JPH0580637B2 - - Google Patents

Info

Publication number
JPH0580637B2
JPH0580637B2 JP60269290A JP26929085A JPH0580637B2 JP H0580637 B2 JPH0580637 B2 JP H0580637B2 JP 60269290 A JP60269290 A JP 60269290A JP 26929085 A JP26929085 A JP 26929085A JP H0580637 B2 JPH0580637 B2 JP H0580637B2
Authority
JP
Japan
Prior art keywords
pool
air supply
air
exhaust
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60269290A
Other languages
Japanese (ja)
Other versions
JPS62129735A (en
Inventor
Kazuhide Takamori
Michio Murase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60269290A priority Critical patent/JPS62129735A/en
Publication of JPS62129735A publication Critical patent/JPS62129735A/en
Publication of JPH0580637B2 publication Critical patent/JPH0580637B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は内部に発熱源を有する建屋内の汚染気
体の捕捉装置に係り、特に汚染気体の捕捉に好適
な建屋内の汚染気体の捕捉装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a device for trapping contaminated gas inside a building having a heat source therein, and particularly relates to a device for trapping contaminated gas inside a building suitable for trapping contaminated gas. .

〔発明の背景〕[Background of the invention]

内部に発熱源を有する建屋内の汚染気体の捕捉
装置の一例として、従来の沸騰水型原子力発電設
備における原子炉建屋内での定期点検(以下定検
と称する)時における汚染気体の捕捉装置を第1
6図、第17図に示す。第17図は第16図のE
−E′断面図である。本装置は万一の事故を想定し
た場合でも放射性物質の拡散を防止するためのも
ので、本来、原子炉建屋への汚染気体の拡散が問
題になることはない。従来の方式は、建屋内の床
面上約4mに設置した給気ダクト4の吹出口から
換気空気を吹出し、その一部を原子炉ウエル1、
ドライヤ・セパレータ機器仮置プール(以下ドラ
イヤ・セパレータプールと称する)2、及び使用
済燃料貯蔵プール(以下燃料プールと称する)3
の壁面にある埋込ダクト7からプール表面より発
生する放射性物質を含む汚染空気8を取り込みな
がら吸込む。他の気流は、給気ダクト4に対面し
て床上約5mに設置した排気ダクト5の吸込口で
吸込まれ、埋込ダクト7で吸込んだ気流とともに
フイルターにより汚染物質を除去した後、主排気
筒に導かれ、外部へ放出されるようになつてい
た。
As an example of a device for trapping contaminated gas in a building that has a heat source inside, we use a device for trapping contaminated gas during periodic inspections (hereinafter referred to as periodic inspections) inside the reactor building of conventional boiling water nuclear power generation facilities. 1st
It is shown in FIG. 6 and FIG. 17. Figure 17 is E of Figure 16.
-E' sectional view. This device is intended to prevent the spread of radioactive materials even in the unlikely event of an accident, and the spread of contaminated gas into the reactor building is not a problem. In the conventional system, ventilation air is blown out from the outlet of the air supply duct 4 installed approximately 4 meters above the floor surface of the building, and a portion of it is sent to the reactor well 1,
Dryer/separator equipment temporary storage pool (hereinafter referred to as dryer/separator pool) 2, and spent fuel storage pool (hereinafter referred to as fuel pool) 3
Contaminated air 8 containing radioactive substances generated from the surface of the pool is sucked in through an embedded duct 7 on the wall of the pool. The other airflow is sucked in by the suction port of the exhaust duct 5 installed about 5m above the floor facing the air supply duct 4, and after removing contaminants with the airflow sucked in by the embedded duct 7 through a filter, it is passed through the main exhaust pipe. It began to be guided and released to the outside.

しかし、埋込ダクト7はその開口がプール水面
上約70mmに設置されており、地震等、水張り時等
のプール水の波立ちによりダクト内に水が流入す
る可能性があるために、ダクト内にドレン及び隔
離弁を設け、流水防止を行なつていた。又、ダク
トがプール廻りの床面下に据付けられるために配
筋・配管等と多数の干渉が生じ、施工に多大な工
数が必要である。放射性物質がプールから発散さ
れた場合には、この放射性物質の捕捉効率を更に
向上することが望まれる。
However, the opening of the embedded duct 7 is installed approximately 70mm above the pool water surface, and water may flow into the duct due to earthquakes or other rippling of the pool water when the pool is filled with water. A drain and isolation valve were installed to prevent water from flowing. Furthermore, since the duct is installed under the floor around the pool, there is a lot of interference with reinforcement, piping, etc., and a large number of man-hours are required for construction. When radioactive substances are emitted from the pool, it is desired to further improve the efficiency of capturing the radioactive substances.

