JPS63318778A - Heterojunction bipolar transistor and manufacture - Google Patents

Heterojunction bipolar transistor and manufacture

Info

Publication number
JPS63318778A
JPS63318778A JP15577087A JP15577087A JPS63318778A JP S63318778 A JPS63318778 A JP S63318778A JP 15577087 A JP15577087 A JP 15577087A JP 15577087 A JP15577087 A JP 15577087A JP S63318778 A JPS63318778 A JP S63318778A
Authority
JP
Japan
Prior art keywords
layer
semi
insulating substrate
collector
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15577087A
Other languages
Japanese (ja)
Inventor
Madeihian Mohamatsudo
モハマッド・マディヒアン
Nobuyuki Hayama
信幸 羽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15577087A priority Critical patent/JPS63318778A/en
Publication of JPS63318778A publication Critical patent/JPS63318778A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a heterojunction bipolar transistor which is more improved in high speed and high frequency performance thereof, by providing on the surface of a semi-insulating substrate with a portion of an external area for connection of a base layer, and so forth to reduce a base-collector parasitic capacity without increasing a base resistance. CONSTITUTION:A collector layer 2 of one conductivity type which is selectively formed on the surface of a semi-insulating substrate 1, a base layer 3 of the opposite conductivity type whose an active area and a portion of an extension area for connection are respectively formed on the collector layer 2 and the semi-insulating substrate 1, and an emitter layer 4 of one conductivity type which is formed on the active area of the base layer 3 are provided, respectively. For example, a collector layer 2 of a n type GaAs is selectively formed on the surface of a semi-insulating substrate 1 of a GaAs, a base layer 3 of a p type GaAs is formed on both of a portion of the active area of the collector layer 2 and the semi-insulating substrate 2, and an emitter layer 4 of an n-type AlGaAs is formed just above the active area of the collector layer 2. Moreover, electrodes 5c, 5b and 5e are formed on the respective predetermined portions of the layers 2, 3 and 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はへテロ接合バイポーラトランジスタおよびその
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heterojunction bipolar transistor and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

近年、半導体装置の高集積化・高速化に向けて活発な研
究開発が進められている。特に、化合物半導体等のへテ
ロ接合を利用したへテロ接合バイポーラトランジスタ(
以下HBTと称す)は、ベースを高濃度にしてもエミッ
タ注入効率を高く保てるため、高利得で高速性能を有す
るデバイスとして、最近、注目されておシ、分子線エピ
タキシャル成長法や有機金属気相成長法、イオン注入技
術等の化合物半導体の薄膜多層プロセス技術の進展によ
って、その実現が可能となってきた。
In recent years, active research and development has been carried out to increase the integration and speed of semiconductor devices. In particular, we focus on heterojunction bipolar transistors that utilize heterojunctions such as compound semiconductors (
HBT (hereinafter referred to as HBT) has recently attracted attention as a device with high gain and high speed performance because it can maintain high emitter injection efficiency even when the base concentration is high. This has become possible due to advances in compound semiconductor thin film multilayer process technology, such as ion implantation technology and ion implantation technology.

ところで、パイボーラトランジ哀夕の高速・高周波特性
を表わす一つの指標には、最大発振周波数fmaxがあ
シ、これは次式で表わされる。
By the way, one index representing the high-speed/high-frequency characteristics of the pibora transition is the maximum oscillation frequency fmax, which is expressed by the following equation.

ここで、fiは電流利得遮断周波数、RIBはペース抵
抗、CBcは能動領域のペース・コレクタ接合容量、C
bcは外部ペース領域におけるペース・コレクタ寄生接
合容量である。
Here, fi is the current gain cutoff frequency, RIB is the pace resistance, CBc is the pace-collector junction capacitance in the active region, and C
bc is the pace collector parasitic junction capacitance in the external pace region.

従って、(1)式から明らかなように1最大発振周波数
f□8を高くしてHBTの高−・高周波性能を向上する
ためには、ペース抵抗kLBやペース・コv l fi
 !m合容量C100%特にペース・コレクタ寄生接合
容量Cbcを出来るだけ小さくすることが必要がある。
Therefore, as is clear from equation (1), in order to increase the maximum oscillation frequency f□8 and improve the high- and high-frequency performance of the HBT, the pace resistor kLB and the pace cov l fi
! It is necessary to make the m-total capacitance C100%, especially the pace-collector parasitic junction capacitance Cbc, as small as possible.

