JPS6332294A - Finned heat transfer pipe - Google Patents

Finned heat transfer pipe

Info

Publication number
JPS6332294A
JPS6332294A JP17474486A JP17474486A JPS6332294A JP S6332294 A JPS6332294 A JP S6332294A JP 17474486 A JP17474486 A JP 17474486A JP 17474486 A JP17474486 A JP 17474486A JP S6332294 A JPS6332294 A JP S6332294A
Authority
JP
Japan
Prior art keywords
heat transfer
tube
fins
pipe
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17474486A
Other languages
Japanese (ja)
Other versions
JPH0565790B2 (en
Inventor
Shunpei Kawanami
川浪 俊平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP17474486A priority Critical patent/JPS6332294A/en
Publication of JPS6332294A publication Critical patent/JPS6332294A/en
Publication of JPH0565790B2 publication Critical patent/JPH0565790B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely

Abstract

PURPOSE:To provide a heat transfer pipe which has a good heat transfer performance and is easy to manufacture and repair by providing the pipe at its both ends with a smooth mouth piece larger in diameter than its intermediate part and providing said intermediate part with multiple fins lengthwise whose height does not exceed the circular profile of the pipe including the outer surface of the mouth pieces at the ends, and further disposing partitioning plates at a suitable pitch in the grooves which are formed between the fins. CONSTITUTION:Partitioning plates 5 which partition grooves between the fins at a suitable pitch are normally made of the same material as of the fins 4, and are bonded to the pipe wall and fins 4. The outer diameter of the partition plates 5 is so selected as to be less than that of the mouth pieces 2. Cooling water passes through the interior of the heat conducting pipe 1, and condensing gas passes outside the pipe. The condensing gas outside the pipe is cooled by the cooling water in the pipe and condenses. Condensate 6 on the outer surface of the pipe and fins 4 is drained from the partition plates 5 as shown by an arrow, and does not flow to the pipe wall and fins under the same. Because of this, the condensate becomes droplets directly under the partion plates 5, and so, even if the heat transfer pipe is positioned vertically, there is less area covered by the condensate film, improving the heat transfer rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、外面に多数のフィンを備えたフィン付伝熱管
に関し、特に竪型凝縮器に使用するに好適な伝熱管に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a finned heat exchanger tube having a large number of fins on its outer surface, and particularly to a heat exchanger tube suitable for use in a vertical condenser.

〔従来の技術〕[Conventional technology]

一般に、凝縮器には横型シェルチューブ熱交換器が多用
さ、れており、冷却液がチューブ内を流れ、凝縮すべき
ガス例えば凝縮冷媒がチューブ外を流れる構造となって
いる。ここで使用されるチューブとしては。
Generally, a horizontal shell tube heat exchanger is often used in a condenser, and has a structure in which a cooling liquid flows inside the tube and a gas to be condensed, such as a condensed refrigerant, flows outside the tube. As for the tube used here.

通常表面平滑なものが使用されている。Usually those with smooth surfaces are used.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし、かかる従来のシェルチューブ熱交換器では。 However, in such conventional shell-tube heat exchangers.

凝縮冷媒によってはチューブ外面の熱伝達係数が内面の
熱伝達係数に比べて小さく、このため、全体としての熱
貫流率を低下させているという問題があった。
Depending on the condensed refrigerant, the heat transfer coefficient on the outer surface of the tube is smaller than that on the inner surface, which causes a problem in that the overall heat transfer coefficient is reduced.

この問題卑を更に詳しく説明する。Let me explain this problem in more detail.

凝縮を伴う場2台の管外面の境膜熱伝達係数α1(−K
cal/rrr−h ・”C)は次の式で表される。
In the case of condensation, the film heat transfer coefficient α1 (-K
cal/rrr-h·”C) is expressed by the following formula.

ここで、h:垂直壁の高さくm) 水平管の時は管の直径(m) Δθ:凝縮温度と伝熱壁温度との差(”C)r:凝縮冷
媒の蒸発熱(Kcal/kg)γ:液化冷媒の比重量(
kg/rrr)λ:液化冷媒の熱伝導率 (Kcal/m−h −’C) η:液化冷媒の粘性係数(kg−h/ff1)C1;定
数、垂直壁では0.943 水平管では0.725 上記(1)式から明らかなように、垂直壁の高さhが大
きくなる程、管外面の境膜熱伝達係数αいを低下させる
ため、このhを小さくしてα1を大きくするために。
Here, h: Height of vertical wall (m) Diameter of pipe (m) for horizontal pipe Δθ: Difference between condensation temperature and heat transfer wall temperature (C) r: Heat of evaporation of condensed refrigerant (Kcal/kg ) γ: Specific weight of liquefied refrigerant (
kg/rrr) λ: Thermal conductivity of liquefied refrigerant (Kcal/m-h-'C) η: Viscosity coefficient of liquefied refrigerant (kg-h/ff1) C1: Constant, 0.943 for vertical walls, 0 for horizontal pipes .725 As is clear from equation (1) above, as the height h of the vertical wall increases, the film heat transfer coefficient α on the outer surface of the tube decreases. To.