プール水のダクトへの流入防止に関する公知例
としては特開昭53−131585号、特開昭55−24612
号及び特開昭55−46141号がある。また、汚染拡
散防止に関する公知例としては、特開昭55−
48698号、特開昭56−46496号及び特開昭58−
33596号がある。
Publicly known examples of preventing pool water from flowing into ducts are JP-A-53-131585 and JP-A-55-24612.
No. 55-46141. In addition, as a publicly known example of prevention of pollution diffusion, JP-A-55-
No. 48698, JP-A-56-46496 and JP-A-58-
There is No. 33596.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、放射性物質による汚染を低減
でき、保守点検時における作業員の被爆を更に低
減できる建家内の汚染気体の捕捉装置を提供する
ことにある。
An object of the present invention is to provide a device for trapping contaminated gas inside a building, which can reduce contamination by radioactive substances and further reduce radiation exposure of workers during maintenance and inspection.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、放射性物質を含む物体が水中
に配置され、水温が上方の空間よりも高いプール
を有する建家内において、空気を上向きに流出さ
せる給気口を前記プールを囲むように設け、該給
気口を給気ダクトを介して送風機に接続し、前記
プールの上方には汚染気体を排気する排気口を設
け、該排気口を排気ダクトを介して吸引装置に接
続したことにある。
A feature of the present invention is that in a building having a pool in which an object containing a radioactive substance is placed underwater and where the water temperature is higher than the space above, an air supply port is provided surrounding the pool to cause air to flow upward; The air supply port is connected to a blower via an air supply duct, an exhaust port is provided above the pool for exhausting contaminated gas, and the exhaust port is connected to a suction device via an exhaust duct.

〔発明の実施例〕[Embodiments of the invention]

第18図、第19図、第20図及び第21図に
従来の原子炉建屋の換気方式における第16図の
E−E′断面、F−F′断面、G−G′断面、及び第1
7図のH−H′断面での汚染空気の分布を示す。
これらの図は、数値シミユレーシヨンにより原子
炉建屋の汚染物質濃度分布(プール近傍の濃度を
100%としたときの濃度5%以上の領域)及び気
流状態を求めた結果の概略図である。換気空気の
吹出温度(18〜30℃)に比べてプールの水温は高
い(40〜50℃)ために、第18図、第20図に示
すように使用済燃料プール3附近にて上昇気流が
生じ、同プール上空にプールからの放射性の汚染
物質を含む空気が流れ滞留する。第21図は天井
面における汚染範囲を示すが、汚染物質が天井面
に付着し堆積してくると、ちり・ほこりとなつて
床面に落ちる。
Figures 18, 19, 20, and 21 show the E-E', F-F', and G-G' cross sections of Figure 16 in the conventional reactor building ventilation system, and the
This figure shows the distribution of contaminated air in the section H-H' in Figure 7.
These figures show the contaminant concentration distribution in the reactor building (concentration near the pool) using numerical simulation.
FIG. 2 is a schematic diagram of the results of determining the concentration (area where the concentration is 5% or more when taken as 100%) and the airflow state. Since the pool water temperature is higher (40 to 50 degrees Celsius) compared to the ventilation air blowout temperature (18 to 30 degrees Celsius), an upward air current occurs near spent fuel pool 3, as shown in Figures 18 and 20. Air containing radioactive contaminants from the pool flows and stagnates above the pool. FIG. 21 shows the range of contamination on the ceiling surface, and when the contaminants adhere to and accumulate on the ceiling surface, they turn into dust and fall onto the floor surface.

このように今回初めて数値シミユレーシヨンに
より、従来の換気方式での埋込みダクトはダクト
開口が小さいことが定量的にわかつた。
In this way, for the first time, numerical simulations have quantitatively revealed that the duct opening of the embedded duct in the conventional ventilation system is small.

第23図及び第24図は換気による慣性力9と
プール20の発熱による浮力10が室内の汚染物
質の濃度分布形状に及ぼす影響をモデル化した図
を示したもので、それぞれ第18図、第20図に
示した従来の方式による汚染物質の濃度分布に対
応したものである。図からわかるようにプール2
0の発熱によつて生じる浮力10が建屋内の気流
パターンを決定しており、汚染物質拡散の最大の
原因となつている。また、従来の方式では、慣性
力9が発熱源による浮力10と直交しており、自
然現象である浮力10を有効に利用していない。
そこで、本発明では第22図に示すようにプール
(発熱源)20の外周部の床面に設置した給気ダ
クト4a,4bより換気空気を吹き出すことによ
り、プール(発熱源)上で強制的な上昇気流を作
り、プール(発熱源)より発生した放射性の汚染
物質をこの気流に乗せて、プール(発熱源)の上
方に位置する天井トラス上に設置した排気ダクト
5より効率よく排気させる。本発明は従来の方式
とは違つて換気による慣性力9と浮力10は同方
向となつており、自然現象の浮力10を最も有効
に利用した方式となつている。さらに、本発明で
最も特徴的なことはプール廻りに上向きのエアー
カーテンを形成することである。エアーカーテン
によりプール上空の放射性の汚染物質は横方向へ
の拡散がほとんど完全に遮断され、プール上面の
排気ダクト5により効率良く除去されることにな
る。
Figures 23 and 24 are diagrams modeling the effects of inertial force 9 due to ventilation and buoyancy 10 due to heat generation in the pool 20 on the concentration distribution shape of indoor pollutants. This corresponds to the contaminant concentration distribution according to the conventional method shown in FIG. As you can see from the diagram, pool 2
The buoyant force 10 generated by the heat generation of 0 determines the airflow pattern within the building and is the largest cause of pollutant dispersion. Furthermore, in the conventional system, the inertial force 9 is orthogonal to the buoyant force 10 caused by the heat generation source, and the buoyant force 10, which is a natural phenomenon, is not effectively utilized.
Therefore, in the present invention, as shown in FIG. 22, ventilation air is blown out from air supply ducts 4a and 4b installed on the floor at the outer periphery of the pool (heat source) 20, thereby forcing air over the pool (heat source). A rising air current is created, and radioactive pollutants generated from a pool (heat source) are carried on this air current and are efficiently exhausted from an exhaust duct 5 installed on a ceiling truss located above the pool (heat source). In the present invention, unlike the conventional system, the inertial force 9 due to ventilation and the buoyant force 10 are in the same direction, making the most effective use of the buoyant force 10 which is a natural phenomenon. Furthermore, the most distinctive feature of the present invention is that an upward air curtain is formed around the pool. The air curtain almost completely blocks radioactive contaminants in the air above the pool from spreading in the lateral direction, and they are efficiently removed by the exhaust duct 5 on the top of the pool.

