JPS63317944A - Magneto-optical recording medium - Google Patents
Magneto-optical recording mediumInfo
- Publication number
- JPS63317944A JPS63317944A JP15268587A JP15268587A JPS63317944A JP S63317944 A JPS63317944 A JP S63317944A JP 15268587 A JP15268587 A JP 15268587A JP 15268587 A JP15268587 A JP 15268587A JP S63317944 A JPS63317944 A JP S63317944A
- Authority
- JP
- Japan
- Prior art keywords
- recording
- recording layer
- magnetic field
- direction perpendicular
- magneto
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005415 magnetization Effects 0.000 claims abstract description 16
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 10
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims description 26
- 239000010408 film Substances 0.000 claims description 18
- 239000010409 thin film Substances 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 4
- 229910052771 Terbium Inorganic materials 0.000 claims description 3
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 2
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 2
- 229910052723 transition metal Inorganic materials 0.000 abstract description 6
- 150000003624 transition metals Chemical class 0.000 abstract description 6
- 230000005381 magnetic domain Effects 0.000 description 15
- 239000010410 layer Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 241000270281 Coluber constrictor Species 0.000 description 1
- 230000005374 Kerr effect Effects 0.000 description 1
- 101000941926 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Carboxypeptidase Y inhibitor Proteins 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- OQZCSNDVOWYALR-UHFFFAOYSA-N flurochloridone Chemical compound FC(F)(F)C1=CC=CC(N2C(C(Cl)C(CCl)C2)=O)=C1 OQZCSNDVOWYALR-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光により情報を記録・再生及び消去が可能な
光磁気記録媒体に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical recording medium on which information can be recorded, reproduced and erased using light.
レーザー光のスポットで、記録層を加熱しながら、バイ
アス磁界を印加して反転磁区を形成、消失させることに
より情報を記録・消去し、記録時より低パワーの直線偏
光した前記レーザー光を照射し、カー効果あるいはファ
ラデー効果を利用して情−報を再生する光磁気記録にお
いて、その記録層である磁性薄膜は少な(とも次の性質
を満たすことが必要である。While heating the recording layer with a laser beam spot, information is recorded and erased by applying a bias magnetic field to form and eliminate reversed magnetic domains, and then irradiating the laser beam with linearly polarized light of lower power than during recording. In magneto-optical recording in which information is reproduced using the Kerr effect or the Faraday effect, the magnetic thin film that is the recording layer is small (and must satisfy the following properties).
(1)垂直磁化膜である。(1) It is a perpendicular magnetization film.
(2)半導体レーザーで記録・消去を行なえる程度にキ
ュリー温度が低く、通常の使用環境に比べてキュリー温
度が充分高いこと。(2) The Curie temperature is low enough to allow recording and erasing with a semiconductor laser, and the Curie temperature is sufficiently high compared to the normal usage environment.
(3)媒体ノイズが低いこと。(3) Low media noise.
(4)磁気光学効果が大きいこと。(4) The magneto-optical effect is large.
これらを満たすものとして、例えば、特開昭57−94
948のように重希土類金属Tb、Dy。For example, JP-A-57-94
Heavy rare earth metals Tb, Dy like 948.
Gdのうち1種類以上およびFeまたはCoのうち1種
類以上で形成された非晶質合金が用いられきた。Amorphous alloys formed of one or more of Gd and one or more of Fe or Co have been used.
光磁気記録は、レーザー光を照射することにより記録膜
の一部をキュリー温度以上まで昇温し、同時にバイアス
磁界を印加することにより反転磁区を形成あるいは消失
させるととで情報の記録、消去を行う。重希土類金属6
遷移金属を主たる成分とする非晶質合金において、室温
で見かけ上磁化が消失する補償組成よりも遷移金属が多
い組成系では、磁区を形成する際に反転させる磁区及び
その周囲が持つ磁化が作る磁界(浮遊磁界)が反転磁区
の形成を助ける方向に働く。そのため、反転磁区を形成
するために印加するバイアス磁界は小さくてすむ。一方
、磁区を消失させる際に浮遊磁界は反転磁区の形成を妨
げる方向に働くため、反転磁区を消失させるためのバイ
アス磁界は大きくならなければならない。 また、補償
組織より。Magneto-optical recording is a method of recording and erasing information by heating a part of the recording film to a temperature above the Curie temperature by irradiating it with laser light, and at the same time forming or eliminating reversal domains by applying a bias magnetic field. conduct. Heavy rare earth metal 6
In an amorphous alloy whose main component is a transition metal, in a composition system in which there is more transition metal than in a compensating composition where magnetization apparently disappears at room temperature, the magnetic domain that is reversed when forming a magnetic domain and the magnetization around it are created. A magnetic field (stray magnetic field) acts in a direction that helps form reversed magnetic domains. Therefore, the bias magnetic field applied to form reversed magnetic domains can be small. On the other hand, since the floating magnetic field acts in a direction that prevents the formation of reversed magnetic domains when a magnetic domain is eliminated, the bias magnetic field must be large in order to eliminate reversed magnetic domains. Also, from compensation organizations.