そこで、従来は、選択的に、高エネルギーで酸素イオン
や水素イオンなどを外部ベース領域を通して注入して、
ペース・コレクタ接合に半絶縁層を形成することによシ
、ペース・コレクタ寄生接合容量Cbck低減していた
Therefore, conventionally, oxygen ions, hydrogen ions, etc. are selectively implanted with high energy through the external base region.
By forming a semi-insulating layer at the pace-collector junction, the pace-collector parasitic junction capacitance Cbck was reduced.

第4図は従来の)IBTの一例の断面図である。FIG. 4 is a sectional view of an example of a conventional IBT.

この例は、半絶縁性基板l上にnmGaAsがら成るコ
レクタ層2′、p型(J a A sから成るベース層
3′およびn型klGaAsから成るエミツタ層4を順
次形成して設け、ベース層3Iのエミツタ層4直下の能
動領域以外の接続用の外部ペース領域の部分とその下の
コレクタ層lとの界面に、選択的に酸素イオンあるいは
水素イオンを注入して半絶縁層1aを形成して設け、こ
れによってペース・コレクタ寄生接合容量Cbcの低減
をはかシ、更に、コレクタ、ペースおよびエミツタ層2
/ 、 3/および4のそれぞれの所定の位置の上にコ
レクタ、ペースおよびエミッタ電極5C,5bおよび5
ei設けている。
In this example, a collector layer 2' made of nmGaAs, a base layer 3' made of p-type (JaAs), and an emitter layer 4 made of n-type klGaAs are sequentially formed on a semi-insulating substrate l, and the base layer A semi-insulating layer 1a is formed by selectively implanting oxygen ions or hydrogen ions into the interface between the external space region for connection other than the active region immediately below the emitter layer 4 of 3I and the collector layer l below it. By this, the paste-collector parasitic junction capacitance Cbc is reduced, and the collector, paste and emitter layers 2
Collector, pace and emitter electrodes 5C, 5b and 5 above respective predetermined positions of /, 3/ and 4
ei has been established.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のHBTでは、外部ペース領域の部分でイ
オン注入によって形成した半絶縁層を介してベース層と
コレクタ層とが対向しているので、外部ペース・コレク
タ寄生容f!kCbcは高々30〜40−程度しか低減
できない。又、半絶縁層を形成するときの注入によって
、ペース電極5b直下の外部ペース領域に結晶欠陥が生
じるが、この欠陥は熱処理金した後でも一部残シ、それ
がキャリヤのトラップとして働くことに、より、ペース
抵抗RBが大幅に増大してしまう。
In the conventional HBT described above, the base layer and the collector layer face each other via the semi-insulating layer formed by ion implantation in the external space region, so that the external space/collector parasitic capacitance f! kCbc can be reduced by about 30 to 40 at most. In addition, crystal defects are generated in the external space region directly under the space electrode 5b due to the implantation when forming the semi-insulating layer, but some of these defects remain even after heat treatment, and these defects act as carrier traps. , the pace resistance RB increases significantly.

その結果、(1)式に示すように、従来のHBTではC
bcが若干低減されてもRBが大幅に増大するため、む
しろ最大発振周波数fm□が減少するという傾向に々シ
高速・高周波性能を飛躍的に向上することが難かしいと
いう欠点があった。
As a result, as shown in equation (1), in the conventional HBT, C
Even if bc is slightly reduced, RB increases significantly, so the maximum oscillation frequency fm□ tends to decrease, making it difficult to dramatically improve high-speed/high-frequency performance.

本発明の目的は、ペース抵抗を増大せずにペース・コレ
クタ寄生容量CbCを低減した高速・高周波性能が一段
と向上したベテロ接合バイポーラトランジスタおよびそ
の製造方法を提供することにある。
An object of the present invention is to provide a beta-junction bipolar transistor with further improved high-speed and high-frequency performance in which the pace-collector parasitic capacitance CbC is reduced without increasing the pace resistance, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のへテロ接合バイポーラトランジスタは、半絶縁
性基板表面に選択的に形成した一専′成型の、コレクタ
層と、該コレクタ層および前記半絶縁性基板上にそれぞ
れ能動領域および接続用の引出し領域の部分を形成した
反対導電型のベース層と、該ベース層の前記能動領域の
よ玲に形成した一導電型のエミツタ層とを有して成る。
The heterojunction bipolar transistor of the present invention has a collector layer selectively formed on the surface of a semi-insulating substrate, and an active region and a connection drawer formed on the collector layer and the semi-insulating substrate, respectively. The active region has a base layer of opposite conductivity type forming a portion of the active region, and an emitter layer of one conductivity type formed close to the active region of the base layer.

