floor of the reactor building, and places it on the same side of the wall as the fuel storage pool. In the ventilation air conditioning method, the number of ventilations and the blowing air speed are set within the zone Z region shown in Figure 1 of the attached drawings, and the suction is not carried out through the pool wall of the fuel storage pool. be.

〔作用〕[Effect]

本発明者らは、従来、概略的に良いと把握され
ていた換気回数および風速が、はたして適切であ
るのか検討したところ、換気回数を低下しても風
速を高めれば十分な換気機能を示すことを見出
し、本発明を完成した。すなわち、第1図の領域
Z内では、換気回数が少くても、風速が高いと、
燃料貯蔵プールからの蒸発ミストの上昇流を抑え
込み、拡散が防止される。したがつて、プールの
吸込口を形成しなくとも、所要の機能を達成でき
る。
The present inventors investigated whether the ventilation frequency and wind speed, which were conventionally understood to be generally good, were actually appropriate, and found that even if the ventilation frequency was decreased, sufficient ventilation function could be achieved by increasing the wind speed. They discovered this and completed the present invention. In other words, in region Z of Figure 1, even if the number of ventilations is small, if the wind speed is high,
This suppresses the upward flow of evaporative mist from the fuel storage pool and prevents it from spreading. Therefore, the required function can be achieved without forming a pool suction port.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面を参照しながらさらに詳説す
る。
The present invention will be explained in more detail below with reference to the drawings.

本発明者らは、換気回数および風速が換気機能
にどのように影響するか調べた。しかしながら、
実設備では試験が困難であるため、第2図および
第3図に示すような、実際の原子炉建屋燃料交換
床の縮尺1/10の相似模型を製作した。
The present inventors investigated how ventilation frequency and wind speed affect ventilation function. however,
Since it would be difficult to test with actual equipment, we created a 1/10 scale model of the actual reactor building refueling floor, as shown in Figures 2 and 3.

ここで言うところの相似模型とは、室内空気分
布を予測する方法として既に公知である、気流現
象を相似にする無次元数としてアルキメデス数
(Ar数)を一致させた模型を言い、具体的には nθ・n〓/nu 2=1 ……(1) という基準の温度差(θ)、基準の長さ(l)、基準
の吹出風速(u)を縮率(n)で表した関係式、つまり相
似式に従つて作られた模型である。そして、本発
明では縮率の組合せとして nθ=1,n=1/√10,nu=1/√10 ……(2) を採用して模型を製作した。なお、上記模型の外
に、縮尺1/25の相似模型を製作、使用し、可視化
粉体を気流中に飛散させて目視観察結果を行つ
た。
The similar model referred to here refers to a model in which the Archimedean number (Ar number) is matched as a dimensionless number that makes airflow phenomena similar, which is already known as a method for predicting indoor air distribution. is nθ・n〓/n u 2 = 1... (1) The relationship between the reference temperature difference (θ), the reference length (l), and the reference blowing wind speed (u) expressed as the contraction ratio (n) It is a model created according to a formula, that is, a similar formula. In the present invention, the model was manufactured by adopting the following combination of reduction ratios: nθ=1, n=1/√10, n u =1/√10 (2). In addition to the above model, a similar model with a scale of 1/25 was manufactured and used, and visual observation results were conducted by scattering visualization powder into the airflow.

まず、縮尺1/10の模型にて温度分布を調べた。
第4図〜第6図はその結果を示したもので、第4
図は()換気回数C=2.3回/hr、吹出風速V
=9.0m/sec、第5図は()換気回数C=1.1
回/hr、風速V=9.0m/secのそれぞれの場合に
ついて、プール2の周辺の吸込口7の有と無との
場合のそれぞれ第3図A〜D断面の温度分布を示
したものである。さらに、第6図は、()参考
として、壁際の吸込口5を閉として、プール2の
周辺の吸込口7のみから排気した場合を示したも
のである。この()の場合の換気回数は、()
の場合と同じく、換気回数C=2.3回/hr、風速
V=9.0m/secである。
First, we investigated the temperature distribution using a 1/10 scale model.
Figures 4 to 6 show the results.
The figure shows () ventilation frequency C = 2.3 times/hr, blowing wind speed V
=9.0m/sec, Figure 5 shows () ventilation frequency C=1.1
Figure 3 shows the temperature distribution in cross sections A to D in the presence and absence of the suction port 7 around the pool 2 for each case of wind speed V = 9.0 m/sec. . Furthermore, FIG. 6 shows (for reference) a case where the suction port 5 near the wall is closed and exhaust is exhausted only from the suction port 7 around the pool 2. In this case (), the ventilation frequency is ()
As in the case of , the ventilation frequency C = 2.3 times/hr and the wind speed V = 9.0 m/sec.

この結果によると、もし、プール2の周辺の吸
込口7がプールから蒸発するミストを直接捕獲し
ているのであれば、断面Dの温度は断面Cの温度
よりかなり高い値を示すはずであるが、殆んど差
異は認められない。このことは換気回数、風速を
種々変えた実験結果においても同様であつた。
According to this result, if the suction port 7 around the pool 2 directly captures the mist evaporating from the pool, the temperature of section D should show a much higher value than the temperature of section C. , almost no difference is observed. This was also the case in experimental results in which the ventilation frequency and wind speed were varied.

