JPS63318017A - Electroconductive wire - Google Patents

Electroconductive wire

Info

Publication number
JPS63318017A
JPS63318017A JP62153282A JP15328287A JPS63318017A JP S63318017 A JPS63318017 A JP S63318017A JP 62153282 A JP62153282 A JP 62153282A JP 15328287 A JP15328287 A JP 15328287A JP S63318017 A JPS63318017 A JP S63318017A
Authority
JP
Japan
Prior art keywords
wire
oxide
superconductive
ceramic core
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62153282A
Other languages
Japanese (ja)
Inventor
Masaaki Futamoto
二本 正昭
Yukio Honda
幸雄 本多
Kazushige Imagawa
今川 一重
Teruaki Takeuchi
輝明 竹内
Kazumasa Takagi
高木 一正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62153282A priority Critical patent/JPS63318017A/en
Publication of JPS63318017A publication Critical patent/JPS63318017A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a long wire having good superconductive characteristics by including a plurality of elements consisting of ceramic core covered with superconductive material of oxide type. CONSTITUTION:Thin and flexible ceramic whisker, ribbon, or wire 1 is covered with a superconductive material 2 of oxide type, and they are collected to provide an electroconductive wire 3 in the form of thick wire or band. As material to this electroconductive wire formed by covering the ceramics with superconductive material of oxide type is flexible, twining of them together does not impair the superconductive characteristics even though pressure is applied. Thereby, wire- or band-shaped electroconductive wire with good superconductive characteristics is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超伝導材料を用いた電気伝導線材に係り、特に
高い臨界温度を示す酸化物系の超伝導材料の長尺線材化
を可能ならしめる線材の構成に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrically conductive wire using a superconducting material, and in particular, to a long wire of an oxide-based superconducting material exhibiting a high critical temperature, if possible. This invention relates to the structure of the tightening wire.

〔従来の技術〕[Conventional technology]

最近、(MxLal−X)2CLI04 (M=Ba。 Recently, (MxLal-X)2CLI04 (M=Ba.

Sr、Ca)やYO,4Bao、 g CuOa −y
などの酸化物材料は30にあるいは90に以上の高い超
伝導臨界温度(TC)を示すことが明らかにされた。こ
れらの材料については、例えば、ジャパニーズ、ジャー
ナル、オブ、アプライド。
Sr, Ca), YO, 4Bao, g CuOa −y
It has been revealed that oxide materials such as oxide materials exhibit high superconducting critical temperatures (TC) of 30 or more than 90. For these materials, see, e.g., Japanese, Journal of, Applied.

フィジックス 26 (1987年)第517頁から第
518頁(Japan、 J 、 Appl、Phys
Physics 26 (1987) pp. 517-518 (Japan, J., Appl. Phys.
.

26  (1987)  pp、L517−518)に
記しである。
26 (1987) pp, L517-518).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記高いTcを持つ酸化物系材料は硬くてもろいため、
電気伝導線材に加工するのが歎しいという問題点がある
。この問題に対して従来は、銅や銀から成る金属性のパ
イプの内部に粉状の酸化物系超伝導材料を詰め、これを
圧延したり、線引加工することによってその線材化を図
っていた。しかし、圧延や加工の過程で酸化物系超伝導
材料に応力や熱が加わり、このため超伝導特性が劣化し
、著しい場合は超伝導特性を示さなくなってしまう場合
があった。さらに前記の方法では、長尺の超伝導線材を
作り難く、また線材化のための加工費が高くなるといっ
た問題点があった。
Since the oxide material with high Tc is hard and brittle,
The problem is that it is difficult to process it into electrically conductive wire. Conventionally, to solve this problem, the inside of a metallic pipe made of copper or silver was filled with powdered oxide-based superconducting material, and the material was rolled or drawn to create a wire. Ta. However, stress and heat are applied to the oxide-based superconducting material during the rolling and processing processes, resulting in deterioration of the superconducting properties, and in severe cases, the superconducting properties may no longer be exhibited. Furthermore, the above-mentioned method has the problem that it is difficult to produce a long superconducting wire, and the processing cost for producing the wire becomes high.