本発明のへテロ接合バイポーラトランジスタの製造方法
は、半絶縁性基板表面に選択的に一導電型のコレクタ層
を形成する工程、核コレクタ層および前記半絶縁性基板
上に反対導電型の第1不純物層と一導を型の第2不純物
層とを順次堆積する工程および前記第2および第1不純
物層をそれぞれ選択的に順次除去する工程を含み、前記
コレクタ層および前記半絶縁性基板の上にそれぞれ能動
領域および接続用の引出し領域の部分を配置した前記第
1不純物層からなるベース層と前記能動領域上に配置し
た前記第2不純物層からなるエミツタ層とを形成して成
る。
The method for manufacturing a heterojunction bipolar transistor of the present invention includes a step of selectively forming a collector layer of one conductivity type on the surface of a semi-insulating substrate, a step of selectively forming a collector layer of one conductivity type on the surface of a semi-insulating substrate, and a step of forming a first collector layer of an opposite conductivity type on a core collector layer and the semi-insulating substrate. the step of sequentially depositing an impurity layer and a second impurity layer of a conductive type, and selectively and sequentially removing the second and first impurity layers, respectively, on the collector layer and the semi-insulating substrate; A base layer made of the first impurity layer and an emitter layer made of the second impurity layer placed on the active region are formed on the active region and the connection lead-out region, respectively.

〔作用〕 本発明によれば、ベース層の外部ベース領域の部分を半
絶縁性基板の表面上に設けているので、ベース層とコレ
クタ層との対向面積が減少してぺ−ス・コレクタ寄生接
合容量を極めて小さくすることができる。
[Function] According to the present invention, since the external base region portion of the base layer is provided on the surface of the semi-insulating substrate, the opposing area between the base layer and the collector layer is reduced, thereby preventing pace collector parasitics. Junction capacitance can be made extremely small.

〔実施例〕〔Example〕

次に、本発明の釘施例について図面を参照して説明する
Next, a nail embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

この実施例は、G a A sからなる半絶縁性基板1
表面に選択的にn−uaAsからなる所定のパターンの
コレクタ層2を設け、コレクタ層2の能動領域の部分お
よび半絶縁性基板1上にp−GaAsからなるベース層
3を設け、コレクタ層2の能動領域真上にn−AI(j
aAsからなるエミツタ層4を設け、コレクタ、ベース
およびエミッタ層2.3および4上の所定の部分に、そ
れぞれコレクタ、ベースおよびエミッタ電極5c、5b
および5eを設けた構造をしている。
In this embodiment, a semi-insulating substrate 1 made of GaAs is used.
A collector layer 2 with a predetermined pattern made of n-uaAs is selectively provided on the surface, a base layer 3 made of p-GaAs is provided on the active region portion of the collector layer 2 and on the semi-insulating substrate 1, and the collector layer 2 is provided with a predetermined pattern. n-AI (j
An emitter layer 4 made of aAs is provided, and collector, base and emitter electrodes 5c and 5b are provided at predetermined portions on the collector, base and emitter layers 2.3 and 4, respectively.
and 5e.

従って、この実施例では、ベース層3のベース電極5b
直下の接続用の外部ベース領域の下にはコレクタ層2が
なく直接半絶縁性基板1上に設けられているので、ベー
ス層3とコレクタ層2との対向面積が非常に小さくなる
。。
Therefore, in this embodiment, the base electrode 5b of the base layer 3
Since the collector layer 2 is not directly under the external base region for connection and is provided directly on the semi-insulating substrate 1, the facing area between the base layer 3 and the collector layer 2 becomes very small. .

第2図(a)〜(C)は本発明のHBTの製造方法の第
1の実施例を説明するための半導体チップの断面図であ
る。
FIGS. 2(a) to 2(C) are cross-sectional views of a semiconductor chip for explaining the first embodiment of the HBT manufacturing method of the present invention.

この実施例は、先ず、第2図(a)に示すように、G 
a A sからなる半絶縁性基板1上KSi02あるい
は8i3N4等の絶縁膜から成る所定パターンのマスク
層6を形成し、その後このマスク層6を用いて半絶縁性
基板1表面を0.5μm程度の深さにエツチングする。
In this embodiment, first, as shown in FIG. 2(a),
A mask layer 6 of a predetermined pattern made of an insulating film such as KSi02 or 8i3N4 is formed on a semi-insulating substrate 1 made of aAs, and then this mask layer 6 is used to cover the surface of the semi-insulating substrate 1 with a thickness of about 0.5 μm. Etch to depth.

