JPS63319218A - Production of optical device - Google Patents

Production of optical device

Info

Publication number
JPS63319218A
JPS63319218A JP15140587A JP15140587A JPS63319218A JP S63319218 A JPS63319218 A JP S63319218A JP 15140587 A JP15140587 A JP 15140587A JP 15140587 A JP15140587 A JP 15140587A JP S63319218 A JPS63319218 A JP S63319218A
Authority
JP
Japan
Prior art keywords
molding
mold
face
temp
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15140587A
Other languages
Japanese (ja)
Inventor
Sunao Miyazaki
直 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15140587A priority Critical patent/JPS63319218A/en
Publication of JPS63319218A publication Critical patent/JPS63319218A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To produce an optical device in which a fault such as strain and deformation is not caused in a short time by regulating only the vicinity of the surface of a press-molding face of a stock for molding to temp. not lower than the transition point of glass and press-molding the stock with a mold regulated to temp. not lower than this temp. CONSTITUTION:A stock 1 which has a protruding face 1b correspondent to the fitting face 2a of a lower mold 2 and is used for molding an optical device is arranged on the fitting face 2a of the lower mold 2 arranged in a drum mold 5. The top face of the stock 1 is previously formed into a recessing face 1a close to the shape of a required molded article. The recessing face 1a is heated with an infrared heater or the like and only the vicinity of its surface is regulated to temp. not lower than the transition point of glass. The upper mold 3 of the metallic mold for pressing is heated together therewith and its temp. is regulated to temp. not lower than the temp. of the surface of the stock 1. Then this upper mold 3 is pressed on the recessing face 1a and the press- action face 3a of the upper mold 3 is transferred thereon. Thereafter all parts of the mold are cooled and the molded article of the optical device finished in press-molding is taken out therefrom.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光学素子を加圧成形によシ製造する光学素子
製造方法に関する。よシ詳細には、加圧成形のみによシ
研削加工を不要とするような高い面精度を有する光学素
子を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical element manufacturing method for manufacturing an optical element by pressure molding. More specifically, the present invention relates to a method of manufacturing an optical element with high surface accuracy that requires only pressure molding and eliminates the need for grinding.

(従来の技術) 従来、レンズ8プリズム、フィルター等の光学素子の多
くは、ガラス等の光学素子成形用素材の研磨処理によっ
て成形されてきた。ところが、この研磨処理には、相当
な時間と熟練技術が必要でありて、短時間に大量の光学
素子を製造することは困難であった。
(Prior Art) Conventionally, many optical elements such as lens 8 prisms and filters have been molded by polishing a material for molding optical elements such as glass. However, this polishing process requires a considerable amount of time and skill, making it difficult to manufacture a large number of optical elements in a short period of time.

そこで、近年、一対の成形用屋内に光学素子成形用素材
を収容配置し、これを加圧することによシレンズ等の光
学素子を成形する方法が開発されている。
Therefore, in recent years, a method has been developed in which optical element molding materials are housed in a pair of molding chambers and pressurized to mold optical elements such as lenses.

ここで、この方法によりx学素子を成形する従来の具体
例について、第5図及びwcG図を参照しながら説明す
る。
Here, a conventional example of molding an x-dimensional element using this method will be described with reference to FIG. 5 and wcG diagram.

同図に示す光学素子成形用型は、凹レンズを成形するも
のであシ、上世16と、下型17と、用型18とから成
るものである。上型16は成形しようとしてbる光学素
子の片側機能面を成形するよう鏡面仕上げされた凸状の
内面16&を有している。下型17は光学素子の反対側
の機能面を成形するよう同様に鏡面仕上げされた凹状の
内面17mを有している。又、用型工8は光学素子の側
面を成形する。
The mold for molding an optical element shown in the figure is for molding a concave lens, and consists of an upper mold 16, a lower mold 17, and a working mold 18. The upper mold 16 has a convex inner surface 16 with a mirror finish to form one functional surface of the optical element to be molded. The lower mold 17 has a similarly mirror-finished concave inner surface 17m so as to mold the functional surface on the opposite side of the optical element. Further, the molder 8 molds the side surface of the optical element.