従来は伝熱管を水平に配置し、且つ管径を小さくしてい
る。なお、伝熱管が水平に何本か重なる場合は下方に行
くほど、αイの値は低下し2重なる段数が多くなると下
側のα。は上側のα1の60%前後までにも低下するが
、全体としての平均熱伝達係数は、伝熱管を垂直に配置
する場合よりも大きくなる。
Conventionally, heat transfer tubes are arranged horizontally and the tube diameter is made small. In addition, when several heat transfer tubes are overlapped horizontally, the value of α decreases as it goes downward, and the value of α decreases as the number of double-layered tubes increases. Although this decreases to around 60% of the upper α1, the overall average heat transfer coefficient becomes larger than when the heat exchanger tubes are arranged vertically.

ところで、フロン系冷媒は、その潜熱が水蒸気に比較す
ると1/10以下と小さく、その他の性質ともあいまっ
て熱伝達係数α、は極めて小さく1例えば水平に配置し
た場合には、1600ないし2000 Kcal/n?
−h・℃程度である。これに対し、管内に水を流した場
合の水と管壁との熱伝達係数は、流速2m/SeCに対
し7000Kcal/rrr −h −’C前後であり
、流速3m/Secに対しては10000Kcal/r
rr−h・℃前後にも達し、管外面より数倍も大きく、
アンバランスとなっている。従って、伝熱管の熱貫流率
を向上させるには、管外面における伝熱性能を向上させ
ることが望ましい。
By the way, the latent heat of fluorocarbon-based refrigerants is less than 1/10 that of water vapor, and in conjunction with other properties, the heat transfer coefficient α is extremely small1. For example, when placed horizontally, it is 1600 to 2000 Kcal/ n?
It is about -h・℃. On the other hand, when water flows inside a pipe, the heat transfer coefficient between the water and the pipe wall is around 7000 Kcal/rrr -h -'C for a flow rate of 2 m/Sec, and 10000 Kcal for a flow rate of 3 m/Sec. /r
It reaches around rr-h・℃, which is several times larger than the outer surface of the tube.
It is unbalanced. Therefore, in order to improve the heat transfer coefficient of the heat exchanger tube, it is desirable to improve the heat transfer performance on the outer surface of the tube.

従来、この問題点を解決するものとして、伝熱管外面に
その長手方向に直角の多数の溝を形成し各溝間の部分を
フィンとすることによって管外面の伝熱面積を増加した
ものが知られている。しかしながら、このようにして形
成したフィンは高さの低いローフインであり伝熱面積を
大幅には増加させることができず、しかもフィンが低く
且つフィン間隔が狭いので、その間に凝縮液が溜まり易
く、管壁及びフィンの熱伝達係数α、を低下させてしま
い、全体として伝熱性能を大幅には向上させることがで
きなかった。
Conventionally, as a solution to this problem, a method has been known in which a large number of grooves are formed on the outer surface of the heat transfer tube perpendicular to the longitudinal direction, and the portion between each groove is used as a fin to increase the heat transfer area of the tube outer surface. It is being However, the fins formed in this way are low-height loaf-ins and cannot significantly increase the heat transfer area.Moreover, since the fins are low and the spacing between the fins is narrow, condensate tends to accumulate between them. The heat transfer coefficient α of the tube wall and fins was reduced, and the overall heat transfer performance could not be significantly improved.

裸管に高いフィンを多数接合すれば、伝熱面積を増やす
ことは可能であるが、フィンを高くすると、熱交換器の
製造時或いは補修時において、一方の管板のチューブ取
付穴からチューブ全体を挿入したり抜いたりすることが
できず、製造成いは補修作業が困難になる等の問題点が
生じる。
It is possible to increase the heat transfer area by joining a large number of tall fins to a bare tube, but if the fins are made taller, it becomes difficult to connect the entire tube from the tube mounting hole on one tube sheet when manufacturing or repairing the heat exchanger. It is not possible to insert or remove it, which causes problems such as making manufacturing and repair work difficult.