次に、第2図(b)に示すように、アトミック・し′ 
イヤー・エピタキシ(単原子層成長)法により、半絶縁
性基板1の凹部にn−GaAsからなる厚さが0.5μ
m程度の単原子層2aを形成して埋め込む。
Next, as shown in Figure 2(b), the atomic
By ear epitaxy (mono-atomic layer growth) method, a thickness of 0.5μ of n-GaAs is formed in the recessed part of the semi-insulating substrate 1.
A monoatomic layer 2a of about m thickness is formed and embedded.

次に、第2図(C)に示すように、iスクI@ 6 k
除去した後、p−GaAsからなり厚さが0.1μm程
度の不純物層3aおよびn−AlGaAsからなル厚さ
が0.2μm程度の不純物層4at−エピタキシャル成
長によシ順次形成する。
Next, as shown in FIG. 2(C), the i-sk I @ 6 k
After removal, an impurity layer 3a made of p-GaAs and having a thickness of about 0.1 μm and an impurity layer 4at made of n-AlGaAs and having a thickness of about 0.2 μm are sequentially formed by epitaxial growth.

最後に、周知の方法により、不純物層4aおよび3at
−所定のパターンにエツチングしてそれぞれエミツタ層
4およびベース層3を形成した後、単原子層2aをコレ
クタ層2としてn  GaAsに対しオーミック接触性
金属Auue/Niからなるエミッタ電極5eおよびコ
レクタ電極5C並びにp−GaAsに対しオーミック接
触性金属AuZn/Niからなるベース電極5bt−形
成すれば、第1図に示すHBTが得られる。   ゛ 第3図(a)〜(C)は本発明の)IBTの製造方法の
第2の実施例を説明するための半導体チップの断面図で
ある。
Finally, impurity layers 4a and 3at are formed by a well-known method.
- After etching into a predetermined pattern to form an emitter layer 4 and a base layer 3, respectively, the monoatomic layer 2a is used as a collector layer 2, and an emitter electrode 5e and a collector electrode 5C made of ohmic contact metal Auue/Ni for nGaAs are formed. If a base electrode 5bt made of ohmic contact metal AuZn/Ni is formed on p-GaAs, the HBT shown in FIG. 1 can be obtained. 3(a) to 3(C) are cross-sectional views of a semiconductor chip for explaining a second embodiment of the method for manufacturing an IBT according to the present invention.

この実施例は、まず、第3図(a)に示すように、Ga
Asから成る半絶縁性基板1上に5iOzあるいはSi
3N4等の絶縁体から成る所定パターンのマスク層6を
形成する。
In this example, first, as shown in FIG. 3(a), Ga
5iOz or Si on a semi-insulating substrate 1 made of As.
A mask layer 6 of a predetermined pattern made of an insulator such as 3N4 is formed.

次に、第3図(b)に示すように、このマスク層6を用
いて、半絶縁性基板1の露出面にSiイオン注入し、更
に熱処理によって活性化してイオン注入層2bを形成す
る。
Next, as shown in FIG. 3(b), using this mask layer 6, Si ions are implanted into the exposed surface of the semi-insulating substrate 1, and further activated by heat treatment to form an ion implanted layer 2b.

次に、第3図(C)に示すように、マスク層6を除去し
た後半絶縁性基板l上に厚さが0.1μm程度のp−U
aAsからなる不純物層3aおよび厚さが0、2μm程
度のn−AlGaAsからなる不純物層4aをエピタキ
シャル成長によシ順次形成する。
Next, as shown in FIG. 3(C), a p-U film with a thickness of about 0.1 μm is placed on the second half insulating substrate l from which the mask layer 6 has been removed.
An impurity layer 3a made of aAs and an impurity layer 4a made of n-AlGaAs having a thickness of about 0.2 μm are sequentially formed by epitaxial growth.