本発明は、上記のごとき問題点を解決し、良好な超伝導
特性を示す長尺の線材を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and provide a long wire exhibiting good superconducting properties.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、本発明では太さが小さくて柔
軟性のあるセラミック製のウィスカれを複数本集めて、
より合せる等の方法により、太いワイヤー状もしくは帯
状の電気伝導線材とすることを特徴とするものである。
In order to achieve the above object, the present invention collects a plurality of small and flexible ceramic whiskers,
It is characterized in that it is made into a thick wire-like or band-like electrically conductive wire material by a method such as twisting.

ここで用いるセラミック材としては、アルミナ (Af1203)、ジルコニア(zrOs+)2石英(
SiO2)、チタニア(Ti 203) 、マグネシア
(MgO)、などの酸化物およびステアダイト(MgO
・SiO□)、スピネル(MgO−AQ、203)、ム
ライト (3’A Q 203・2S10□)、コージライト(
2Mg0・2AQ 203・5SiO□)などの混合酸
化物が適当である。」=記以外にも900℃以上の酸化
雰囲気加熱に耐える金属酸化物も同様に本発明の目的に
適す。
The ceramic materials used here include alumina (Af1203), zirconia (zrOs+), 2-quartz (
Oxides such as SiO2), titania (Ti203), magnesia (MgO), and stearidite (MgO
・SiO□), spinel (MgO-AQ, 203), mullite (3'A Q 203・2S10□), cordierite (
Mixed oxides such as 2Mg0.2AQ 203.5SiO□) are suitable. In addition to those mentioned above, metal oxides that can withstand heating in an oxidizing atmosphere of 900° C. or higher are also suitable for the purpose of the present invention.

また、目的によっては酸化物系超伝導材を集めて作った
線材の表面を銅やアルミニウムなどの金属で被覆するこ
とも可能である。
Furthermore, depending on the purpose, it is also possible to coat the surface of a wire made from a collection of oxide-based superconducting materials with a metal such as copper or aluminum.

酸化物系超伝導材料としては、Y−Ba−Cu −0、
L a −S r −B a−〇、Gd−Ba−Cu−
0などの希土類もしくはアルカリ土類金属、銅、および
酸素から成る材料が可能であるが、酸化物系材料であれ
ば上記組成に限定されるものではない。
As oxide-based superconducting materials, Y-Ba-Cu -0,
L a -S r -B a-〇, Gd-Ba-Cu-
A material consisting of a rare earth or alkaline earth metal such as 0, copper, and oxygen is possible, but the composition is not limited to the above composition as long as it is an oxide-based material.

セラミックの芯線の上に酸化物系超伝導材料を被覆する
方法としては、気相成長法、蒸着法。
Methods for coating a ceramic core wire with oxide-based superconducting materials include vapor phase growth and vapor deposition.

スパッタ法、などで酸化物系超伝導材料の構成金属元素
あるいは構成酸化物を被覆することができる。また、構
成元素を含む溶液を作製し、これにセラミック芯線を浸
すことによって被覆しても良い。被覆後、適当な酸化処
理や熱処理を施すことによって被覆材料に超伝導特性を
持たせることができる。
The constituent metal elements or constituent oxides of the oxide-based superconducting material can be coated by sputtering or the like. Alternatively, the ceramic core wire may be coated by preparing a solution containing the constituent elements and dipping the ceramic core wire in the solution. After coating, the coating material can be imparted with superconducting properties by subjecting it to appropriate oxidation treatment or heat treatment.