この成形型で光学素子を成形するには、まず、下を17
の内面17a上に成形用素材13を載置し、さらにその
上に上型16を設ける。次に、この状態で加熱し、加圧
装置(図示せず)にセットする。そして、成形用素材1
3全体を成形に必要な温度まで加熱した後、第6図に示
すように加圧棒15で上型16を加圧して光学素子14
を成形する。次いで、成形用素材13が光学素子14に
成形されるに充分な時間にわたって圧力を加えた後、型
全体を冷却し、その後、屋内の光学素子14を取出す。
To mold an optical element with this mold, first
A molding material 13 is placed on the inner surface 17a of the molding material 13, and an upper mold 16 is further provided thereon. Next, it is heated in this state and set in a pressurizing device (not shown). And molding material 1
After heating the entire 3 to the temperature required for molding, pressurize the upper mold 16 with a pressure rod 15 to mold the optical element 14.
to form. Next, after applying pressure for a sufficient period of time to mold the molding material 13 into the optical element 14, the entire mold is cooled, and then the optical element 14 indoors is removed.

このような加圧成形法によれば、成形後研削加工をする
ことなく面精度の高い光学素子を得ることができる。
According to such a pressure molding method, an optical element with high surface precision can be obtained without performing grinding after molding.

(発明が解決しようとする問題点) しかしながら、このような加圧成形法は、成形用素材を
型で加圧する際、この素材全体をガラス転移点以上の温
度まで加熱して軟化せしめるため、次のような問題点が
あった。即ち、成形用素材を上記のように加熱するに要
する時間として15分〜20分間を必要としていた。又
、加圧に要する時間本素材全体を変形することから、数
分〜10分程度を必要としていた。さらに、加圧後、こ
の素材全体を冷却するのに急冷すると成形品内部に歪が
生じ易く、複屈折の原因となったり、又わずかの力で割
れ易くなったシする。このような歪の発生を防ぐには毎
分3℃〜数10℃で所定の温度まで徐冷する必要があシ
、加熱から冷却まで相当の時間を必要とするものであっ
た。
(Problems to be Solved by the Invention) However, in this pressure molding method, when pressurizing the molding material with a mold, the entire material is heated to a temperature above the glass transition point to soften it. There were problems like. That is, it takes 15 to 20 minutes to heat the molding material as described above. Further, the time required for pressurization is several minutes to about 10 minutes since the entire material is deformed. Furthermore, if the entire material is cooled quickly after being pressurized, distortion tends to occur inside the molded product, causing birefringence, and making it more likely to break with a small amount of force. In order to prevent the occurrence of such distortion, it is necessary to slowly cool the material to a predetermined temperature at a rate of 3° C. to several 10° C. per minute, and a considerable amount of time is required from heating to cooling.

本発明は、上記のような問題点を解決するために成され
たもので、加熱から冷却までに要する時間を短縮し、し
かも得られた成形品に歪、変形等の欠陥が生じない光学
素子製造方法を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and provides an optical element that shortens the time required from heating to cooling and does not cause defects such as distortion and deformation in the obtained molded product. The purpose is to provide a manufacturing method.

(問題点を解決するための手段) そこで、上記した従来の問題点を解決するために、本発
明の光学素子製造方法は、上型と下型の間に光学素子成
形用素材を配置してこれを加圧成形する光学素子製造方
法において、前記成形用素料を加圧成形するにあたり、
この成形用素材の加圧されるべき面の表面付近のみをガ
ラス転移点以上の温度にまで加熱し、この面に対して加
圧すべき型の温度を前記加熱した成形用素材の表面温度
以上として加圧成形することを特徴とする。
(Means for Solving the Problems) Therefore, in order to solve the above-mentioned conventional problems, the optical element manufacturing method of the present invention includes disposing an optical element molding material between the upper mold and the lower mold. In the method for manufacturing an optical element in which the material is pressure-molded, when the molding material is pressure-molded,
Only the vicinity of the surface of the surface to be pressurized of this molding material is heated to a temperature higher than the glass transition point, and the temperature of the mold to be pressed against this surface is set to be higher than the surface temperature of the heated molding material. It is characterized by pressure molding.

(作 用) 上記のように構成された本発明の作用について説明する
(Function) The function of the present invention configured as described above will be explained.