本発明はかかる問題点に鑑みて為されたもので、凝縮器
として使用するフィンチューブ式熱交換器に使用した際
に伝熱性能のよい、且つ製造、補修の容易な伝熱管を提
供することを目的とする。
The present invention has been made in view of such problems, and an object of the present invention is to provide a heat transfer tube that has good heat transfer performance when used in a fin-tube heat exchanger used as a condenser, and is easy to manufacture and repair. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決すべくなされた本発明は、管の両端に
その中間部の直径よりも大径の滑らかな口金部分を持ち
、その中間部には両端の口金部分の外表面を含む円筒面
より出ないような高さのフィンを長手方向に多数有し、
更に各フィンとフィンの間に構成される溝に仕切板を適
宜ピッチに設けたことを特徴とするフィン付伝熱管であ
る。
The present invention, which was made to solve the above-mentioned problems, has smooth cap portions at both ends of the tube with a diameter larger than the diameter of the intermediate portion, and the intermediate portion has a cylindrical surface including the outer surface of the cap portions at both ends. It has many fins in the longitudinal direction with a height that prevents them from protruding.
Furthermore, the heat exchanger tube with fins is characterized in that partition plates are provided at appropriate pitches in the grooves formed between each fin.

〔作用〕[Effect]

上記フィン付伝熱管はその両端に、中間のフィン外径と
同等若しくはそれ以上の径の滑らかな口金部分を有して
いるので、フィンチューブ式熱交換器を製作する際或い
は補修の際には1通常のフィンの無い平滑管と同様に、
管仮に形成したチューブ取付穴から伝熱管全体を抜き差
しすることができ、製造、補修作業を容易に行いうる。
The above-mentioned finned heat exchanger tube has a smooth cap part at both ends with a diameter equal to or larger than the outer diameter of the intermediate fin, so when manufacturing or repairing a finned tube heat exchanger, 1 Similar to a normal smooth tube without fins,
The entire heat exchanger tube can be inserted and removed from the tube attachment hole temporarily formed in the tube, making manufacturing and repair work easier.

また、上記フィン付伝熱管を垂直に配置し且つ管外面で
凝縮を行うように構成すると、フィン間に設けた仕切板
がその上方の管壁、フィン等に付着、凝縮した液を排出
し、その凝縮液が仕切板の下の管壁やフィンを流れるこ
とを防止する。このことは、上記(1)式におけるhの
値が伝熱管全長ではなく、仕切板の間隔となることを意
味する。このため、仕切板間隔を適当に選定することに
より、伝熱管を水平に配置した場合に比べ、熱伝達係数
α、を増加させることができ、更に。
Furthermore, when the finned heat exchanger tube is arranged vertically and configured to condense on the outer surface of the tube, the partition plate provided between the fins will discharge the condensed liquid that adheres to the tube wall, fins, etc. above, and This prevents the condensate from flowing through the pipe walls and fins below the partition plate. This means that the value of h in the above equation (1) is not the total length of the heat exchanger tubes but the interval between the partition plates. Therefore, by appropriately selecting the distance between the partition plates, the heat transfer coefficient α can be increased compared to when the heat transfer tubes are arranged horizontally.

フィン及び仕切板により管外面側の伝熱面積を増加させ
ることができるので、管外面側の伝熱性能を大幅に向上
させることができる。従って、管内面に比べて外面側の
熱伝達係数が小さい場合(例えばフロン系冷媒の凝縮を
行う場合)、伝熱管の内面基準の熱貫流率を大幅に向上
させることが可能となる。
Since the heat transfer area on the outer surface of the tube can be increased by the fins and the partition plate, the heat transfer performance on the outer surface of the tube can be significantly improved. Therefore, when the heat transfer coefficient on the outer surface side is smaller than that on the inner surface of the tube (for example, when condensing a fluorocarbon-based refrigerant), it is possible to significantly improve the heat transfer coefficient based on the inner surface of the heat exchanger tube.

〔実施例〕〔Example〕

以下1図面に示す本発明の詳細な説明する。 The present invention will be described in detail below with reference to one drawing.

第1図は本発明の一実施例になる伝熱管の縦断面図。FIG. 1 is a longitudinal sectional view of a heat exchanger tube according to an embodiment of the present invention.

第2図はその伝熱管の中央部の横断面図である。同図に
おいて、全体を参照符号1で示すフィン付伝熱管は。
FIG. 2 is a cross-sectional view of the central portion of the heat exchanger tube. In the same figure, the finned heat exchanger tube is designated as a whole by reference numeral 1.