ここでセラミック製の芯線を用いたのは、酸化物系超伝
導材の超伝導特性が劣化しないことによる。金属などの
芯線を用いると酸化物系超伝導材料との間で反応等が生
じ、超伝導特性が破壊されてしまう。また、セラミック
製の芯線としては、上に被着する酸化物系超伝導材料と
熱膨張係数が近い材料が望ましい。熱膨張係数の差が大
きいと酸化物系超伝導材に応力や歪が入り易く、超伝導
特性を劣化させることになる。
The ceramic core wire was used here because the superconducting properties of the oxide-based superconducting material do not deteriorate. If a core wire made of metal or the like is used, a reaction or the like occurs with the oxide-based superconducting material, destroying the superconducting properties. Further, as the ceramic core wire, a material having a coefficient of thermal expansion close to that of the oxide-based superconducting material deposited thereon is desirable. If the difference in coefficient of thermal expansion is large, stress and strain are likely to be applied to the oxide-based superconducting material, resulting in deterioration of superconducting properties.

セラミック製の芯線材として、特に望ましい熱膨張係数
の範囲は、5〜20×10−67℃である。
A particularly desirable range of thermal expansion coefficient for the ceramic core wire is 5 to 20 x 10-67°C.

〔作用〕[Effect]

るので、これらを複数本より合せること等により圧力が
加わっても超伝導特性を害することはなく、超伝導特性
の良いワイヤ状もしくは帯状の電気伝導線材が得られる
Therefore, even if pressure is applied by twisting a plurality of these together, the superconducting properties will not be impaired, and a wire-shaped or band-shaped electrically conductive wire with good superconducting properties can be obtained.

〔実施例〕〔Example〕

以下、本発明を実施例で説明する。 The present invention will be explained below with reference to Examples.

実施例1゜ 直径2〜6μmのアルミナ(八〇203)繊維、ジルコ
ニア(ZrO□)繊維、シリカアルミナ(S]−02・
A Q 20 a )繊維、石綿(MgO・SiO2)
をセラミック材の芯線として使用した。これらの繊維を
順次高周波スパッタ装置中に装着し、以下の手順で酸化
物系超伝導材料の原材を厚さ約2μm付着させた。スパ
ッタ用のターゲットとして焼結法で作製した直径5イン
チのY −B a −’ Cu酸化物を用いた。
Example 1 Alumina (80203) fiber, zirconia (ZrO□) fiber, silica alumina (S]-02 with a diameter of 2 to 6 μm
A Q 20 a) Fiber, asbestos (MgO/SiO2)
was used as the core wire of the ceramic material. These fibers were sequentially placed in a high-frequency sputtering device, and the raw material of the oxide-based superconducting material was deposited to a thickness of about 2 μm using the following procedure. A Y-B a -'Cu oxide with a diameter of 5 inches prepared by a sintering method was used as a sputtering target.

Ar+3wt%0□ガスを5 X 10=Torr導入
しながらセラミック芯線上に’Y−Ba−Cu酸化物を
被覆した。スパッタの間、セラミック芯線を絶えず振動
および回転させ、Y−Ba−Cu酸化物がセラミック芯
線上に一様な厚さで付着するように注意した。スパッタ
装置からY−Ba−Cu酸化物を被覆したセラミック芯
線を取出した後、電気炉に入れ、酸化性雰囲気で升を作
製した。第1図(a)において、1はセラミック芯線、
2はY −B a −Cu酸化物系超伝導材料であり、
組成分析の結果 ’Y o、 4B ao、 e ClO2−y(0≦y
≦1.5)であった。この素材をより合せて第1図(b
)に示すような線材を作製した。線材の直径は約1+n
mである。これらの線材は柔軟性があり、通常のより合
せ銅線などと同様に曲げ加工等ができることを確認した
。これら線材の超伝導臨界温度(Tc) 、4.2Kに
おける臨界電流密度(JC)を測定し、表1の様な結果
を得た。
'Y-Ba-Cu oxide was coated on the ceramic core wire while introducing Ar+3wt%0□ gas at 5×10=Torr. During sputtering, care was taken to constantly vibrate and rotate the ceramic core to ensure that the Y--Ba--Cu oxide was deposited on the ceramic core at a uniform thickness. After taking out the ceramic core wire coated with Y--Ba--Cu oxide from the sputtering device, it was placed in an electric furnace to produce a square in an oxidizing atmosphere. In FIG. 1(a), 1 is a ceramic core wire;
2 is a Y-Ba-Cu oxide-based superconducting material,
Compositional analysis results 'Y o, 4B ao, e ClO2-y (0≦y
≦1.5). This material is twisted together as shown in Figure 1 (b
) was prepared. The diameter of the wire is approximately 1+n
It is m. It was confirmed that these wires are flexible and can be bent and processed in the same way as ordinary twisted copper wire. The superconducting critical temperature (Tc) and critical current density (JC) of these wires at 4.2K were measured, and the results shown in Table 1 were obtained.