したがつて、プール2の周辺の吸込口7が室内
の温度に殆んど影響を与えないことが判る。しか
しながら、温度分布のみでは、蒸発ミストの挙動
を把握することが不十分である。
Therefore, it can be seen that the suction port 7 around the pool 2 has almost no effect on the indoor temperature. However, temperature distribution alone is insufficient to understand the behavior of evaporated mist.

そこで、縮尺1/25の相似模型に基づいて気流観
察を行つた。結果を第7図〜第18図に示した。
その考案を次に示す。
Therefore, we conducted airflow observations based on a similar model at a scale of 1/25. The results are shown in FIGS. 7 to 18.
The idea is shown below.

(イ) 換気回数C=2.3回hr;V=15.0〜6.0m/sec
(第7図〜第10図)の場合は、プール周辺の
吸込口の有無に関係なく、吹出気流がプール面
上を覆うように進み、蒸発ミストを室内に上昇
拡散させない。
(a) Ventilation frequency C = 2.3 times hr; V = 15.0 to 6.0 m/sec
In the case of (FIGS. 7 to 10), regardless of the presence or absence of suction ports around the pool, the blown air flow advances to cover the surface of the pool, and the evaporated mist does not rise and diffuse into the room.

(ロ) C=0.8回/hr;V=15.0m/sec(第13図お
よび第14図)の場合、(イ)と同様である。
(b) In the case of C = 0.8 times/hr; V = 15.0 m/sec (Figures 13 and 14), it is the same as (a).

(ハ) 2.3回/hr;V=3.0m/sec(第11図および
第12図)の場合、プール周辺の吸込口の有無
に関係なく、蒸発ミストが室内に上昇し、拡散
している。このことは、吹出風速が遅くなつた
ことにより、吹出気流がプール2に到達しなく
なつたためであると考えられる。またプール周
辺の吸込口の有無による室内気流分布の差異が
認められないことから、プール周辺に設けた吸
込口が本来の機能を十分に発揮していないこと
が確認された。
(c) 2.3 times/hr; In the case of V=3.0 m/sec (Figures 11 and 12), the evaporated mist rises and spreads indoors regardless of the presence or absence of suction ports around the pool. This is considered to be because the blowing airflow no longer reaches the pool 2 due to the slowing of the blowing wind speed. Furthermore, since no difference was observed in the indoor airflow distribution depending on the presence or absence of suction ports around the pool, it was confirmed that the suction ports provided around the pool were not functioning to their full potential.

(ニ) C=0.8回/hr、V=3.0m/sec(第17図お
よび第18図の場合、風量、風速とも小さいた
め、蒸発ミストの上昇拡散がみられる。また、
(ハ)と同様にプール周辺に設けた吸込口の効果が
認められない。
(d) C = 0.8 times/hr, V = 3.0 m/sec (in the case of Figures 17 and 18, both the air volume and wind speed are small, so upward diffusion of the evaporated mist is observed. Also,
Similar to (c), the effect of the inlet installed around the pool cannot be recognized.

(ホ) 第1図のZ領域以外のポイント、得に線l1
り下方についても気流観察を行つたが、いずれ
も蒸発ミストの上昇、拡散がみられた。
(e) Airflow observations were also conducted at points other than the Z region in Figure 1, especially below the line l1 , and in all cases, rising and spreading of evaporated mist was observed.

このように従来の設計例より換気回数を減じ、
さらにプール周辺に設けた吸込口を撤去しても、
風速を速くすれば、十分蒸発ミストの上昇拡散を
防止できることが判つた。したがつて、この条件
を満せば、プール周辺の吸込口も不要であること
が判つた。
In this way, the number of ventilations is reduced compared to the conventional design example,
Furthermore, even if the suction ports installed around the pool are removed,
It has been found that increasing the wind speed can sufficiently prevent the upward spread of the evaporated mist. Therefore, it has been found that if this condition is met, there is no need for suction ports around the pool.

他方で、第1図のl2線より右方であつても、所
要の機能を果たすことができるが、換気回数を低
減する本発明の目的に反する。また、l3線の左方
でも蒸発ミストの上昇拡散を防止できるが、温度
環境維持のために新たな冷熱源を必要とするな
ど、経済的でなくなることと、放射能による汚染
防止上、懸念される領域であり、好適な範囲でな
い。
On the other hand, although a position to the right of the l2 line in FIG. 1 may still perform the required function, it is contrary to the purpose of the present invention to reduce the number of ventilations. Although it is possible to prevent the evaporative mist from rising and spreading to the left of the l3 line, it is not economical as it requires a new cooling source to maintain the temperature environment, and there are concerns about preventing radioactive contamination. This is not a suitable range.

さらに、l4線の上方でも効果があるが、この場
合、高風速となり、騒音、振動が発生する懸念が
あり、実用的な範囲でない。
Furthermore, although it is effective above the L4 line, in this case there is a concern that the wind speed will be high and noise and vibration will be generated, which is not a practical range.