以下、本発明の一実施例を第1図により説明す
る。
An embodiment of the present invention will be described below with reference to FIG.

第1図は、原子炉建屋の汚染気体の捕捉装置に
おけるダクト構成並びに動作の原理の概略を示す
ものである。
FIG. 1 schematically shows the duct configuration and the principle of operation in a contaminated gas trapping device for a nuclear reactor building.

第1図によれば原子炉建屋の汚染気体の捕捉装
置は、以下の構成となつている。建屋のプール
(発熱源)20の外周部の床面において、給気ダ
クト4を設置し、給気口11より換気空気を送風
機41により吹き出す。また、プール(発熱源)
20の上方に排気ダクト5を設置し、排気口12
より汚染気体8を換気装置40の中にある吸引装
置42により吸込む。その際、汚染気体8はフイ
ルター43にてろ過される。なお、図中の給気ダ
クト4および排気ダクト5を建屋の壁に埋め込ん
でもよい。
According to FIG. 1, the contaminated gas trapping device in the reactor building has the following configuration. An air supply duct 4 is installed on the floor of the outer periphery of the pool (heat source) 20 of the building, and ventilation air is blown out from the air supply port 11 by a blower 41. Also, the pool (heat source)
An exhaust duct 5 is installed above the exhaust port 12 .
The more contaminated gas 8 is sucked in by a suction device 42 in the ventilation device 40. At that time, the contaminated gas 8 is filtered by the filter 43. Note that the air supply duct 4 and exhaust duct 5 shown in the figure may be embedded in the wall of the building.

第1図に示した実施例の横断面の詳細を第2図
に、第2図におけるA−A′断面の詳細を第3図
に、第2図におけるB−B′断面の詳細を第4図
に示す。また、第5図は第4図における汚染物質
の濃度分布(従来型換気方式でのプール近傍の濃
度を100%としたときの濃度5%以上の領域)な
らびに気流状態を数値シミユレーシヨンによつて
求めた結果の概略を示したものである。
Details of the cross section of the embodiment shown in FIG. 1 are shown in FIG. 2, details of the A-A' cross section in FIG. 2 are shown in FIG. 3, and details of the B-B' cross section in FIG. As shown in the figure. In addition, Figure 5 shows the concentration distribution of pollutants in Figure 4 (area with a concentration of 5% or more when the concentration near the pool with the conventional ventilation method is 100%) and the airflow state, determined by numerical simulation. This is a summary of the results obtained.

第2図、第3図及び第4図によれば本発明によ
る建屋内の汚染気体の捕捉装置は、以下の構成と
なつている。建屋のプール廻りの床面において、
給気ダクト4a,4bを設置し、それぞれのダク
トの複数個の開口部より換気空気を送風機により
吹き出す。また、天井トラス6上に排気ダクト5
a,5b,5c,5d,5eを設置し、複数個の
開口部より、汚染空気を吸引装置により吸込む。
この排気ダクト5c,5d,5eは、トラス梁6
との干渉を避ける位置に配置され、排気ダクト5
a,5bに継がつている。そして、使用済燃料プ
ール側の壁面にて、下方に垂直に立ち上がつてい
るダクトにて、建屋の下階にある排気処理装置へ
と向かう。したがつて、プール廻りの床面に設置
されたダクトより吹き出された換気空気は、慣性
力によりプール廻りに強制的な上昇気流を生じ、
プール上約15mの位置に設置された排気ダクトの
開口部に吸込まれる。その結果、プール廻りに上
向きのエアーカーテンを形成する。また、プール
面上で発生した放射性の汚染物質は浮力により同
じくプール上方に設置された排気ダクトの開口部
に効率良く吸い込まれ、下階にある排気処理装置
内のフイルターにてろ過された後、主排気筒にて
外部へ放出される。
According to FIGS. 2, 3, and 4, the apparatus for trapping contaminated gas inside a building according to the present invention has the following configuration. On the floor around the building pool,
Air supply ducts 4a and 4b are installed, and ventilation air is blown out from a plurality of openings in each duct using a blower. In addition, an exhaust duct 5 is installed on the ceiling truss 6.
a, 5b, 5c, 5d, and 5e are installed, and contaminated air is sucked in by a suction device through a plurality of openings.
These exhaust ducts 5c, 5d, 5e are connected to the truss beam 6.
It is placed in a position to avoid interference with the exhaust duct 5.
It continues to a and 5b. A duct that rises vertically downwards on the wall on the spent fuel pool side leads to the exhaust treatment equipment located on the lower floor of the building. Therefore, the ventilation air blown out from the ducts installed on the floor around the pool creates a forced upward airflow around the pool due to inertia.
It is sucked into the opening of an exhaust duct installed approximately 15 meters above the pool. As a result, an upward air curtain is formed around the pool. In addition, radioactive pollutants generated on the pool surface are efficiently sucked into the opening of the exhaust duct installed above the pool due to buoyancy, and after being filtered by the filter in the exhaust treatment equipment on the lower floor, It is released to the outside through the main exhaust stack.