本発明による光学素子製造方法においては、成形用素材
の表面のめが加熱される。この素材表面については、所
望の光学素子の片側機能面のみでも良いし、又反対側機
能面を含めた両側機能面でも良い。いずれにしろ、所望
の成形表面のみがガラス転移点以上の温度にまで加熱さ
れ軟化せしめられる。このための加熱手段としては、成
形用素材全体が加熱されるニクロム線を使用したヒータ
ーよシは、赤外線によるヒーターの方が好適する。
In the optical element manufacturing method according to the present invention, the surface of the molding material is heated. The surface of this material may be a functional surface on only one side of the desired optical element, or may be a functional surface on both sides including a functional surface on the opposite side. In any case, only the desired molded surface is heated to a temperature above the glass transition point and softened. As a heating means for this purpose, an infrared heater is more suitable than a heater using a nichrome wire which heats the entire molding material.

そして、このように表面が加熱軟化せしめられた成形用
素材を加圧成形せしめる型の温度は、この加熱された素
材表面の温度以上とされることによシ成形時間の短縮が
図られている。
The temperature of the mold for pressure-molding the molding material whose surface has been heated and softened in this manner is set to be higher than the temperature of the surface of the heated material, thereby shortening the molding time. .

このような本発明の成形法においては、加熱、加圧及び
冷却すべき加工物が成形用素材表面に限られているため
、それに要する時間が大幅に短縮される。又、この素材
を急冷するについても、素材表面が硬化されるだけであ
るから、成形品に歪又は変形が生ずるおそれは極めて少
ない。
In the molding method of the present invention, the workpiece to be heated, pressurized, and cooled is limited to the surface of the molding material, so the time required for this process is significantly shortened. Furthermore, when this material is rapidly cooled, only the surface of the material is hardened, so there is very little risk of distortion or deformation occurring in the molded product.

このような成形法において供給される成形用素材として
は、所望する成形品に概ね近似した形状のものが好適す
る。即ち1本発明は、例えば比較的研削の容易な球面加
工が施された成形用素材を研削の困難な非球面とする加
圧成形に特に好適する。
As the molding material supplied in such a molding method, one having a shape roughly similar to the desired molded product is suitable. That is, the present invention is particularly suitable for, for example, pressure molding of a molding material that has been processed into a spherical surface, which is relatively easy to grind, into an aspherical surface that is difficult to grind.

(実施例) 以下、本発明の実施例について図面を参照しながら説明
する。
(Example) Examples of the present invention will be described below with reference to the drawings.

Wc1図は本発明の第1実施例を説明するだめの図であ
シ、ここには片側機能面のみを加圧成形するに好適する
プレス用金型の概略断面図が示しである。
Figure Wc1 is a diagram for explaining the first embodiment of the present invention, and shows a schematic cross-sectional view of a press mold suitable for pressure molding only one functional surface.

同図において、このプレス用金型は上屋3、下型2及び
組型5から成シ、下型2上には成形用素材lが設置され
ている。
In the figure, this press mold is made up of a shed 3, a lower mold 2, and a set of molds 5, and a molding material 1 is placed on the lower mold 2.

成形用素材1は、所望の成形品として片側機能面に非球
面を有する凹メニスカスレンズに砥ね近似した形状、即
ち従来の研削法によシ容易に製造される両機能面が球面
加工された凹メニスカスレンズ成形用素材である。
The molding material 1 has a shape approximating a concave meniscus lens having an aspherical surface on one functional surface as a desired molded product, that is, both functional surfaces are machined into spherical surfaces, which can be easily manufactured by conventional grinding methods. A material for molding concave meniscus lenses.

下型2は、この上側に上記成形用素材の凸面16に対応
した凹面を保合面2aとして有している。この保合面2
aによっては成形用素材1の成形は行なわれず、該素材
が加圧された際、これを受は取める役目をする。
The lower mold 2 has, on its upper side, a concave surface corresponding to the convex surface 16 of the molding material as a retaining surface 2a. This holding surface 2
Depending on a, the molding material 1 is not molded, and the receiver serves to catch the material when it is pressurized.