重希土類金属が多い組成系では、補償組成より遷移金属
が多い組成系と逆向きの浮遊磁界が働くため、反転磁区
を形成するために大きなバイアス磁界が必要であり、消
失させるためには小さなバイアス磁界で済む。In a composition system rich in heavy rare earth metals, a stray magnetic field acts in the opposite direction to that in a composition system rich in transition metals than in a compensation composition, so a large bias magnetic field is required to form a reversal domain, and a small bias field is required to eliminate it. A magnetic field is sufficient.
以上のように、浮遊磁界よりも大きなバイアス磁界を印
加することにより反転磁区の形成、消失が行なわれる。As described above, by applying a bias magnetic field larger than the floating magnetic field, reversed magnetic domains are formed and disappeared.
光磁気記録方式で記録・消去時に印加されるバイアス磁
界はR常500〜eoo。The bias magnetic field applied during recording and erasing using the magneto-optical recording method usually has an R of 500 to eoo.
eを−越えることはない。従って、光磁気記録媒体は数
百Oeで飽和記録及び完全消去ができるという特性が不
可欠である。補償組成より遷移金属が多い組成系におい
て、浮遊磁界が大きければ記録時に飽和記録が出来るが
、消去時に完全消去が出来ないことが起こる。補償組成
より重希土類金属が多い組成系において、浮遊磁界が大
きければ消去時に完全消去が出来るが、記録時に飽和記
録が出来ないことが起こる。つまり、浮遊磁界が充分小
さくなければ低バイアス磁界での記録・消去が完全に行
われない。It never exceeds -e. Therefore, it is essential that the magneto-optical recording medium has the property of being able to perform saturation recording and complete erasing at several hundred Oe. In a composition system in which there is more transition metal than in the compensation composition, if the stray magnetic field is large, saturation recording can be achieved during recording, but complete erasure may not be possible during erasing. In a composition system in which the amount of heavy rare earth metal is higher than that of the compensation composition, if the stray magnetic field is large, complete erasure can be achieved during erasing, but saturation recording may not be possible during recording. In other words, unless the stray magnetic field is sufficiently small, recording and erasing with a low bias magnetic field cannot be performed completely.
また、記録、消去時に照射されるレーザー光は強ば分布
を持つため、記録層はレーザー光照射部の中央部が最も
温度が高く、外周へ行(に従い温度が低い温度分布を持
ちながら冷却されていく。In addition, since the laser beam irradiated during recording and erasing has a strong distribution, the temperature of the recording layer is highest at the center of the laser beam irradiated area, and as it cools down toward the outer periphery (with a lower temperature distribution). To go.
このため、キュリー温度以上に昇温されていた部分の外
周部から次第にキュリー温度以下になり磁化が現れてく
る。そのため□、反転磁区の周囲の部分の持つ磁化及び
新たに現れた磁化により浮遊磁界が形成され、この浮遊
磁界が大きい時、記録時にはこれにより反転磁区内に微
小な反転磁区が形成され、消去時には消し残りになる。For this reason, the outer periphery of the portion that had been heated above the Curie temperature gradually becomes below the Curie temperature and magnetization appears. Therefore, a floating magnetic field is formed by the magnetization of the surrounding area of the inverted magnetic domain and the newly appeared magnetization, and when this floating magnetic field is large, a minute inverted magnetic domain is formed within the inverted magnetic domain during recording, and during erasing, It will remain unerased.