両端の滑らかな口金部分2とその中間のフィン付管3と
からなっており、この口金部分2の外径は管板のチュー
ブ取付穴に適合する太さになっている。中間のフィン付
管3の管外径は2口金部分2の外径よりもかなり小さく
、標準的には外径が60%から70%の間になるよう小
さくされ、その周囲に多数の1本実施例では16枚のフ
ィン4が長手方向に且つ放射状に付けられている。フィ
ン4の高さは1両端の口金部分2の外表面を含む円筒面
よりでないように選定する。なお。
It consists of smooth cap portions 2 at both ends and a finned tube 3 in the middle, and the outer diameter of the cap portion 2 is large enough to fit the tube mounting hole in the tube plate. The outer diameter of the intermediate finned tube 3 is considerably smaller than the outer diameter of the two cap portions 2, and is typically reduced so that the outer diameter is between 60% and 70%. In the embodiment, 16 fins 4 are provided in the longitudinal direction and radially. The height of the fin 4 is selected so as not to be higher than the cylindrical surface including the outer surface of the base portion 2 at both ends. In addition.

中間のフィン付管3の外径、フィン4の高さ等は、対象
とする冷媒の熱伝達率の大小、冷却水のコストの大小等
によって適宜選択する。第1図に示す口金部分2と中間
のフィン付管3は2口金部分2と等径等肉の管材の中間
部分をロールで成形することにより、一体に製造される
ことができる。なお、フィン4は必ずしも管本体と一体
に成形される必要はなく、溶接、ろ−付は或いは機械加
工された溝にはめて締め込んでもよい。
The outer diameter of the intermediate finned tube 3, the height of the fins 4, etc. are appropriately selected depending on the heat transfer coefficient of the target refrigerant, the cost of cooling water, etc. The cap portion 2 and the intermediate finned tube 3 shown in FIG. 1 can be integrally manufactured by rolling the intermediate portion of a tube material having the same diameter and thickness as the two cap portions 2. Note that the fins 4 do not necessarily have to be formed integrally with the tube body, and may be welded, filtered, or fitted into machined grooves and tightened.

この場合、フィンは熱伝導率の高い材質で形成する。In this case, the fins are made of a material with high thermal conductivity.

また2両端の口金部分2と中間のフィン付管3とは上記
のように一体に成形する場合に限らず、溶接、ろ一部は
等で接合したものであってもよい。第3図はその場合の
実施例IAを示すもので、押し出し又はロール成形した
フィン付管3Aの端部に、一端を直角に絞り曲げして構
成した口金部分2Aをろ−付は又は溶接して一体化した
ものである。
Further, the cap portions 2 at both ends and the intermediate finned tube 3 are not limited to being integrally formed as described above, but may be joined by welding, the filter portion, etc. FIG. 3 shows Example IA in that case, in which a cap portion 2A formed by drawing and bending one end at right angles is attached or welded to the end of an extruded or roll-formed finned tube 3A. It is an integrated system.

第1図〜第3図において、5はフィンとフィンの間の溝
を適当ピッチで仕切るための仕切板であって、これはi
m常はフィン4と同材質で作り、溶接やろ−付けするか
、熱伝導性の接着剤で管壁及びフィン4に接着する。な
お、このイ1切板5の外径も口金部分2の外径以下にな
るように選定する。第2図はそのフィン付管3の管周囲
にフィン4が放射状に付き、仕切板5がフィン4とフィ
ン4の間の溝一杯にはめである所を示す。この仕切板5
も伝熱面積の一部を形成するので。
In Figures 1 to 3, reference numeral 5 denotes a partition plate for partitioning the grooves between the fins at an appropriate pitch.
It is usually made of the same material as the fins 4 and is welded, brazed, or adhered to the tube wall and the fins 4 with a thermally conductive adhesive. Note that the outer diameter of the cutting plate 5 is also selected to be equal to or smaller than the outer diameter of the mouthpiece portion 2. FIG. 2 shows a state in which fins 4 are attached radially around the finned tube 3, and the partition plate 5 is fully fitted into the groove between the fins 4. This partition plate 5
Since it also forms part of the heat transfer area.

これを密に設けることは、前述の(1)弐においてhを
小さくしてα1を高めると共に伝熱面積を大きくする効
果があり、伝熱特性の面からは好ましい。しかし2反面
コスト高となるので1両者を勘案して適当な値に設定す
る。
Providing them densely has the effect of decreasing h and increasing α1 in the above-mentioned (1) 2, and increasing the heat transfer area, which is preferable from the viewpoint of heat transfer characteristics. However, on the other hand, the cost is high, so the value should be set at an appropriate value by taking both factors into account.