最後に、不純物層4aおよび3aを所定のパターンに順
次エツチングして、それぞれエミツタ層4およびベース
層3を形成すると共にイオン注入層2bからなるコレク
タ層2およびエミツタ層4の所定の部分上1pl n−
GaAsに対しオーミック接触性金属A u’J e 
/ N tからなるコレクタ電極5Cおよびエミッタ電
極set形成し、更に、ベース層3上の所定の位置にオ
ーミック接触性金属AuZn/Niからなるペース電極
5bを形成すれば、第1図に示す)IBTができる。
Finally, the impurity layers 4a and 3a are sequentially etched in a predetermined pattern to form an emitter layer 4 and a base layer 3, respectively, and 1pln is etched on predetermined portions of the collector layer 2 and emitter layer 4 consisting of the ion implantation layer 2b. −
Ohmic contact metal A u'J e for GaAs
By forming a collector electrode 5C and an emitter electrode set made of /Nt, and further forming a pace electrode 5b made of ohmic contact metal AuZn/Ni at a predetermined position on the base layer 3, an IBT (as shown in FIG. 1) is obtained. Can be done.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ベース層の接続用
の外部領域の部分が、半絶縁性基板の表面に設けられる
ために、ベース層とコレクタ層との対向面積が非常に減
少してベース・コレクタ寄生接合容量Cbcが低減する
と共に従来の半絶縁層を形成するためのイオン注入によ
りて生じたペース抵抗iLBの増大を防止できるので、
最大発振周波数f□8の非常に高い高速・高周波性能の
優れタヘテロ接合バイポーラトランジスタが実現できる
という効果がある。
As explained above, according to the present invention, since the external region for connection of the base layer is provided on the surface of the semi-insulating substrate, the facing area between the base layer and the collector layer is greatly reduced. Since the base-collector parasitic junction capacitance Cbc is reduced and the increase in the pace resistance iLB caused by conventional ion implantation for forming a semi-insulating layer can be prevented,
This has the effect of realizing a taheterojunction bipolar transistor with an extremely high maximum oscillation frequency f□8 and excellent high-speed and high-frequency performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のへテロ接合バイボー2トランジスタの
一実施例の断面図、第2図および第3図(a)〜(C)
はそれぞれ本発明のへテロ接合バイポーラトランジスタ
の製造方法の第1および第2の実施例を説明するための
半導体チップの断面図、第4図は従来のへテロ接合バイ
ポーラトランジスタの一例の断面図である。 1・・・・・・半絶縁性基板、la・・・・・・半絶縁
層、2゜2I・・・・・・コレクタ層%2a・・・・・
・単原子層、2b・・・・・・イオン注入層、3.3’
・・・・・・ペース層、3a・・・・・・不純物層、4
・・・・・・エミッタ層、4a・・・・・・不純物層、
卆4 図 第 2 図 (α)    1 (b)l 第3 凹
FIG. 1 is a cross-sectional view of an embodiment of the heterojunction biborder transistor of the present invention, and FIGS. 2 and 3 (a) to (C)
4 is a cross-sectional view of a semiconductor chip for explaining the first and second embodiments of the method for manufacturing a heterojunction bipolar transistor of the present invention, respectively, and FIG. 4 is a cross-sectional view of an example of a conventional heterojunction bipolar transistor. be. 1...Semi-insulating substrate, la...Semi-insulating layer, 2゜2I...Collector layer%2a...
- Monoatomic layer, 2b...Ion implantation layer, 3.3'
...Pace layer, 3a... Impurity layer, 4
...Emitter layer, 4a... Impurity layer,
Volume 4 Figure 2 (α) 1 (b)l 3rd concave

Claims (2)