第5図によれば、定検時にプール水の蒸発によ
り発生した放射性汚染物質8は上記による強制的
な上向きのエアーカーテンによりプール上空で横
方向への拡散がほぼ完全遮断され、浮力によつて
プール上空に運ばれ、そこで効率良く排気される
ため汚染物質の濃度分布(従来型換気方式でのプ
ール近傍の濃度を100%としたときの濃度5%以
上の領域)はプール上空のごく近傍に限られる。
これは、第20図で示した従来の換気方式による
汚染物質の濃度分布と比較して、汚染領域が極め
て小さい。第6図はプール面近傍での放射性汚染
物質の相対濃度(従来型換気方式でのプール近傍
での濃度を100%としたときの濃度)と給気ダク
トの開口部での吹き出し速度との関係を示したも
のである。吹き出し風量を従来型のものと同じく
して吹き出し速度5m/s〜20m/sの範囲で調
べた結果、吹き出し速度が5m/s(従来の換気
方式での吹き出し速度とほぼ同程度)では上向き
の良好なエアーカーテンの形成によりプール面近
傍での汚染物質の濃度は従来型換気方式のものよ
り約1/2以下に減少することがわかる。つまり、
本発明の換気方式により汚染物質の捕集率は従来
の換気方式のものより約2倍以上に向上する。
According to FIG. 5, radioactive contaminants 8 generated by evaporation of pool water during periodic inspections are almost completely prevented from dispersing horizontally above the pool by the above-mentioned forced upward air curtain, and due to buoyancy. Because they are transported to the sky above the pool and efficiently exhausted there, the concentration distribution of pollutants (areas with a concentration of 5% or more when the concentration near the pool with conventional ventilation method is 100%) is very close to the sky above the pool. Limited.
This contaminant area is extremely small compared to the contaminant concentration distribution according to the conventional ventilation method shown in FIG. Figure 6 shows the relationship between the relative concentration of radioactive contaminants near the pool surface (concentration when the concentration near the pool with conventional ventilation method is taken as 100%) and the blowing speed at the opening of the supply air duct. This is what is shown. As a result of investigating the blowout speed in the range of 5m/s to 20m/s with the blowout air volume being the same as that of the conventional ventilation system, it was found that when the blowout speed was 5m/s (approximately the same as the blowout speed in the conventional ventilation method), the upward flow It can be seen that by forming a good air curtain, the concentration of pollutants near the pool surface is reduced to about half that of the conventional ventilation system. In other words,
The ventilation system of the present invention improves the pollutant collection rate by about twice as much as that of conventional ventilation systems.

第7図は天井面近傍での放射性汚染物質の相対
濃度(従来型換気方式でのプール近傍での濃度を
100%としたときの濃度)と給気ダクトの開口部
での吹き出し速度との関係を示したものである。
吹き出し風量を従来型のものと同じくして吹き出
し速度5m/s〜20m/sの範囲で調べた結果、
吹き出し速度が5m/s(従来の換気方式での吹
き出し速度とほぼ同程度)では上向きの良好なエ
アーカーテンの形成により天井面近傍での汚染物
質の濃度は従来型換気方式の相対濃度16%より約
1/4に減少する。つまり、本発明の換気方式によ
り天井面への汚染物質の付着量を従来の換気方式
のものより約1/4に低減できる。
Figure 7 shows the relative concentration of radioactive contaminants near the ceiling (concentration near the pool with conventional ventilation system).
This figure shows the relationship between the concentration (assumed to be 100%) and the blowing speed at the opening of the air supply duct.
As a result of investigating the blowout speed in the range of 5m/s to 20m/s with the same blowout air volume as the conventional type,
At a blowing speed of 5 m/s (approximately the same blowing speed as in the conventional ventilation method), due to the formation of a good upward air curtain, the concentration of pollutants near the ceiling surface is lower than the relative concentration of 16% in the conventional ventilation method. It decreases to about 1/4. In other words, the ventilation system of the present invention can reduce the amount of contaminants adhering to the ceiling surface to about 1/4 compared to the conventional ventilation system.