第4図は上記フィン付伝熱管1を組み込んだ竪型凝縮器
を示す断面図である。11は上部管板、12は下部管板
、13は胴、14は鏡板である。伝熱管1は管板11.
12のチューブ取付穴に挿入固定され、垂直に配置され
る。鏡板14には冷却水導入口15が取付けられ、管板
12の下方に冷却水排出路16が形成されている。一方
、胴13には凝縮ガス導入口17と凝縮液排出口18が
設けられている。
FIG. 4 is a sectional view showing a vertical condenser incorporating the finned heat exchanger tube 1 described above. 11 is an upper tube sheet, 12 is a lower tube sheet, 13 is a body, and 14 is an end plate. The heat exchanger tube 1 has a tube plate 11.
It is inserted and fixed into the 12 tube mounting holes and arranged vertically. A cooling water inlet 15 is attached to the end plate 14, and a cooling water discharge passage 16 is formed below the tube plate 12. On the other hand, the shell 13 is provided with a condensed gas inlet 17 and a condensed liquid outlet 18 .

上記構成の竪型凝縮器において、伝熱管1の内部を冷却
水が通過し、管外を凝縮ガスが通過する。管外の凝縮ガ
スは管内の冷却水で冷却され、凝縮する。この際の凝縮
状態を第5図に拡大して示す。第5図は第1図のA部の
拡大図であり、管外面及びフィン4に凝縮した凝縮液6
は仕切板5から矢印で示すように排出され、その下方の
管壁或いはフィンにはあまり流れ込まない。このため、
′仕切板5の直下では滴状凝縮が行われることとなり、
伝熱管を垂直に使用しても膜状凝縮の部分が少なく、熱
伝達係数を大きくすることができる。
In the vertical condenser configured as described above, cooling water passes through the inside of the heat transfer tube 1, and condensed gas passes outside the tube. The condensed gas outside the tube is cooled by cooling water inside the tube and condensed. The condensed state at this time is shown in an enlarged scale in FIG. FIG. 5 is an enlarged view of part A in FIG.
is discharged from the partition plate 5 as shown by the arrow, and does not much flow into the tube wall or fins below. For this reason,
'Droplet condensation will occur directly below the partition plate 5,
Even if heat transfer tubes are used vertically, there is less film condensation and the heat transfer coefficient can be increased.

第6図は仕切板の変形例を示すものである。この仕切板
5Aは管壁に対して若干傾斜を付けて取付け、凝縮液の
排出をし易くしたものであり、フィン間の溝内の凝縮液
の滞留を一層少なくして、熱伝達係数を向上できる。
FIG. 6 shows a modification of the partition plate. This partition plate 5A is installed with a slight inclination to the pipe wall to make it easier to drain the condensate, further reducing the accumulation of condensate in the groove between the fins and improving the heat transfer coefficient. can.

第7図は取付を容易にした仕切板を示すものである。FIG. 7 shows a partition plate that is easy to install.

本実施例の仕切板5Bはフィン4間の溝内に位置する仕
切板部7とそれを連結したリング部8とからなるもので
、その製作工程を第8図、第9図、第10図に示す。第
8図は取付前の(J切板5Bを示すもので、仕切板部7
とリング部8とを有する平板状のものであり。
The partition plate 5B of this embodiment consists of a partition plate part 7 located in the groove between the fins 4 and a ring part 8 connecting the partition plate part 7, and the manufacturing process thereof is shown in FIGS. 8, 9, and 10. Shown below. Figure 8 shows the (J cutting plate 5B) before installation, and shows the partition plate part 7.
and a ring portion 8.

この仕切?li 5 Bは適当厚さの板材をプレスにて
打ち抜き形成される。この仕切板5Bを第9図に示すよ
うにフィン付管3の周囲に巻付け9位置をうまく合わせ
て両端9を突き合わせ溶接するか、予め両端を突き合わ
せて溶接し、リング状としたものを第9図のようにフィ
ン付管3にはめ込む。次に、仕切板部7の位置をフィン
4の間になるように合わせ、第10図に示すようにフィ
ン間の溝内に折り込み、必要に応じ溶接或いはろ−付け
する。これにより、第7図の構造が形成される。この場
合、リング部8もフィン効率は若干低下はするが、伝熱
面積として作用するので、それを勘案して伝熱面積に加
算しでよい。なお、リング部8は若干重ね合わせてスポ
ット溶接してもよい。
This partition? li 5 B is formed by punching a plate material of an appropriate thickness using a press. As shown in FIG. 9, this partition plate 5B is wrapped around the finned tube 3 and the 9 positions are well aligned, and both ends 9 are butt welded, or the ends 9 are butted and welded in advance to form a ring shape. 9 Fit it into the finned tube 3 as shown in Figure 9. Next, the partition plate portion 7 is positioned between the fins 4, folded into the groove between the fins as shown in FIG. 10, and welded or brazed as required. As a result, the structure shown in FIG. 7 is formed. In this case, the ring portion 8 also acts as a heat transfer area, although the fin efficiency is slightly reduced, so it may be added to the heat transfer area in consideration of this. Note that the ring portions 8 may be slightly overlapped and spot welded.