表       1 実施例2゜ セラミック芯材として太さ1〜6μmのウィスカーもし
くは短繊維状のアルミナ (An2o3)−ジルコニア(ZrO2)、石英(S]
0□)、チタニア(T i 、○2.)、マグネシア(
MgO)、ステアダイト(MgO・SjO□)、スピネ
ル(MgO−、In、□03)。
Table 1 Example 2 Ceramic core material: whiskers or short fibers of alumina (An2o3)-zirconia (ZrO2) and quartz (S) with a thickness of 1 to 6 μm
0□), titania (T i , ○2.), magnesia (
MgO), stearadite (MgO・SjO□), spinel (MgO-, In, □03).

ムライト(3AQ203・2Sj02)およびコージラ
イト(2Mgo・2AQ203・5Sj○2)を用いた
。真空蒸着装置中で順次’Y、BaおよびCuの蒸気に
露し、それぞれのセラミック芯材の表面にY −B a
 −Cuの金属膜を1μm付着させた。これら材料を電
気炉中に入れ、酸化性雰囲気中で800〜980℃にを
幅5mm、厚さ0 、5 mmの帯状に型ローラーで圧
縮成型し、ついでその表面を厚さ0.2mmの銅板5で
被覆し、第2図に示す断面構造を持つ、電気伝導線材を
作製した。この線材のTc、4.2KにおけるJ。を測
定し、表2に示す結果を得た。これらの電気伝導線材は
、いずれも柔軟性があり、従来使用されていた銅線など
と同様の曲げ加工等が可能であった。
Mullite (3AQ203.2Sj02) and cordierite (2Mgo.2AQ203.5Sj○2) were used. Sequentially exposed to 'Y, Ba and Cu vapors in a vacuum evaporation apparatus, the surface of each ceramic core material is exposed to Y-Ba.
A metal film of -Cu of 1 μm was deposited. These materials were placed in an electric furnace and compression molded at 800 to 980°C in an oxidizing atmosphere into a strip with a width of 5 mm and a thickness of 0.5 mm using mold rollers, and then the surface was formed into a 0.2 mm thick copper plate. An electrically conductive wire having a cross-sectional structure shown in FIG. 2 was prepared. Tc of this wire, J at 4.2K. was measured, and the results shown in Table 2 were obtained. All of these electrically conductive wires were flexible and could be bent in the same way as conventionally used copper wires.