従って、浮遊磁界が充分小さければ、反転磁区内に微小
な反転磁区のない一様な記録ビットを形成することがで
きるため、情報を再生する際にキャリアー・レベルの高
い信号が得られる。また、浮遊磁界が充分小さければ、
完全消去が可能であるため、再生時にノイズ・レベルの
低い信号が得られる。Therefore, if the stray magnetic field is sufficiently small, it is possible to form uniform recording bits without minute inverted magnetic domains within inverted magnetic domains, and thus a signal with a high carrier level can be obtained when reproducing information. Also, if the stray magnetic field is small enough,
Since complete erasure is possible, a signal with a low noise level can be obtained during playback.
そこで、本発明は浮遊磁界の小さな磁性薄膜を記録層と
することにより、記録・再生・消去特性に優れた光磁気
記録媒体を提供することにある。Therefore, an object of the present invention is to provide a magneto-optical recording medium with excellent recording, reproducing and erasing characteristics by using a magnetic thin film with a small stray magnetic field as a recording layer.
本発明の光磁気記録媒体は、透明基体上に、膜面に対し
て垂直方向に磁気異方性を有する磁性薄膜を記録層とし
て形成し、光により情報を記録・再生及び消去を行なう
光磁気記録媒体において、前記記録層の組成を原子比で
HRx (FeyCo+−/)too−Xと表すとき
(但し、HRは重希土類金属Gd、Tb、DVのうちの
1種類以上を表わす)、X、Yが各々
18≦X≦25
0.55≦Y≦1.00
の範囲にあるもののうち、25℃から前記記録層のキュ
リー温度までの温度範囲で、前記記録層の膜面に対して
垂直方向の保磁力が1KOe以下の温度の時に、前記記
録層の膜面に対して垂直方向の飽和磁化が常に50em
u/cc以下であることを特徴とする。The magneto-optical recording medium of the present invention is a magneto-optical recording medium in which a magnetic thin film having magnetic anisotropy in a direction perpendicular to the film surface is formed as a recording layer on a transparent substrate, and information is recorded, reproduced and erased using light. In the recording medium, when the composition of the recording layer is expressed as HRx (FeyCo+-/)too-X in atomic ratio (however, HR represents one or more of the heavy rare earth metals Gd, Tb, and DV), Among those in which Y is in the range of 18≦X≦25 0.55≦Y≦1.00, in the temperature range from 25°C to the Curie temperature of the recording layer, in the direction perpendicular to the film surface of the recording layer. When the coercive force of
It is characterized by being below u/cc.
(実施例1)
重希土類金属とそれ以外の比率の異なる5種類のターゲ
ットを、以下に示す条件においてスパッタリングするこ
とにより5種類の組成の記録膜を作成した。初期真空度
5.0XIO璽q’Toor以下にチャンバー内を排気
した後、キャリアーガスとしてArを導入し、300W
の高周波電力をカソードに印加して、ガラス基板上に5
0nmの膜厚に作成した。磁性膜の酸化を防止するため
真空を破らずに
第1表
連続して窒化アルミニウムと窒化ケイ素の混合物を11
00n形成した。作成した記録膜の組成を第1表に示す
。第1図(a)(b)(c)(d)(e)は各々、試料
番号1.2.3.4.5の組成の記録膜の膜面に対して
垂直方向の磁化(以下磁化と記す)の温度依存性と膜面
に対して垂直方向の保磁力(以下保磁力と記す)の温度
依存性を示す。第2表は、試料番号1.2.3.4.5
の組成の記録膜のファラデー回転角を示す。次に、案内
溝付きのポリカーボネイト基板に、第−保護第2表
層として窒化アルミニウムと窒化ケイ素の混合物を11
00nの膜厚に形成して、連続して試料番号1.2.3
.4.5の内の1種類の組成の記録膜を40nmの膜厚
に形成して、第二保護層として第−保護層と同一組成の
ものを1100nの膜厚に形成して、5種類の光磁気記
録媒体を作製した。第3表は、5種類の記録媒体のファ
ラデ一方式による再生信号のCN比を示す。尚線速4.
7m / S s記録周波数IMHz、分解能帯域30
KH2Nバイアス磁界3000eの条件にて評価を行な
った。(Example 1) Recording films having five types of compositions were created by sputtering five types of targets with different ratios of heavy rare earth metals and other metals under the conditions shown below. After evacuating the chamber to an initial vacuum level of 5.0XIO or less, Ar was introduced as a carrier gas, and a
High frequency power of 5 is applied to the cathode, and 5 is applied to the glass substrate.