【特許請求の範囲】[Claims] (1)半絶縁性基板表面に選択的に形成した一導電型の
コレクタ層と、該コレクタ層および前記半絶縁性基板上
にそれぞれ能動領域および接続用の引出し領域の部分を
形成した反対導電型のベース層と、該ベース層の前記能
動領域の上に形成した一導電型のエミッタ層とを有する
ヘテロ接合バイポーラトランジスタ。
(1) A collector layer of one conductivity type selectively formed on the surface of a semi-insulating substrate, and an opposite conductivity type having an active region and a connection lead-out region formed on the collector layer and the semi-insulating substrate, respectively. and an emitter layer of one conductivity type formed over the active region of the base layer.
(2)半絶縁性基板表面に選択的に一導電型のコレクタ
層を形成する工程、該コレクタ層および前記半絶縁性基
板上に反対導電型の第1不純物層と一導電型の第2不純
物層とを順次堆積する工程および前記第2および第1不
純物層をそれぞれ選択的に順次除去する工程を含み、前
記コレクタ層および前記半絶縁性基板の上にそれぞれ能
動領域および接続用の引出し領域の部分を配置した前記
第1不純物層からなるベース層と前記能動領域上に配置
した前記第2不純物層からなるエミッタ層とを形成する
ことを特徴とするヘテロ接合バイポーラトランジスタの
製造方法。
(2) A step of selectively forming a collector layer of one conductivity type on the surface of a semi-insulating substrate, and a first impurity layer of an opposite conductivity type and a second impurity layer of one conductivity type are formed on the collector layer and the semi-insulating substrate. and selectively and sequentially removing the second and first impurity layers, respectively, forming an active region and a connection lead-out region on the collector layer and the semi-insulating substrate, respectively. A method for manufacturing a heterojunction bipolar transistor, comprising forming a base layer made of the first impurity layer disposed on the active region and an emitter layer made of the second impurity layer disposed on the active region.
JP15577087A 1987-06-22 1987-06-22 Heterojunction bipolar transistor and manufacture Pending JPS63318778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15577087A JPS63318778A (en) 1987-06-22 1987-06-22 Heterojunction bipolar transistor and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15577087A JPS63318778A (en) 1987-06-22 1987-06-22 Heterojunction bipolar transistor and manufacture

Publications (1)

Publication Number Publication Date
JPS63318778A true JPS63318778A (en) 1988-12-27

Family

ID=15613030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15577087A Pending JPS63318778A (en) 1987-06-22 1987-06-22 Heterojunction bipolar transistor and manufacture

Country Status (1)

Country Link
JP (1) JPS63318778A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0515850A2 (en) * 1991-04-30 1992-12-02 Texas Instruments Incorporated Lateral collector heterojunction bipolar transistor
US5252841A (en) * 1991-05-09 1993-10-12 Hughes Aircraft Company Heterojunction bipolar transistor structure having low base-collector capacitance, and method of fabricating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607771A (en) * 1983-06-28 1985-01-16 Toshiba Corp Semiconductor device
JPS6281759A (en) * 1985-10-05 1987-04-15 Fujitsu Ltd Structure of heterojunction type bipolar transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607771A (en) * 1983-06-28 1985-01-16 Toshiba Corp Semiconductor device
JPS6281759A (en) * 1985-10-05 1987-04-15 Fujitsu Ltd Structure of heterojunction type bipolar transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0515850A2 (en) * 1991-04-30 1992-12-02 Texas Instruments Incorporated Lateral collector heterojunction bipolar transistor
EP0515850A3 (en) * 1991-04-30 1994-05-18 Texas Instruments Inc Lateral collector heterojunction bipolar transistor
US5252841A (en) * 1991-05-09 1993-10-12 Hughes Aircraft Company Heterojunction bipolar transistor structure having low base-collector capacitance, and method of fabricating the same

Similar Documents

Publication Publication Date Title
EP0184016B1 (en) Heterojunction bipolar transistor
JPS636877A (en) Manufacture of heterojunction type bipolar transistor
US5434091A (en) Method for making collector up bipolar transistors having reducing junction capacitance and increasing current gain
JPH11186280A (en) Bipolar transistor and manufacture thereof
US5700701A (en) Method for reducing junction capacitance and increasing current gain in collector-up bipolar transistors
JPS607771A (en) Semiconductor device
JPS63318778A (en) Heterojunction bipolar transistor and manufacture
JPS63248168A (en) Hetero-junction bipolar transistor and manufacture thereof
JP3859149B2 (en) Method for manufacturing heterojunction bipolar transistor
JPS61280665A (en) Hetero-junction bipolar transistor and manufacture thereof
JPH01233767A (en) Heterojunction bipolar transistor and manufacture thereof
JPH0611059B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
JPS63287058A (en) Manufacture of hetero-junction bipolar transistor
JP2504767B2 (en) Method of manufacturing heterojunction bipolar transistor
JPH02188964A (en) Semiconductor device and manufacture thereof
JP2570770B2 (en) Bipolar transistor
KR950001148B1 (en) Hetero-junction bipolar transistor and manufacturing method thereof
JP2921222B2 (en) Manufacturing method of bipolar transistor
JP2814984B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
JPS6378571A (en) Manufacture of bipolar transistor
JPS63168049A (en) Heterojunction bipolar transistor and manufacture thereof
JPH031543A (en) Manufacture of bipolar transistor
JPH0460340B2 (en)
JPS63252475A (en) Hetero junction bipolar transistor
JPS63107066A (en) Heterojunction type bipolar semiconductor