表       2 なお、酸化物系超伝導材料の被覆の厚さは、電気伝導線
の素材が柔軟性を失わない程度の厚さであれば良いこと
は言うまでもない。
Table 2 It goes without saying that the thickness of the coating of the oxide-based superconducting material should be such that the material of the electrically conductive wire does not lose its flexibility.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば高い臨界温=8一 度を持つ優れた超伝導材料を用いて、柔軟性に富む電気
伝導線材を提供することができる。この電気伝導線材は
、従来用いられていた銅線などと同様に曲げ加工性など
をして使用することができ、優れた超伝導特性を示す酸
化物系超伝導材料の用途を拡大する具体的効果がある。
As described above, according to the present invention, an electrically conductive wire with high flexibility can be provided using an excellent superconducting material having a high critical temperature of 8 degrees. This electrically conductive wire can be used with bending properties similar to conventionally used copper wire, etc., and is a concrete material that expands the applications of oxide-based superconducting materials that exhibit excellent superconducting properties. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は、各々本発明の実施例1におけ
る電気伝導線素材及び素材をより合せた電気伝導線材の
模式図、第2図は本発明の実施例2の電気伝導線材の断
面図である。 1・・・セラミック芯線、2・・・酸化物系超伝導材、
3・・・電気伝導線材、4・・・短繊維状酸化物系超伝
導素材、5・・・銅板。
FIGS. 1(a) and (b) are schematic diagrams of an electrically conductive wire material and an electrically conductive wire obtained by twisting the materials in Example 1 of the present invention, respectively, and FIG. 2 is a schematic diagram of an electrically conductive wire material in Example 2 of the present invention. It is a sectional view of a wire. 1... Ceramic core wire, 2... Oxide-based superconducting material,
3... Electrically conductive wire, 4... Short fibrous oxide superconducting material, 5... Copper plate.

Claims (1)

【特許請求の範囲】[Claims] 1、セラミック芯材を酸化物系超伝導材料で被覆して成
る素材を複数本含むことを特徴とする電気伝導線材。
1. An electrically conductive wire material comprising a plurality of ceramic core materials coated with an oxide-based superconducting material.
JP62153282A 1987-06-22 1987-06-22 Electroconductive wire Pending JPS63318017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62153282A JPS63318017A (en) 1987-06-22 1987-06-22 Electroconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153282A JPS63318017A (en) 1987-06-22 1987-06-22 Electroconductive wire

Publications (1)

Publication Number Publication Date
JPS63318017A true JPS63318017A (en) 1988-12-26

Family

ID=15559063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153282A Pending JPS63318017A (en) 1987-06-22 1987-06-22 Electroconductive wire

Country Status (1)

Country Link
JP (1) JPS63318017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264117A (en) * 1987-12-31 1989-10-20 Sumitomo Electric Ind Ltd Superconducting wire and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264117A (en) * 1987-12-31 1989-10-20 Sumitomo Electric Ind Ltd Superconducting wire and manufacture thereof

Similar Documents

Publication Publication Date Title
US4921833A (en) Superconducting member
JPH01163910A (en) Superconductive composite and its manufacture
JP2557486B2 (en) Method for producing long length of superconducting ceramics and long length of superconducting ceramics
EP0446789B1 (en) Method of preparing oxide superconducting film
JPS63318017A (en) Electroconductive wire
JP2592839B2 (en) Superconducting wire
JP2814563B2 (en) Manufacturing method of oxide superconducting film
US5273954A (en) Method for forming superconducting ceramics elongated body
EP0417329A1 (en) Method of producing an oxide superconducting wire
US5254529A (en) Superconducting fibers made with yttrium and yttrium oxide interlayers and barium cuprate cover layers
JPH02183915A (en) Oxide superconducting compact
JP2891365B2 (en) Manufacturing method of ceramic superconductor
US5232909A (en) Method for manufacturing superconducting ceramics elongated body
JP2585366B2 (en) Oxide superconducting wire
JPH01143108A (en) Manufacture of ceramics superconductive wire
JPS63274017A (en) Superconductive wire material
JPH04123718A (en) Manufacture of superconducting wire rod
JPH01144524A (en) Manufacture of ceramic-based superconductive wire
JPH0315119A (en) Manufacture of oxide superconductor wire
JPH04329217A (en) Oxide superconductive wire material and manufacture thereof
JPH03122917A (en) Manufacture of ceramics superconductive conductor
JPH01105412A (en) Manufacture of oxide superconductive compact
JPS63271814A (en) Superconductive wire rod
JPH01173790A (en) Manufacture of magnetic shielding superconductive material
JPH01304614A (en) Manufacture of superconductive wire of ceramic