It was made to have a film thickness of 0 nm. In order to prevent oxidation of the magnetic film, the mixture of aluminum nitride and silicon nitride was continuously heated for 11 minutes without breaking the vacuum.
00n was formed. Table 1 shows the composition of the recording film produced. Figure 1 (a), (b), (c), (d), and (e) respectively show the magnetization (hereinafter magnetization) perpendicular to the film surface of the recording film with the composition of sample number 1.2.3.4.5. The temperature dependence of the coercive force in the direction perpendicular to the film surface (hereinafter referred to as coercive force) is shown. Table 2 shows sample number 1.2.3.4.5
The Faraday rotation angle of a recording film with a composition of is shown. Next, a mixture of aluminum nitride and silicon nitride was applied to the polycarbonate substrate with guide grooves as a second protective surface layer.
Sample No. 1.2.3 was formed continuously with a film thickness of 00n.
.. A recording film having one composition among 4.5 was formed to a thickness of 40 nm, and a second protective layer having the same composition as the first protective layer was formed to a thickness of 1100 nm. A magneto-optical recording medium was fabricated. Table 3 shows the CN ratio of the reproduced signal by the Farade single method for five types of recording media. Linear speed 4.
7m/Ss recording frequency IMHz, resolution band 30
Evaluation was performed under the condition of KH2N bias magnetic field of 3000e.
第3表
第1図で明らかなように、保磁力が1KOe以下の温度
において磁化が常に50 e m u / c c以下
であるという条件を満たしていない試料番号1及び2の
組成の記録媒体は、他の記録媒体と比較したCN比が劣
っている。一方、試料番号5の組成の記録媒体は、保磁
力が1KOe以下の温度において磁化が常に50 e
m u / c c以下でありながら、同様に保磁力が
1KOe以下の温度において磁化が常に50emu/c
c以下である試料番号3及び4と比較してCN比が劣っ
ている。これは第3表で示されているように、試料番号
1.2.3.4.5の順で重希土類金属の占める割合が
多くなると、その順で磁気光学効果が小さくなるためで
ある。以上のことから、キュリー温度付近すなわち保磁
力が1KOeの温度範囲において、浮遊磁界が小さいこ
とにより、一様で微少な反転磁区のない記録ビットが形
成されることが高CN比の光磁気記録媒体の必要条件で
あり、その上で磁気光学効果が大きいことが望ましい。As is clear from Table 3, Figure 1, the recording media with the compositions of sample numbers 1 and 2 do not satisfy the condition that the magnetization is always 50 em u / cc or less at a temperature where the coercive force is 1 KOe or less. , the CN ratio is inferior compared to other recording media. On the other hand, the recording medium with the composition of sample number 5 always has a magnetization of 50 e at a temperature where the coercive force is 1 KOe or less.
Similarly, the magnetization is always 50 emu/c at a temperature where the coercive force is below 1 KOe, although it is below mu/cc.
The CN ratio is inferior compared to sample numbers 3 and 4, which are below c. This is because, as shown in Table 3, as the ratio of heavy rare earth metal increases in the order of sample numbers 1, 2, 3, 4, and 5, the magneto-optic effect decreases in that order. From the above, in a magneto-optical recording medium with a high C/N ratio, it is possible to form recording bits that are uniform and have no reversed magnetic domain due to the small floating magnetic field in the vicinity of the Curie temperature, that is, in the temperature range where the coercive force is 1 KOe. In addition, it is desirable that the magneto-optic effect be large.