ところで、本実施例において用いられる上向き
のエアーカーテンを良好に形成するためには排気
ダクト5の開口部における吸い込み速度につい
て、速度分布を考慮する必要がある。第8図、第
9図、第10図及び第11図は、いずれも第2図
のB−B′断面図を示し、排気ダクト5の開口部
での吸い込み速度の分布が建屋内の汚染物質の濃
度分布及び気流状態に与える影響を示したもので
ある。第8図は、吸い込み速度(5m/s)が均
一で平坦な分布の場合の室内の気流状態を示すも
のである。図からわかるように良好な上向きのエ
アーカーテンは形成されていない。また、定常の
気流状態を得るのに20分以上も要している。第9
図は吸い込み速度分布として、排気ダクトにおい
て給気口の上方に位置する開口部での吸い込み速
度(5m/s)を発熱源の上方に位置する開口部
での吸い込み速度(1.25m/s)の4倍とした場
合の室内の気流状態を示すものである。図からわ
かるように良好な上向きのエアーカーテンが形成
されている。このときの定常状態は吹き出してか
ら10分以内で達成されている。また、第10図は
第8図の気流状態のときの汚染物質の濃度を示し
たものである。汚染物質(従来型換気方式でのプ
ール近傍の濃度を100%としたときの濃度5%以
上の領域)は建屋内全域に拡散している。第11
図は第9図の気流状態のときの汚染物質の濃度を
示したものである。汚染物質は上向きのエアーカ
ーテンによりプール面のごとく近傍に閉じ込めら
れて良好な分布をしている。
By the way, in order to properly form the upward air curtain used in this embodiment, it is necessary to consider the velocity distribution of the suction velocity at the opening of the exhaust duct 5. 8, 9, 10, and 11 all show cross-sectional views taken along line B-B' in FIG. This figure shows the concentration distribution and the influence on airflow conditions. FIG. 8 shows the airflow state in the room when the suction speed (5 m/s) is uniform and flatly distributed. As can be seen from the figure, a good upward air curtain was not formed. Additionally, it took more than 20 minutes to achieve steady airflow conditions. 9th
The figure shows the suction velocity distribution at the opening located above the air supply port in the exhaust duct (5 m/s), and the suction velocity at the opening located above the heat generating source (1.25 m/s). This shows the indoor airflow condition when the number is increased four times. As can be seen from the figure, a good upward air curtain is formed. Steady state at this time was achieved within 10 minutes after blowing out. Further, FIG. 10 shows the concentration of contaminants under the airflow state shown in FIG. 8. Contaminants (areas with a concentration of 5% or more when the concentration near the pool with conventional ventilation method is 100%) are spread throughout the building. 11th
The figure shows the concentration of contaminants under the airflow condition shown in FIG. 9. Contaminants are confined near the pool surface by the upward air curtain and are well distributed.

第25図は排気ダクトにおいて給気口の上方に
位置する開口部での吸込み速度を5m/sとし
て、この速度と発熱源の上方に位置する開口部で
の吸込み速度との比を変えたときの室内の天井面
近傍での濃度(従来換気方式でのプール近傍での
濃度を100%としたときの濃度)を示すものであ
る。図からわかるように、速度比が4のとき濃度
は最も低い。
Figure 25 shows the case where the suction speed at the opening located above the air supply port in the exhaust duct is 5 m/s, and the ratio between this speed and the suction speed at the opening located above the heat generating source is changed. This shows the concentration near the indoor ceiling (concentration when the concentration near the pool with conventional ventilation system is taken as 100%). As can be seen from the figure, when the speed ratio is 4, the concentration is the lowest.

以上のことにより、上向きのエアーカーテンを
形成する際、排気ダクト5の開口部において給気
口の上方に位置する吸い込み速度を発熱源の上方
に位置する吸い込み速度の約4倍にとることが良
好な上向きのエアーカーテンを得るために望まし
い。
As a result of the above, when forming an upward air curtain, it is preferable that the suction speed at the opening of the exhaust duct 5 located above the air supply port is approximately four times the suction speed located above the heat generation source. desirable to obtain an upward air curtain.

第12図は第9図の排気ダクト5の断面図を示
したものである。排気ダクト5の開口部におい
て、給気口の上方に位置する開口部にはダンパー
を設けず、発熱源の上方に位置する開口部の入口
にそれぞれ図のようにダンパー15を設けてい
る。このダンパー15により給気口の上方に位置
する開口部の流動抵抗を発熱源の上方に位置する
開口部の流動抵抗より小さくすることができ、そ
の結果給気口の上方に位置する開口部での排気速
度を発熱源の上方に位置する開口部での排気速度
より大きくすることができる。
FIG. 12 shows a sectional view of the exhaust duct 5 of FIG. 9. In the opening of the exhaust duct 5, no damper is provided at the opening located above the air supply port, but a damper 15 is provided at the inlet of the opening located above the heat generation source, as shown in the figure. This damper 15 makes it possible to make the flow resistance of the opening located above the air supply port smaller than that of the opening located above the heat generation source. The pumping speed at the opening located above the heat generating source can be made higher than the pumping speed at the opening located above the heat generating source.

第13図は第2図のB−B断面図を示し汚染気
体の捕捉装置の変形例を示したものである。図中
の給気ダクト4c,4dは、給気口の開口部の向
きを鉛直方向からプール(発熱源)の中心方向に
一定の角度だけ傾けてある。この場合、給気ダク
トの開口部から図に示すように斜め上方に換気空
気を吹き出すことになる。この換気方法により汚
染物質の分布はプール(発熱源)上空で絞られ狭
くなる。その結果、プール(発熱源)の上方に位
置する天井トラス上に設置する排気ダクト5eの
長さを短縮することができ、しかも汚染物質の捕
集効率をさらに向上させることができる。
FIG. 13 is a sectional view taken along the line BB in FIG. 2, showing a modification of the contaminant gas trapping device. In the air supply ducts 4c and 4d in the figure, the openings of the air supply ports are inclined at a certain angle from the vertical direction toward the center of the pool (heat source). In this case, ventilation air is blown diagonally upward from the opening of the air supply duct as shown in the figure. This method of ventilation narrows the distribution of contaminants above the pool (heat source). As a result, the length of the exhaust duct 5e installed on the ceiling truss located above the pool (heat source) can be shortened, and the efficiency of collecting pollutants can be further improved.