以下に9本発明の詳細な説明する。Below, nine detailed explanations of the present invention will be given.

実施例I 第1図、第2図に示す形状の、下記寸法の伝熱管を製作
した。
Example I A heat exchanger tube having the shape shown in FIGS. 1 and 2 and having the following dimensions was manufactured.

口金部分外径  20m フィン高さ     4.1 〃 厚さ    0.5N 中央部管外径  12寵 〃 管内径  10mm 仕切板ピッチ  201m 有効長      1m このフィン付伝熱管の管内外の伝熱面積は次の通りであ
る。
Outer diameter of mouthpiece: 20 m Fin height: 4.1 Thickness: 0.5 N Center tube outer diameter: 12 mm Tube inner diameter: 10 mm Partition plate pitch: 201 m Effective length: 1 m The heat transfer area inside and outside of this finned heat transfer tube is as follows: That's right.

+11  管外面側 フィン表面積−0,136rr+/m 管の表面積 −0,030〃 仕切板面  =0.022  〃 合  計   −0,188rd/m (2)管内面側 内面積   −0,0314rtr/m従って、管外面
積/管内面積−5,99# 6となる。
+11 Tube outer surface fin surface area -0,136rr+/m Pipe surface area -0,030〃 Partition plate surface =0.022〃 Total -0,188rd/m (2) Tube inner surface inner area -0,0314rtr/m Therefore, the area outside the tube/the area inside the tube is -5,99#6.

このフィン付伝熱管を垂直に配置し、管内冷却水の流速
を’l m / Secとして、R−12の凝縮に使用
し。
This finned heat exchanger tube was arranged vertically, and the flow rate of the cooling water in the tube was set to 'l m/Sec, and was used for condensing R-12.

熱貫流率を測定したところ、伝熱管全体としての熱貫流
率(管内面基準)は に= 4210Kcal/rrr−h −℃であった。
When the heat transfer coefficient was measured, the heat transfer coefficient of the entire heat exchanger tube (based on the inner surface of the tube) was 4210 Kcal/rrr-h-°C.

管内面側の熱伝達率は、流速2 m / Secに対し
て約7000Kcal/rrr−h ・”Cであるので
、コノ値及び前記熱貫流率から、管外面側の熱伝達率を
計算により求めると、管内面の単位面積を基準とした管
外面側の熱伝達率は。
The heat transfer coefficient on the inner surface of the tube is approximately 7000 Kcal/rrr-h ・"C for a flow rate of 2 m/Sec, so the heat transfer coefficient on the outer surface of the tube is calculated from the Kono value and the heat transfer coefficient. And, the heat transfer coefficient on the outside surface of the tube is based on the unit area of the inside surface of the tube.

α−10970Kcal/nf −h ・’Cである。α-10970Kcal/nf-h・'C.

比較例■ 比較のため、ローフイン式の、下記寸法の伝熱管を水平
に配置した場合の伝熱特性を求めた。
Comparative Example ■ For comparison, the heat transfer characteristics were determined when a loaf-in type heat transfer tube with the dimensions shown below was placed horizontally.

フィン外径  18.75 in l 内径  15.85龍 管内径    13.55 ms フィン山数   750山/m この伝熱管の管内外の伝熱面積は次の通りである。Fin outer diameter 18.75 in l Inner diameter 15.85 dragon Pipe inner diameter 13.55 ms Number of fins: 750 fins/m The heat transfer area inside and outside the tube of this heat transfer tube is as follows.

(11管外面側 フィン表面積−0,1182rtr/m管外表面  −
0,0498” 合  計   =O,1680rrr/m(2)  管
内面側 内面積   =0.04257n?/m従って、管外面
積/管内面積−3,95= 4となる。
(11 Pipe outer surface side fin surface area - 0,1182 rtr/m Pipe outer surface -
0,0498" Total = O, 1680 rrr/m (2) Inner area on the inner surface of the tube = 0.04257 n?/m Therefore, the outer area of the tube/the inner area of the tube - 3,95 = 4.