(実施例2)
実施例1で用いた5種類の光磁気記録媒体の消去特性を
調べるため、 消去時に各バイアス磁界においてレーザ
ーパワーを変えてCN比を測定した。第2図(a)(b
)(c)(d)(e)は、試料番号1.2.8.4.5
の組成記録媒体についての消去特性の結果である。試料
番号1及び2の組成の記録媒体は5000eのバイアス
磁界が消去に必要なのに対して、試料番号3.4.5に
おいては2000eのバイアス磁界で消去が可能である
。浮遊磁界が試料番号1及び2に比べて小さな試料番号
8.4.5の組成の記録媒体は、消去時に2000eの
バイアス磁界で充分であり、また実施例1によりバイア
ス磁界が3000eで充分な記録が可能であることから
、試料番号3.4.5の記録媒体は、光磁気記録媒体に
望まれる低バイアス磁界による記録・再生を実現してい
ると考えられる。(Example 2) In order to examine the erasing characteristics of the five types of magneto-optical recording media used in Example 1, the CN ratio was measured while changing the laser power in each bias magnetic field during erasing. Figure 2 (a) (b)
)(c)(d)(e) is sample number 1.2.8.4.5
These are the results of the erasing characteristics for the composition recording medium. The recording media with the compositions of sample numbers 1 and 2 require a bias magnetic field of 5000 e for erasing, whereas sample numbers 3.4.5 can be erased with a bias magnetic field of 2000 e. For the recording medium with the composition of Sample No. 8.4.5, in which the floating magnetic field is smaller than that of Sample Nos. 1 and 2, a bias magnetic field of 2000e is sufficient for erasing, and according to Example 1, a bias magnetic field of 3000e is sufficient for recording. Therefore, it is considered that the recording medium of sample number 3.4.5 realizes recording and reproduction using a low bias magnetic field, which is desired for a magneto-optical recording medium.
以上述べたように本発明によれば、希土類金属及び遷移
金属を主たる成分とする磁性薄膜を記録層とする光磁気
記録媒体において、低バイアス磁界による記録・消去及
び高CN比を実現させるという効果を存する。As described above, according to the present invention, in a magneto-optical recording medium whose recording layer is a magnetic thin film containing rare earth metals and transition metals as the main components, recording and erasing with a low bias magnetic field and a high CN ratio can be achieved. exists.
第1図、(a)(b)(c)(d)(e)は、各々試料
番号1.2.3.4.5の組成の磁性膜の磁化と保磁力
の温度依存性を示す図で、尚各図において(0)は保磁
力の温度依存性、(Δ)は磁化の温度依存性を示す。
第2図、(a)(b)(c)(d)(e)は、各々試料
番号1.2.8.4.5の組成の光磁気記録媒体の消去
時の各バイアス磁界におけるCN比のレーザーパワー依
存性を示す図で、尚、第2図(a)において(○)は5
000e1 (Δ)は5500e、(X)は6000e
のバイアス磁界を表わす。第2図(b)において(0)
は4500e1 (△)は5000 e N (X
)は5500eのバイアス磁界を表わす図で、第2図(
C)において(○)は1500e、(Δ)は2000e
。
(×)は2500eのバイアス磁界を表わす。
第2図(d)において、(○)は、1000e1(Δ)
は1500e1 (×)は2000eのバイアス磁界を
表わす。第2図(e)において(○)は1000e、(
Δ)は1500e1(X)は2000eのバイアス磁界
を表わず。
以 上
出願人 セイコーエプソン株式会社
4φ5 、!;、0 5.% l、、o
6.”;し−サ゛°−ノぐワー 〔物W〕
第2図αノ
し−憚゛ゝパワー 〔m1〕
第2図 (b、1
4、ダ 5.o5.5G、o6,5レーサ゛Lノぐ
ワー 〔m口r〕
第21!I(C)
第 2 図 (dンFigures 1, (a), (b), (c), (d), and (e) are diagrams showing the temperature dependence of magnetization and coercive force of magnetic films with compositions of sample numbers 1, 2, 3, 4, and 5, respectively. In each figure, (0) indicates the temperature dependence of coercive force, and (Δ) indicates the temperature dependence of magnetization. Figure 2, (a), (b), (c), (d), and (e) show the CN ratio at each bias magnetic field during erasing of the magneto-optical recording medium with the composition of sample number 1.2.8.4.5, respectively. This is a diagram showing the laser power dependence of
000e1 (Δ) is 5500e, (X) is 6000e
represents the bias magnetic field of In Figure 2 (b) (0)
is 4500e1 (△) is 5000e N (X
) is a diagram representing the bias magnetic field of 5500e, and Figure 2 (
In C), (○) is 1500e, (Δ) is 2000e
. (x) represents a bias magnetic field of 2500e. In Figure 2(d), (○) is 1000e1(Δ)
is 1500e1 (x) represents a bias magnetic field of 2000e. In Fig. 2(e), (○) is 1000e, (
Δ) does not represent the bias magnetic field of 1500e1(X) and 2000e. Applicant: Seiko Epson Corporation 4φ5,! ;, 0 5. %l,,o