上盤3は、この下側に所望の非球面を有する凸面をプレ
ス作用面3mとして有している。このプレス作用面3a
は、成形用素材1の凹面1aを非球面状の機能面に成形
するための面でアシ、所定の面精度を有する。
The upper plate 3 has a convex surface having a desired aspherical surface on its lower side as a pressing surface 3m. This press action surface 3a
is a surface for forming the concave surface 1a of the molding material 1 into an aspherical functional surface, and has a predetermined surface accuracy.

このように構成された装置において、本発明方法を適用
するには、まず、上記のような成形用素材1をその凸面
16が下方に向くようにして下型2上に設置する。この
状態において、下型2の保合面2aと成形用素材1の凸
面16とは均等に接触した状態となる。
In order to apply the method of the present invention to the apparatus configured as described above, first, the molding material 1 as described above is placed on the lower mold 2 with its convex surface 16 facing downward. In this state, the retaining surface 2a of the lower mold 2 and the convex surface 16 of the molding material 1 are in even contact with each other.

次いで、成形用素材1の凹面1aの近傍からこの成形用
素材1を加熱する。この加熱手段としては、成形用素材
1の表面付近のみを急速に加熱軟化せしめる例えば赤外
線を使用したヒータ(不図示)を用いると良い。このヒ
ーターによシ、成形用素材1の凹面1&における加熱深
度が所望のデビエイシ、ンの2.5倍程度で、ガラス転
移点以上の導度になるまで加熱する。
Next, the molding material 1 is heated from near the concave surface 1a of the molding material 1. As this heating means, it is preferable to use, for example, a heater (not shown) using infrared rays, which rapidly heats and softens only the vicinity of the surface of the molding material 1. This heater heats the molding material 1 until the heating depth at the concave surface 1 is about 2.5 times the desired deviation depth and the conductivity is higher than the glass transition point.

そして、との加熱と共に上屋3を加熱しておく。Then, the shed 3 is heated together with heating.

上型3の加熱温度は、上記成形用素材1の凹面1aの加
熱温度以上とし、この上型3を成形用素材1の凹面1m
に押圧した際の加圧成形に要する時間を短縮するのに有
益なものとする。
The heating temperature of the upper mold 3 is higher than the heating temperature of the concave surface 1a of the molding material 1, and the upper mold 3 is heated over 1 m of the concave surface 1a of the molding material 1.
This is useful for shortening the time required for pressure molding when pressed.

しかる後、上記上型3の加熱温度を保ったまま、不図示
の加圧棒によシ上厘3を押圧し、成形用素材1の凹面1
1を加圧せしめる。そして、上屋3のプレス作用面3轟
を転写するのに十分な時間加圧した後、型全体を冷却し
、加圧成形が完了した成形品を取シ出す。
Thereafter, while maintaining the heating temperature of the upper mold 3, the upper mold 3 is pressed by a pressure rod (not shown) to form the concave surface 1 of the molding material 1.
1 is pressurized. After applying pressure for a time sufficient to transfer the pressure on the press working surface 3 of the shed 3, the entire mold is cooled, and the molded product that has been press-formed is taken out.

なお、上記したように、成形用素材1の凹面1aの表面
付近のみを短時間で加熱軟化するのに、この表面に炭素
蒸着を施すと、該表面は黒色となって熱の吸収が良好と
々る。ただし、炭素蒸着を施した成形用素材1を空気中
で加熱すると炭素が燃えてしまうので、このような場合
は、窒素ガス等の不活性雰囲気、或いは真空中で作業を
行なう必要がある。
As mentioned above, if only the vicinity of the surface of the concave surface 1a of the molding material 1 is heated and softened in a short time, but if this surface is subjected to carbon vapor deposition, the surface becomes black and absorbs heat well. That's it. However, heating the carbon-deposited molding material 1 in air will burn the carbon, so in such cases it is necessary to carry out the work in an inert atmosphere such as nitrogen gas or in a vacuum.

蒸着した炭素は、冷却の途中で空気を導入することによ
シ焼失するので成形品に不都合を生じることはない。
The deposited carbon is burned off by introducing air during cooling, so it does not cause any problems to the molded product.

本実施例特有の効果としては、成形用素材の片側面だけ
を成形することができる点にある。
A unique advantage of this embodiment is that only one side of the molding material can be molded.