このローフイン式伝熱管を水平に配置し、実施例■と同
量の冷却水を伝熱管内に通し、R−12の凝縮を行って
熱貫流率を測定した。伝熱管全体としての熱貫流率(管
内面基準)は に= 2640Kcal/r+f ・h ・℃であった
。ただし、この値は管をINだけ配置した場合のもので
あり、実際の凝縮器では伝熱管を多層に重ねているので
、その平均熱貫流率は上記の値より小さく1通常2割程
度低下すると考えると、多層に配置した場合の平均熱貫
流率は。
This loaf-in type heat transfer tube was placed horizontally, and the same amount of cooling water as in Example 2 was passed through the heat transfer tube to condense R-12 and measure the heat transfer coefficient. The heat transmission coefficient of the heat exchanger tube as a whole (based on the inner surface of the tube) was 2640 Kcal/r+f·h·°C. However, this value is based on the case where only IN tubes are arranged, and in an actual condenser, the heat transfer tubes are stacked in multiple layers, so the average heat transfer coefficient is smaller than the above value, and is usually about 20% lower. Considering, the average heat transfer coefficient when arranged in multiple layers is.

K、=2200Kcal/nf−h・℃となる。K,=2200Kcal/nf-h·℃.

ところで、比較例Iの場合には管内径が実施例Iの場合
よりも大きいので、実施例Iと同流量の冷却水を流した
場合の流速は、  1.1 m /Secとなっている
。管内面側の熱伝達率は、流速1.1 m / Sec
に対して約4600Kcal/n(−h ・’Cである
ので、この値及び前記平均熱貫流率から、管外面側の熱
伝達率を計算により求めると、管内面の単位面積を基準
とした管外面側の熱伝達率は。
By the way, in the case of Comparative Example I, the pipe inner diameter is larger than that in Example I, so the flow velocity when the same flow rate of cooling water as in Example I is flowed is 1.1 m /Sec. The heat transfer coefficient on the inner surface of the tube is a flow rate of 1.1 m/Sec.
4,600 Kcal/n (-h ・'C), so from this value and the average heat transfer coefficient, the heat transfer coefficient on the outside surface of the tube is calculated. What is the heat transfer coefficient on the outer surface?

α−4850Kcal/n(−h ・”cとなる。α-4850Kcal/n (-h・”c.

実施例Iを比較例■とを比較すれば良く分かるように、
実施例■の熱貫流率は比較例■に対し、約1.9倍に増
加しており、また管外面側の熱伝達率は、約2.2倍に
増加している。
As can be clearly seen by comparing Example I with Comparative Example ■,
The heat transfer coefficient of Example (2) is approximately 1.9 times higher than that of Comparative Example (2), and the heat transfer coefficient on the outer surface of the tube is approximately 2.2 times higher than that of Comparative Example (2).

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように2本発明のフィン付伝熱
管は9両端にフィン外径と同等以上の外径の口金部分を
有しているので、熱交換器を製造する際に、管仮に取付
ける作業、或いは補修する際に管板から引き抜く作業が
容易である。更に、このフィン付管は外面のフィンによ
り伝熱面積を増大させるとともに、仕切板を設けること
により、垂直に且つ凝縮に使用した際の凝縮側の伝熱特
性が向上し、全体としての熱貫流率を向上することがで
きるという効果を有している。
As is clear from the above description, the finned heat exchanger tube of the present invention has a cap portion at both ends with an outer diameter equal to or larger than the fin outer diameter. Easy to install or pull out from the tube sheet for repair. Furthermore, this finned tube increases the heat transfer area with the fins on the outer surface, and by providing a partition plate, the heat transfer characteristics on the condensing side when used vertically and for condensation are improved, and the overall heat transfer is improved. This has the effect of improving the rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による伝熱管の縦断面図。 第2図はその中間部の横断面図、第3図は他の実施例に
よる伝熱管の一部の縦断面図、第4図は第1図の伝熱管
を使用した竪型凝縮器の縦断面図、第5図はその凝縮器
における凝縮状態を示すもので、第1図のA部の拡大断
面図、第6図、第7図はそれぞれ仕切板の変形例を示す
第5図と同一部分の断面図、第8図、第9図、第10図
は第7図の仕切板5Bを製作する工程を示す説明図であ
る。 1−フィン付伝熱管  2−口金部分 3−フィン付管    4−フィン 5−仕切板      6=−凝縮液 11.12−管板   13−・胴 15−冷却水人口   17−凝縮ガス導入口18−凝
縮液排出口 第1図    牙3図 牙6図 牙7図
FIG. 1 is a longitudinal sectional view of a heat exchanger tube according to an embodiment of the present invention. Figure 2 is a cross-sectional view of the intermediate part thereof, Figure 3 is a longitudinal cross-sectional view of a part of a heat exchanger tube according to another embodiment, and Figure 4 is a longitudinal cross-section of a vertical condenser using the heat exchanger tube of Figure 1. The top view and Figure 5 show the condensation state in the condenser, and the enlarged sectional view of part A in Figure 1, Figures 6 and 7 are the same as Figure 5 showing a modified example of the partition plate. The partial sectional views, FIGS. 8, 9, and 10 are explanatory diagrams showing the process of manufacturing the partition plate 5B of FIG. 7. 1 - Heat exchanger tube with fins 2 - Base part 3 - Tube with fins 4 - Fins 5 - Partition plate 6 = - Condensate 11.12 - Tube plate 13 - Body 15 - Cooling water population 17 - Condensed gas inlet 18 - Condensate outlet Fig. 1 Fang 3 Fig. Fang 6 Fig. Fang 7