同様に第14図は第2図のB−B′断面図を示
し本発明の汚染気体の捕捉装置の変形例を示した
ものである。図中の給気ダクト4e,4fは、ダ
クト開口部から下向きに換気空気を吹き出すよう
になつている。この換気により図に示すようにプ
ール廻りの上向きのエアーカーテンはさらに上昇
速度が増加され、汚染物質の拡散の遮断がさらに
促進される。
Similarly, FIG. 14 is a sectional view taken along line BB' in FIG. 2, showing a modification of the pollutant gas trapping device of the present invention. The air supply ducts 4e and 4f in the figure are configured to blow ventilation air downward from the duct openings. This ventilation further increases the rate of rise of the upward air curtain around the pool, as shown in the figure, and further helps block the spread of contaminants.

さらに、第26図は第2図のB−B′断面図を
示した本発明の汚染気体の捕捉装置の変形例を示
したものである。図中の給気ダクト4g,4hは
換気空気を供給する機能をもつている。汚染物質
はプール上空に設けられた排気ダクト5a,5b
および5eから排気される。この変形例では第5
図に示した実施例の捕捉装置と比較すると、捕捉
効率の性能は悪いが、プールから発生する汚染物
質の量が比較的少ない場合に適用できる。
Furthermore, FIG. 26 shows a modification of the pollutant gas trapping device of the present invention, which is a sectional view taken along the line B-B' in FIG. The air supply ducts 4g and 4h in the figure have the function of supplying ventilation air. Contaminants are removed from exhaust ducts 5a and 5b installed above the pool.
and exhaust from 5e. In this modification, the fifth
Compared to the trapping device of the embodiment shown in the figure, the trapping efficiency performance is poor, but it can be applied when the amount of pollutants generated from the pool is relatively small.

第15図は本発明の汚染気体の捕捉装置を鋳造
設備のある建屋に応用した例を示すものである。
この場合、鋳物30、鋳型31が発熱源となる。
この応用例では屋外の外気を送風機41によつて
給気ダクト4を通して発熱源である鋳型31の外
周部に設置した給気口11の開口部から上向きに
吹き出す。鋳造設備から発生する粉塵等の汚染気
体50をこの上昇気流に乗せて、発熱源の上方に
位置する排気ダクト5の排気口12の開口部から
効率良く捕捉して吸い込む。さらに汚染気体は換
気装置40の中のフイルター43を通して吸引装
置42により屋外へ排気される。この応用例でも
換気による慣性力を発熱源による浮力と同方向に
することで、発熱源近傍から発生する汚染気体を
効率良く捕捉することができる。ところで第15
図に示す応用例では屋外の外気を用いて給気系統
と排気系統を分離して装置を構成したが、熱交換
器を介して給紙系統と排気系統を接続し、屋内の
空気を循環させて汚染気体の捕捉装置を構成する
ことも可能である。
FIG. 15 shows an example in which the polluted gas trapping device of the present invention is applied to a building containing casting equipment.
In this case, the casting 30 and the mold 31 become heat sources.
In this application example, outdoor air is blown upward by a blower 41 through an air supply duct 4 through an opening of an air supply port 11 installed on the outer periphery of a mold 31 which is a heat source. Contaminant gas 50 such as dust generated from the casting equipment is carried on this rising airflow, and is efficiently captured and sucked through the opening of the exhaust port 12 of the exhaust duct 5 located above the heat generation source. Further, the contaminated gas is exhausted to the outside by a suction device 42 through a filter 43 in the ventilation device 40. In this application example as well, by making the inertial force due to ventilation in the same direction as the buoyant force due to the heat source, it is possible to efficiently trap polluted gas generated from the vicinity of the heat source. By the way, the 15th
In the application example shown in the figure, the device was constructed by separating the air supply system and exhaust system using outdoor air, but the paper supply system and exhaust system are connected via a heat exchanger to circulate indoor air. It is also possible to configure a trapping device for contaminated gases.

本実施例によれば、第5図〜第14図に示すよ
うに、原子炉建屋においてプール(発熱源)廻り
に上向きのエアーカーテンを生じさせることによ
り汚染物質の作業エリアへの拡散を防止して、従
来の換気空調設備と比べて汚染物質の捕集効率を
2倍以上に向上させ、また天井面における汚染物
質の付着量を約1/4に低減し、さらに作業エリア
で作業する作業員の被曝量を約1/4に低減させる
効果がある。この他、以下の効果がある。
According to this embodiment, as shown in FIGS. 5 to 14, an upward air curtain is created around the pool (heat source) in the reactor building to prevent contaminants from spreading into the work area. This technology improves the pollutant collection efficiency by more than double compared to conventional ventilation air conditioning equipment, reduces the amount of pollutants adhering to the ceiling to about 1/4, and further improves the efficiency of workers working in the work area. It has the effect of reducing the amount of radiation exposure to about 1/4. In addition, there are the following effects.

(1) 従来の換気空調設備における埋込ダクトは、
その板厚が厚いために建屋におけるダクト物量
の大半を占めている。本発明では埋込ダクトが
ないことにより、原子炉建屋全体のダクト物量
の大巾な低減(約20%減)となる。
(1) Embedded ducts in conventional ventilation and air conditioning equipment are
Due to their thick plates, they account for most of the ductwork in the building. In the present invention, since there is no embedded duct, the amount of ducts in the entire reactor building is significantly reduced (about 20% reduction).