次に本発明の第2実施例について第2図を参照しながら
説明する。同図は、この実施例に用いられるプレス用金
型の断面図であシ、上型8と下型7と成形用素材6を上
型8と下型7の中間にあってこれらに接触することなく
保持するヤトイ9とから成るものである。このプレス用
金型が第1実施例と相異する点は、成形用素材6の両側
機能面を成形可能とする点にある。従って、上型8、下
型7は夫々プレス作用面8m、7mを備えている。
Next, a second embodiment of the present invention will be described with reference to FIG. This figure is a cross-sectional view of the press die used in this example, and shows that the upper die 8, the lower die 7, and the molding material 6 are located between the upper die 8 and the lower die 7 and are in contact with them. It is made up of a Yatoi 9 that is held in place. This press mold differs from the first embodiment in that both functional surfaces of the molding material 6 can be molded. Therefore, the upper die 8 and the lower die 7 are provided with pressing surfaces 8m and 7m, respectively.

そして、本実施例においては、成形用素材6の凹面6a
が加熱軟化されるだけでなく、同案材6の凹面6bも加
熱軟化され、夫々が上型8、下型7によシ加圧成形され
る。この成形用素材6として供給されるものは、第1実
施例同様、所望の成形品に概ね近似した形状を有するも
のであって、夫夫の機能面は通常の研削によシ容易に成
形される球面である。これに、上型8、下型7のプレス
作用面8 a e 7 mを所望の成形品の各機能面に
対応する非球面として第1実施例と同様に加圧成形せし
めることにより、両側機能面の夫々に非球面を有する凹
メニスカスレンズが得られる。
In this embodiment, the concave surface 6a of the molding material 6
Not only is the concave surface 6b of the material 6 heated and softened, but also the concave surface 6b of the material 6 is heated and softened, and then pressure molded by the upper mold 8 and the lower mold 7, respectively. As in the first embodiment, the material to be supplied as the molding material 6 has a shape roughly similar to the desired molded product, and the functional surface of the material can be easily molded by ordinary grinding. It is a spherical surface. In addition, by press-forming the press working surfaces 8 a e 7 m of the upper die 8 and lower die 7 as aspherical surfaces corresponding to each functional surface of the desired molded product in the same manner as in the first embodiment, both sides function. A concave meniscus lens having an aspherical surface on each surface is obtained.

又、本発明によれば、第3実施例を示す第3図(−)及
び(b)から理解されるように、レンズアレイ等に用い
るロッし状レンズを得ることができる。
Furthermore, according to the present invention, as can be understood from FIGS. 3(-) and 3(b) showing the third embodiment, it is possible to obtain a lens shaped lens for use in a lens array or the like.

第3図(、)において、11はプレス作用面11aを有
する型11であシ、この型11を第1実施例と同様に、
ロッド状素材10の端面に対して加圧成形することによ
シ、第3図(b)に示す光学素子12が得られる。
In FIG. 3(,), 11 is a mold 11 having a pressing surface 11a, and this mold 11 is used in the same manner as in the first embodiment.
By press-molding the end surface of the rod-shaped material 10, an optical element 12 shown in FIG. 3(b) is obtained.

この方法は又1元ファイバーの先端を加工するのに好適
する。
This method is also suitable for processing the tips of single fibers.

この第3実施例においては、成形用素材がロッド状のも
のであシ、このような素材において必要な成形箇所は先
端の面だけである。従って、本発明のように加工すべき
面のみを加熱軟化して盤でプレス成形する方法がこの実
施例においても好適する。
In this third embodiment, the molding material is rod-shaped, and the only part of the material that needs to be molded is the end surface. Therefore, the method of the present invention, in which only the surface to be processed is heated and softened and press-formed using a disk, is also suitable for this embodiment.

なお、本発明においては、加圧成形される面の形状は限
定されるものでなく、凹凸いずれの球面についてもこれ
に非球面を成形することが可能であシ、光学素子の両機
能面について種々の球面。
In the present invention, the shape of the surface to be pressure molded is not limited, and it is possible to mold an aspherical surface onto any uneven spherical surface. Various spherical surfaces.

非球面を形成することによシ各種元学素子を得ることが
できる。
Various elemental elements can be obtained by forming an aspherical surface.

次に、上述した各実施例に共通する効果について実数結
果に基づき説明する。
Next, effects common to each of the above embodiments will be explained based on actual results.