Claims (1)

【特許請求の範囲】[Claims] 管の両端にその中間部の直径よりも大径の滑らかな口金
部分を持ち、その中間部には両端の口金部分の外表面を
含む円筒面より出ないような高さのフィンを長手方向に
多数有し、更に各フィンとフィンの間に構成される溝に
仕切板を適宜ピッチに設けたことを特徴とするフィン付
伝熱管。
The tube has a smooth cap part with a diameter larger than the diameter of the middle part at both ends, and a fin in the middle part has a height such that it does not protrude from the cylindrical surface including the outer surface of the cap parts at both ends in the longitudinal direction. A finned heat exchanger tube having a large number of fins, and further comprising partition plates provided at appropriate pitches in grooves formed between each fin.
JP17474486A 1986-07-26 1986-07-26 Finned heat transfer pipe Granted JPS6332294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17474486A JPS6332294A (en) 1986-07-26 1986-07-26 Finned heat transfer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17474486A JPS6332294A (en) 1986-07-26 1986-07-26 Finned heat transfer pipe

Publications (2)

Publication Number Publication Date
JPS6332294A true JPS6332294A (en) 1988-02-10
JPH0565790B2 JPH0565790B2 (en) 1993-09-20

Family

ID=15983921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17474486A Granted JPS6332294A (en) 1986-07-26 1986-07-26 Finned heat transfer pipe

Country Status (1)

Country Link
JP (1) JPS6332294A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190750A (en) * 2014-03-31 2015-11-02 株式会社日立製作所 Heat exchanger and heat transfer pipe of heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124965A (en) * 1974-08-26 1976-02-28 Furukawa Metals Co NETSUKOKANKYODENNETSUKAN
JPS56103792U (en) * 1979-12-29 1981-08-13
JPS5777691U (en) * 1981-09-16 1982-05-13

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124965A (en) * 1974-08-26 1976-02-28 Furukawa Metals Co NETSUKOKANKYODENNETSUKAN
JPS56103792U (en) * 1979-12-29 1981-08-13
JPS5777691U (en) * 1981-09-16 1982-05-13

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190750A (en) * 2014-03-31 2015-11-02 株式会社日立製作所 Heat exchanger and heat transfer pipe of heat exchanger
US10126075B2 (en) 2014-03-31 2018-11-13 Hitachi, Ltd. Heat exchanger and heat transfer tube of the heat exchanger

Also Published As

Publication number Publication date
JPH0565790B2 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
US5341870A (en) Evaporator or evaporator/condenser
US5279360A (en) Evaporator or evaporator/condenser
JP3154409B2 (en) Condenser-heat exchanger combined device
US6401809B1 (en) Continuous combination fin for a heat exchanger
US5931226A (en) Refrigerant tubes for heat exchangers
EP0181661A1 (en) Absorption heat pump comprising an integrated generator and rectifier
KR100414852B1 (en) Refrigerant distributor for heat exchanger
JP3661275B2 (en) Stacked evaporator
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JPH1062092A (en) Two row flat tube type heat exchanger
JP4422590B2 (en) Return bend and fin-and-tube heat exchangers
JPS6332294A (en) Finned heat transfer pipe
JP2990947B2 (en) Refrigerant condenser
JP2000508759A (en) Air-cooled condenser
JPH0755380A (en) Heat exchanger
JPH05332694A (en) Heat exchanger
JPH0762596B2 (en) Aluminum condenser for air conditioner
JP2002318090A (en) Duplex heat exchanger
EP0074384B1 (en) Heat exchanger
JPH0345301B2 (en)
JPS61191889A (en) Heat exchanger
JPH0331693A (en) Finned heat exchanger
JP2677420B2 (en) Heat exchanger for refrigerant condenser
JPS58214783A (en) Heat exchanger
JP2004069258A (en) Flat tube, and method of manufacturing heat exchanger using flat tube