したがつて、好適な範囲は領域Z内である。 Therefore, the preferred range is within region Z.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、換気回数を低減
できるため、換気装置を小型化でき、経済的とな
り、またプール周辺(壁)の吸込口を形成しなく
とも足りるため、新設時の施工が容易となる。
As described above, according to the present invention, since the number of times of ventilation can be reduced, the ventilation system can be made smaller and more economical, and since there is no need to form a suction port around the pool (wall), construction at the time of new installation is easier. It becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の好適回数、風速範囲を示す相
関図、第2図は原子炉建屋燃料交換床の相似縮小
模型の平面図、第3図はその−線矢視図、第
4図〜第6図は実験結果の温度分布図、第7図〜
第18図は気流観察結果図である。 1……原子炉ウエル、2……燃料貯蔵プール、
3……吹出用ダクト、4……吹出口、5,7……
吸込口、6……排気用ダクト、8……機器仮置き
プール。
Fig. 1 is a correlation diagram showing the preferred number of times and wind speed range of the present invention, Fig. 2 is a plan view of a similar scaled model of the reactor building fuel exchange floor, Fig. 3 is a view taken along the - line, and Figs. Figure 6 is a temperature distribution diagram of the experimental results, Figure 7~
FIG. 18 is a diagram showing the results of airflow observation. 1...Reactor well, 2...Fuel storage pool,
3...Blowout duct, 4...Blowout outlet, 5,7...
Suction port, 6...exhaust duct, 8...temporary equipment storage pool.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉建屋燃料交換床の燃料貯蔵プールと反
対側の壁際に配置された吹出口から換気用空気を
吹出し、燃料貯蔵プールと同側の壁際に配置され
た吸込口から吸込む換気空調方法において、換気
回数および吹出風速を添付図面第1図のゾーンZ
域内に設定するとともに、燃料貯蔵プールのプー
ル壁を通す吸込みは行わないことを特徴とする原
子炉建屋燃料交換床の換気空調方法。
1. In the ventilation air conditioning method, ventilation air is blown out from an outlet located on the wall opposite to the fuel storage pool on the reactor building fuel exchange floor, and sucked in through an intake port located on the same side of the wall as the fuel storage pool. Check the ventilation frequency and blowout speed for Zone Z in Figure 1 of the attached drawing.
A ventilation and air conditioning method for a fuel exchange floor of a nuclear reactor building, characterized in that the ventilation and air conditioning method is set within a fuel exchange floor of a nuclear reactor building, and does not introduce suction through the pool wall of a fuel storage pool.
JP61174999A 1986-07-25 1986-07-25 Ventilation air-conditioning method in reactor housing fuel exchange bed Granted JPS6332394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61174999A JPS6332394A (en) 1986-07-25 1986-07-25 Ventilation air-conditioning method in reactor housing fuel exchange bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61174999A JPS6332394A (en) 1986-07-25 1986-07-25 Ventilation air-conditioning method in reactor housing fuel exchange bed

Publications (2)

Publication Number Publication Date
JPS6332394A JPS6332394A (en) 1988-02-12
JPH0533759B2 true JPH0533759B2 (en) 1993-05-20

Family

ID=15988444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61174999A Granted JPS6332394A (en) 1986-07-25 1986-07-25 Ventilation air-conditioning method in reactor housing fuel exchange bed

Country Status (1)

Country Link
JP (1) JPS6332394A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948334B2 (en) * 2005-10-31 2015-02-03 General Electric Company System and method for testing the steam system of a boiling water reactor

Also Published As

Publication number Publication date
JPS6332394A (en) 1988-02-12

Similar Documents

Publication Publication Date Title
JP2898607B2 (en) Indoor air conditioning unit and air circulation method
JP5626588B2 (en) Air conditioning system
KR101558141B1 (en) One-body type ventilate chamber with improved usability.
JPH0533759B2 (en)
KR101976330B1 (en) Cooling tower for abating noise and white smoke
JPS5944538A (en) Clean unit and clean room system for cleaning room
JPH10288357A (en) Heat exchanging and ventilation device
JP2017146086A (en) Push-pull ventilation type local exhaust device
JP2003294269A (en) Arrangement system of outdoor machine
JP3002962B2 (en) Ventilation and heating systems in houses
JPS6332395A (en) Ventilation air-conditioning method in reactor housing fuel exchange bed
JPH0136024Y2 (en)
JPH0466034A (en) Apparatus for raising animal
JP3228602B2 (en) Air conditioning ventilation fan
JPS5966629A (en) Louver window at air outlet port equipped with wind shielding device
JP2549212B2 (en) Air conditioner
JP2533863Y2 (en) Air supply and exhaust system for air conditioning in buildings
JP2571306Y2 (en) Ceiling-mounted air conditioner
JP2023042942A (en) Air conditioning system of data center
JPS6141992A (en) Preventive system of evaporation of pool water in nuclear reactor
JPH0350344Y2 (en)
JP3561835B2 (en) Underfloor ventilation
JPH0580637B2 (en)
JPS6020030A (en) Cleaning work room
JPS6026235A (en) Outdoor hood

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term