(2) 埋込ダクトに付随する隔離弁・遠隔操作スイ
ツチ等が不要となり、換気空調設備の合理化向
上となる。
(2) There is no need for isolation valves, remote control switches, etc. associated with embedded ducts, resulting in improved rationalization of ventilation and air conditioning equipment.

(3) プール廻りでの配筋・配管等との干渉調整が
不要となり、施工性が大巾に改善される。
(3) There is no need to adjust the interference with reinforcement, piping, etc. around the pool, greatly improving workability.

(4) 現状の換気空調設備では、各プール埋込ダク
トの排気風量をプールでの作業に応じて変える
モード切替を行なつていたが、新システムでは
必要なくなるため、制御システムの大巾な簡素
化となる。
(4) In the current ventilation air conditioning equipment, mode switching was performed to change the exhaust air volume of each pool-embedded duct depending on the work being done in the pool, but this will no longer be necessary with the new system, so the control system will be significantly simplified. It becomes.

(5) 従来の埋込ダクト方式に比べ、保守・点検性
が大巾に改善される。
(5) Compared to the conventional buried duct system, maintenance and inspection efficiency is greatly improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、発熱源であるプールを囲むよ
うに給気口を配置しプールの情報には行き口を配
置したので、プールから放射性汚染物質が放出さ
れた場合に、それの周囲への拡散を制限できかつ
それを効率よく捕捉できる。従つて、放射性物質
による建屋内の汚染を低減でき、保守点検時にお
ける作業員の被爆を更に低減できる。
According to the present invention, the air supply ports are arranged to surround the pool, which is the heat source, and the exit is arranged in the information about the pool, so that when radioactive pollutants are released from the pool, they can be distributed to the surrounding area. Dispersion can be limited and it can be captured efficiently. Therefore, contamination inside the building due to radioactive substances can be reduced, and radiation exposure of workers during maintenance inspections can be further reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の建屋内の汚染気体の捕捉装置
を示す系統図、第2図は第1図の平面断面図、第
3図は第2図のA−A′線断面図、第4図,第5
図,第8図〜第11図,及び第13図〜第14図
はそれぞれ第2図のB−B′線断面図に相当する
もので、本発明の作用を説明する図、第6図はプ
ール面近傍での放射性汚染物質の相対濃度と給気
ダクトの開口部での吹き出し速度との関係を示す
線図、第7図は天井面近傍での放射性汚染物質の
相対濃度と給気ダクトの開口部での吹き出し速度
との関係を示す線図、第12図は排気ダクトの一
例を示す断面図、第15図は本発明装置の他の実
施例を示す系統図、第16図は従来の換気空調設
備を示す原子炉建屋の平面図、第17図及び第1
8図はそれぞれ第16図のE−E′線断面図、第1
9図及び第20図はそれぞれ第16図のF−F′線
断面図及びG−G′線断面図、第21図は第17
図のH−H′線断面図、第22図,第23図及び
第24図はそれぞれ第5図,第18図及び第20
図に対応した図、第25図は天井面近傍の汚染物
質相対濃度を示す線図、第26図は第2図のB−
B′線断面図に相当する図で本発明のさらに他の
実施例を示すものである。 1……原子炉ウエル、2……ドライヤ・セパレ
ータ機器仮置プール、3……使用済燃料貯蔵プー
ル、4……給気ダクト、5……排気ダクト、6…
…天井トラス、7……埋込ダクト、8……汚染空
気、9……慣性力、10……浮力、11……給気
口、12……排気口、15……ダンパー、20…
…プール、30……鋳物、31……鋳型、40…
…換気装置、41……送風機、42……吸引装
置、43……フイルター、50……粉塵等の汚染
気体。
Fig. 1 is a system diagram showing a trapping device for contaminated gas in a building according to the present invention, Fig. 2 is a plan sectional view of Fig. 1, Fig. 3 is a sectional view taken along the line A-A' of Fig. 2, and Fig. 4 Figure, 5th
8 to 11, and 13 to 14 respectively correspond to the sectional views taken along line B-B' in FIG. 2, and FIG. A diagram showing the relationship between the relative concentration of radioactive contaminants near the pool surface and the blowing velocity at the opening of the supply air duct. A diagram showing the relationship with the blowing velocity at the opening, FIG. 12 is a sectional view showing an example of an exhaust duct, FIG. 15 is a system diagram showing another embodiment of the device of the present invention, and FIG. 16 is a conventional Plan of the reactor building showing ventilation and air conditioning equipment, Figures 17 and 1
Figure 8 is a sectional view taken along line E-E' in Figure 16, and Figure 1
9 and 20 are a sectional view taken along the line F-F' and a sectional view taken along the line G-G' of FIG. 16, and FIG. 21 is a sectional view taken along the line 17
The sectional views taken along line H-H' in the figure, Figures 22, 23, and 24 are Figures 5, 18, and 20, respectively.
Figure 25 is a diagram showing the relative concentration of pollutants near the ceiling surface, and Figure 26 is a diagram corresponding to Figure 2.
This figure corresponds to a sectional view taken along the line B' and shows yet another embodiment of the present invention. 1... Reactor well, 2... Dryer/separator equipment temporary storage pool, 3... Spent fuel storage pool, 4... Air supply duct, 5... Exhaust duct, 6...
... Ceiling truss, 7 ... Embedded duct, 8 ... Contaminated air, 9 ... Inertial force, 10 ... Buoyancy, 11 ... Air supply port, 12 ... Exhaust port, 15 ... Damper, 20 ...
...pool, 30...casting, 31...mold, 40...
...Ventilation device, 41...Blower, 42...Suction device, 43...Filter, 50...Contaminated gas such as dust.