6. ”;Signal power [Object W] Fig. 2 α Nozzle power [m1] Fig. 2 (b, 1 4, da 5.o5.5G, o6,5 racer L no. Guwa [m mouth r] 21st!I(C) 2nd figure (dn
Claims (1)
する磁性薄膜を記録層として形成し、光により情報を記
録・再生及び消去を行なう光磁気記録媒体において、前
記記録層の組成を原子比でHR_x(Fe_yCo_1
_−_y)_1_0_0_−_xと表すとき(但し、H
Rは重希土類金属Gd、Tb、Dyのうちの1種類以上
を表わす)、X、Yが各々 18≦X≦25 0.55≦Y≦1.00 の範囲にあるもののうち、25℃から前記記録層のキュ
リー温度までの温度範囲で、前記記録層の膜面に対して
垂直方向の保磁力が1KOe以下の温度の時に、前記記
録層の膜面に対して垂直方向の飽和磁化が常に50em
u/cc以下であることを特徴とする光磁気記録媒体。[Claims] In a magneto-optical recording medium in which a magnetic thin film having magnetic anisotropy in a direction perpendicular to the film surface is formed as a recording layer on a transparent substrate, and information is recorded, reproduced, and erased using light. , the composition of the recording layer is HR_x(Fe_yCo_1
____y)_1_0_0_-_x (however, H
R represents one or more of the heavy rare earth metals Gd, Tb, and Dy), and X and Y are each in the range of 18≦X≦25 0.55≦Y≦1.00, from 25°C to the above In the temperature range up to the Curie temperature of the recording layer, when the coercive force in the direction perpendicular to the film surface of the recording layer is 1 KOe or less, the saturation magnetization in the direction perpendicular to the film surface of the recording layer is always 50 em.
1. A magneto-optical recording medium characterized in that it is less than u/cc.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15268587A JPS63317944A (en) | 1987-06-19 | 1987-06-19 | Magneto-optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15268587A JPS63317944A (en) | 1987-06-19 | 1987-06-19 | Magneto-optical recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63317944A true JPS63317944A (en) | 1988-12-26 |
Family
ID=15545883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15268587A Pending JPS63317944A (en) | 1987-06-19 | 1987-06-19 | Magneto-optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63317944A (en) |
-
1987
- 1987-06-19 JP JP15268587A patent/JPS63317944A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09320134A (en) | Magneto-optical recording medium | |
JPS6122452A (en) | Photomagnetic recording medium | |
JP3477384B2 (en) | Magneto-optical recording medium | |
US5666346A (en) | Super-resolution magnetooptical recording medium using magnetic phase transition material, and method for reproducing information from the medium | |
JP3245704B2 (en) | Magneto-optical recording medium and method of manufacturing the same | |
JPS60243840A (en) | Photomagnetic recording body | |
JPH07244876A (en) | Magneto-optic recording medium and magneto-optically recording/reproducing method | |
JP3078550B2 (en) | Magneto-optical recording method and magneto-optical recording medium used therein | |
JPS61246946A (en) | Photomagnetic recording medium | |
JPS63317944A (en) | Magneto-optical recording medium | |
JPS63317945A (en) | Magneto-optical recording medium | |
JP3074104B2 (en) | Magneto-optical recording medium | |
JP3756052B2 (en) | Reproduction method of magneto-optical recording medium | |
JPH0877626A (en) | Magneto-optical recording medium | |
JP3010684B2 (en) | Optical recording medium | |
KR930009647B1 (en) | Optical writing materials | |
JPH11191244A (en) | Magneto-optical recording medium and reproducing method therefor | |
JP3079308B2 (en) | Magneto-optical recording medium | |
JPS6348636A (en) | Magneto-optical recording medium | |
JPH08315435A (en) | Magneto-optical recording medium | |
JPH0536134A (en) | Magneto-optical recording medium | |
JPS6310354A (en) | Magneto-optical recording medium | |
JPH01258250A (en) | Magneto-optical recording medium | |
JPH0679389B2 (en) | Magneto-optical recording medium | |
JPH02265048A (en) | Magneto-optical recording medium |