従来、成形用素材全体を加熱するのに15〜20分程度
を度合ていたのに対し、本発明のように成形すべき表面
のみの加熱だと30秒程度で良い。又、加圧に要する時
間も成形用素材の全体を変形するのではなく、素材表面
の変形であるから、数分〜10分程度合要していたのが
数秒で済むようになった。さらに、加圧後の冷却時にお
いて発生する歪を抑生ずるのに、従来法では毎分3℃〜
数10℃で所定の温度まで徐冷をしていたのに対して、
本発明では歪の発生を考慮する必要がないため急冷が可
能となった。これによって、冷却に要する時間も、従来
のIA〜115程度に短縮されるようになった。
Conventionally, it took about 15 to 20 minutes to heat the entire molding material, but when heating only the surface to be molded as in the present invention, it only takes about 30 seconds. Moreover, since the time required for pressurization is not to deform the entire molding material, but to deform the surface of the material, the time required for pressurization, which used to take several minutes to 10 minutes, is now reduced to a few seconds. Furthermore, in order to suppress the distortion that occurs during cooling after pressurization, conventional methods require
Whereas slow cooling was performed at several tens of degrees Celsius to a predetermined temperature,
In the present invention, rapid cooling is possible because there is no need to consider the occurrence of distortion. As a result, the time required for cooling has been shortened to approximately IA~115 compared to the conventional method.

第4図(1)には、これらの結果に基づき、従来法によ
る場合と、本発明法による場合のプレス成形サイクルが
示しである。このプレス成形に使用した成形用素材は、
光学ガラスの中でも重フリント5F14であり、この成
形条件はTg (ガラス転移点):485℃、At (
成形温度):526℃、sp(軟化点):586℃であ
る。
Based on these results, FIG. 4(1) shows the press molding cycles for the conventional method and the method of the present invention. The molding material used for this press molding is
Among optical glasses, heavy flint 5F14 is used, and its molding conditions are Tg (glass transition point): 485°C, At (
Molding temperature): 526°C, sp (softening point): 586°C.

同図から理解されるように、従来方法では、加熱から冷
却までの1サイクルに50分を要するのに対して、本発
明方法では1サイクル15分と大幅な時間の短縮が実現
されている。
As can be understood from the figure, in the conventional method, one cycle from heating to cooling takes 50 minutes, whereas in the method of the present invention, one cycle takes 15 minutes, which is a significant reduction in time.

なお、よシ詳細な実験結果について説明すれば、第4図
(b)に断面で示すような左側機能面の曲率半径が42
.67、右側機能面の曲率半径が36.27の球面レン
ズ(硝材は上記した5F14)を成形用素材として、こ
の左側面を下溢に設置し、右側面に本発明(第1実施例
)による成形を加重圧力100 Hg/m2、加圧時間
10秒の基で行なった場合、参照R36,22、デビエ
イション50μmの非球面レンズを得ることができた。
In addition, to explain the experimental results in more detail, the radius of curvature of the left functional surface is 42 mm as shown in the cross section in Fig. 4(b).
.. 67. A spherical lens with a radius of curvature of 36.27 on the right functional surface (the glass material is the above-mentioned 5F14) was used as a molding material, and the left side surface was installed in the underflow, and the right side surface was molded with a lens according to the present invention (first embodiment). When molding was carried out under a load pressure of 100 Hg/m2 and a pressurization time of 10 seconds, an aspherical lens with a reference R of 36,22 and a deviation of 50 μm could be obtained.

(発明の効果) 以上説明したように、本発明の光学素子製造方法によれ
ば、加熱、加圧、冷却の夫々に要する時間が大幅に短縮
されたプレス成形法を得ることができ、この方法によシ
歪及び変形のない成形品が得られる。
(Effects of the Invention) As explained above, according to the optical element manufacturing method of the present invention, it is possible to obtain a press molding method in which the time required for each of heating, pressurization, and cooling is significantly shortened. A molded product without distortion or deformation can be obtained.