Claims (1)

【特許請求の範囲】 1 放射性物質を含む物体が水中に配置され、水
温が上方の空間よりも高いプールを有する建家内
において、空気を上向きに流出させる給気口を前
記プールを囲むように設け、該給気口を給気ダク
トを介して送風機に接続し、前記プールの上方に
は汚染気体を排気する排気口を設け、該排気口を
排気ダクトを介して吸引装置に接続したことを特
徴とする建家内の捕捉装置。 2 特許請求の範囲第1項において、排気口を複
数の開口部に分割し、給気口の上方に位置する開
口部の流動抵抗をプールの上方に位置する開口部
の流動抵抗より小さくし、給気口の上方に位置す
る開口部での排気速度をプールの上方に位置する
開口部での排気速度よりも大きくしたことを特徴
とする建家内の汚染気体の捕捉装置。 3 特許請求の範囲第1項において、給気口の開
口部の向きを鉛直方向からプールの中心方向に所
定の角度だけ傾けたことを特徴とする建家内の汚
染気体の捕捉装置。
[Scope of Claims] 1. In a building having a pool in which an object containing a radioactive substance is placed underwater and the water temperature is higher than the space above, an air supply port is provided surrounding the pool to cause air to flow upward. , the air supply port is connected to a blower via an air supply duct, an exhaust port is provided above the pool for exhausting contaminated gas, and the exhaust port is connected to a suction device via an exhaust duct. A capture device inside the building. 2 In claim 1, the exhaust port is divided into a plurality of openings, and the flow resistance of the opening located above the air supply port is made smaller than the flow resistance of the opening located above the pool; A device for trapping polluted gas in a building, characterized in that the exhaust speed at an opening located above an air supply port is greater than the exhaust speed at an opening located above a pool. 3. The device for trapping polluted gas in a building according to claim 1, characterized in that the opening of the air supply port is inclined by a predetermined angle from the vertical direction toward the center of the pool.
JP60269290A 1985-12-02 1985-12-02 Trapper for polluted gas within building Granted JPS62129735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60269290A JPS62129735A (en) 1985-12-02 1985-12-02 Trapper for polluted gas within building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60269290A JPS62129735A (en) 1985-12-02 1985-12-02 Trapper for polluted gas within building

Publications (2)

Publication Number Publication Date
JPS62129735A JPS62129735A (en) 1987-06-12
JPH0580637B2 true JPH0580637B2 (en) 1993-11-09

Family

ID=17470287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60269290A Granted JPS62129735A (en) 1985-12-02 1985-12-02 Trapper for polluted gas within building

Country Status (1)

Country Link
JP (1) JPS62129735A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524402B2 (en) * 2005-03-28 2010-08-18 財団法人生産技術研究奨励会 Semi-volatile organic compound (SVOC) emission measurement method and measurement apparatus
JP2010038701A (en) * 2008-08-04 2010-02-18 Foundation For The Promotion Of Industrial Science Collection tube of semi-volatile organic compound, and measuring method and measuring device of semi-volatile organic compound
JP5986463B2 (en) * 2012-09-12 2016-09-06 日立Geニュークリア・エナジー株式会社 Ventilation and air conditioning equipment for nuclear power plants

Also Published As

Publication number Publication date
JPS62129735A (en) 1987-06-12

Similar Documents

Publication Publication Date Title
JP2009145341A (en) Air filtration for nuclear reactor habitability area
JPH0580637B2 (en)
KR20100100588A (en) Air decontamination system
KR200407836Y1 (en) Air cleaning system using ventilation unit
CN207827894U (en) Stench processing system for grille well
JP2002048329A (en) Exhaust gas treatment apparatus provided with straightening equipment
US4292052A (en) Air pollution control device and method
JPH0312278B2 (en)
JPS62166240A (en) Ventilation type air conditioner for building
JPS5927625B2 (en) Magnetic powder separation equipment
JP5986463B2 (en) Ventilation and air conditioning equipment for nuclear power plants
KR101796173B1 (en) Exhaust Gas Treatment Plant for Building of Nuclear Reactor
KR102333784B1 (en) Intergrated air conditioning system
KR102232888B1 (en) System for Controlling Air Density
JPS62293035A (en) Air conditioning system for underground electric equipment room in road tunnel
JP2002257970A (en) Ventilation equipment for nuclear reactor
JP2930446B2 (en) Atmosphere purification device in fusion reactor room
JPH0533759B2 (en)
JP3431724B2 (en) Safety equipment for clean room facilities
JPH0141957B2 (en)
KR100543719B1 (en) a device for removing gaseous contaminants in the air
Walsh et al. Ventilation systems for laboratories handling radioactive materials
EP4271945A1 (en) Geothermal air treatment apparatus with ion purification
KR20220105266A (en) ventilation system
JPH0373889A (en) Ventilation system for reactor operation stage