本発明は、従来高度の熟練技術を要していた非球面レン
ズの大量生産に特に好適するものである。
The present invention is particularly suitable for mass production of aspheric lenses, which conventionally required highly skilled techniques.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に用いるプレス用金型の断
面図、第2図は本発明の第2実施例に用いるプレス用金
型の断面図、第3図は本発明の第3実施例を説明するた
めの図、第4図(a)は従来法と本発明方法の1サイク
ルに要する時間を比較した図、第4図C)は実験結果を
示すのに用いた成形用素材の断面図、第5図及び第6図
は従来の加圧成形装置の断面図である。
FIG. 1 is a cross-sectional view of a press mold used in a first embodiment of the present invention, FIG. 2 is a cross-sectional view of a press mold used in a second embodiment of the present invention, and FIG. 3 is a cross-sectional view of a press mold used in a second embodiment of the present invention. Figure 4 (a) is a diagram comparing the time required for one cycle of the conventional method and the method of the present invention. Figure 4 (C) is a diagram for explaining the experimental results. The sectional view of the material, FIGS. 5 and 6, are sectional views of a conventional pressure molding apparatus.

Claims (2)

【特許請求の範囲】[Claims] (1)上型と下型の間に光学素子成形用素材を配置して
これを加圧成形する光学素子製造方法において、 前記成形用素材を加圧成形するにあたり、この成形用素
材の加圧されるべき面の表面付近のみをガラス転移点以
上の温度にまで加熱し、この面に対して加圧すべき型の
温度を前記加熱された成形用素材の表面温度以上として
加圧成形することを特徴とする光学素子製造方法。
(1) In an optical element manufacturing method in which a material for molding an optical element is placed between an upper mold and a lower mold and pressure molded, in pressure molding the molding material, applying pressure to the molding material. Pressure molding is performed by heating only the vicinity of the surface of the surface to be molded to a temperature higher than the glass transition point, and setting the temperature of the mold to be pressed against this surface to higher than the surface temperature of the heated molding material. Characteristic optical element manufacturing method.
(2)前記上型と下型の間に配置される光学素子成形用
素材は、所望の成形品の形状に近似した形状を有するこ
とを特徴とする特許請求の範囲第1項記載の光学素子製
造方法。
(2) The optical element according to claim 1, wherein the optical element molding material placed between the upper mold and the lower mold has a shape that approximates the shape of a desired molded product. Production method.
JP15140587A 1987-06-19 1987-06-19 Production of optical device Pending JPS63319218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15140587A JPS63319218A (en) 1987-06-19 1987-06-19 Production of optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15140587A JPS63319218A (en) 1987-06-19 1987-06-19 Production of optical device

Publications (1)

Publication Number Publication Date
JPS63319218A true JPS63319218A (en) 1988-12-27

Family

ID=15517871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15140587A Pending JPS63319218A (en) 1987-06-19 1987-06-19 Production of optical device

Country Status (1)

Country Link
JP (1) JPS63319218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265087A (en) * 2004-12-13 2006-10-05 Ohara Inc Preform for optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265087A (en) * 2004-12-13 2006-10-05 Ohara Inc Preform for optical element
US8420200B2 (en) 2004-12-13 2013-04-16 Ohara Inc. Preform for optical element and optical element

Similar Documents

Publication Publication Date Title
JPH0366256B2 (en)
US5346523A (en) Method of molding chalcogenide glass lenses
US3819349A (en) Method and apparatus for producing watch crystals
EP0463463B1 (en) Method of manufacturing optical element
JPS63319218A (en) Production of optical device
JPH101321A (en) Production of optical element
JP2000095532A (en) Press-formed optical element, its production, die for press-forming optical element and device for press- forming optical element
JP3681114B2 (en) Manufacturing method of glass optical element
JPS62128932A (en) Molding method for glass lens
JP2621956B2 (en) Optical element molding method
JPH048374B2 (en)
JP2718452B2 (en) Glass optical element molding method
JPH0420854B2 (en)
JPS63295448A (en) Method for molding glass lens
JPS61251526A (en) Production of optical element
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JPH0741327A (en) Optical element forming method
JPH07330347A (en) Method for forming optical element
JPH02120242A (en) Method for forming optical elements
JPH1160251A (en) Formation of optical element
JP3130619B2 (en) Optical element molding method
JPS63222022A (en) Molding method of glass lens
JPH0455134B2 (en)
JP4436561B2 (en) Optical element manufacturing method
JP3850062B2 (en) Optical element manufacturing method and optical element mold