JPS63317595A - Production of high-btu town gas from methanol - Google Patents

Production of high-btu town gas from methanol

Info

Publication number
JPS63317595A
JPS63317595A JP62153030A JP15303087A JPS63317595A JP S63317595 A JPS63317595 A JP S63317595A JP 62153030 A JP62153030 A JP 62153030A JP 15303087 A JP15303087 A JP 15303087A JP S63317595 A JPS63317595 A JP S63317595A
Authority
JP
Japan
Prior art keywords
gas
water
methanol
heat
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62153030A
Other languages
Japanese (ja)
Other versions
JPH034597B2 (en
Inventor
Toshihisa Kanamaru
金丸 利寿
Shoji Urano
浦野 昌治
Masayuki Inoue
正之 井上
Chikashi Nishino
西野 近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIBU GAS KK
Mitsubishi Petrochemicals Engineering Co Ltd
Original Assignee
SEIBU GAS KK
Mitsubishi Petrochemicals Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIBU GAS KK, Mitsubishi Petrochemicals Engineering Co Ltd filed Critical SEIBU GAS KK
Priority to JP62153030A priority Critical patent/JPS63317595A/en
Priority to KR1019880007360A priority patent/KR910005726B1/en
Priority to CN88103778A priority patent/CN1022255C/en
Priority to DE88109772T priority patent/DE3885517T2/en
Priority to EP88109772A priority patent/EP0295715B1/en
Publication of JPS63317595A publication Critical patent/JPS63317595A/en
Publication of JPH034597B2 publication Critical patent/JPH034597B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the titled gas of high methane yield economically in a simple manner, with no carbon separating out, by producing a methane-contg. gas through only one step specific reaction process from a mixture of methanol and water. CONSTITUTION:A mixture of methanol and water is heated to the temperature required, by heat exchange through heating medium followed by reducing the content of the sulfur compounds present, and also, through a catalyst in which a Ni-based matter has been carried on an alumina-based carrier of decreased specific surface area,is made to react at <=ca. 300 deg.C to generate a methane- contg. gas. Water is separated from said gas followed by CO2-removal, dehydration and BTU-enhancement by butane incorporation, thus obtaining the objective high-BTU town gas in a steady manner. The water to be mixed with the methanol and the heat for heating the heat transfer medium are partly supplied externally at the startup, the rest from the water separated from the methane-contg. gas and from the heat of reaction produced at the generation of said gas, respectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はメタノールを原料として都市ガスを製造する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing city gas using methanol as a raw material.

(技術の背景) 最近、大都市圏を中心に都市ガス原料としてLNG(g
化天然ガス)の導入が図られ都市ガスの高熱量化が進め
られているが、LNGの場合マイナス162℃という超
低温にして輸送、貯蔵する必要があり、中小都市の都市
ガス事業者では輸送、貯蔵等についての技術的、経済的
問題が多い。このため、常温において液体でろり輸送、
貯蔵等が答易なメタノールを原料として都市ガスを製造
する手段の開発が進められている。
(Technology background) Recently, LNG (g
However, in the case of LNG, it is necessary to transport and store it at an extremely low temperature of -162°C, and city gas companies in small and medium-sized cities have difficulty in transporting and storing it. There are many technical and economic problems regarding such matters. For this reason, it is possible to transport it as a liquid at room temperature.
Progress is being made in developing methods for producing city gas using methanol, which is easy to store, as a raw material.

このメタノールは、前記輸送、貯蔵の面での利点に加え
、資源的に豊富な海外産の石炭、天然ガス等から安価、
恒常的に得ることができ、またイオウ分、チッソ分、■
金属等の不純物を含まず脱硫手間が掛らない等の利点が
あり、今後の都市ガス原料として有望視されている。
In addition to the above-mentioned advantages in terms of transportation and storage, methanol can be produced at low cost and from abundant resources such as coal and natural gas produced overseas.
It can be obtained permanently, and also contains sulfur, nitrogen,
It has the advantages of not containing impurities such as metals and requiring no desulfurization work, and is seen as a promising future city gas raw material.

(従来の技術とその問題点) 従来、メタノールを原料として都市ガスを製造する手段
としては、例えば特公昭57−24835号公報に記載
のものが知られている。
(Prior art and its problems) Conventionally, as a means for producing city gas using methanol as a raw material, the method described in Japanese Patent Publication No. 57-24835, for example, is known.

この従来の手段は、メタノールと水との混合原料をルテ
ニウム(Ru)系触媒の存在化で接触分解し、水素(H
2)、−酸化炭素(CO)、二酸化炭素(CO2)を含
有するガスを生成し、さらに水素、−酸化炭素をメタン
化させるものである。なお、このメタン化の後には、脱
炭酸、脱水、pA量調整が行なわれる。
This conventional method involves catalytically cracking a raw material mixture of methanol and water in the presence of a ruthenium (Ru) catalyst, and
2) A gas containing -carbon oxide (CO) and carbon dioxide (CO2) is produced, and hydrogen and -carbon oxide are methanated. Note that after this methanation, decarboxylation, dehydration, and pA amount adjustment are performed.

このような従来の手段によると、接触分解による生成ガ
スについてさらにメタン化操作を行なうため、製造コス
トが掛プ製造効率が低くなると共に、装置構造が複雑大
型化するという問題がめる。
According to such conventional means, since the gas produced by catalytic cracking is further subjected to a methanation operation, problems arise in that the manufacturing cost is increased, the manufacturing efficiency is lowered, and the device structure becomes complicated and large.

(発明が解決しようとする問題点) 本発明が解決しようとする問題点は、メタノールと水の
混合原料から一段階の反応工程のみでメタン含有ガスを
生成させると共にスタートアップ時以外には、メタノー
ルを供給するだけで、原料加熱用の燃料及びメタノール
に混合する水の供給を不要にすることである。
(Problems to be Solved by the Invention) The problems to be solved by the present invention are to generate a methane-containing gas from a mixed raw material of methanol and water in only one reaction step, and to use methanol only during startup. The purpose is to eliminate the need for supplying fuel for heating raw materials and water to be mixed with methanol.

(問題点を解決するための手段) 上記問題点を解決するために本発明が講する技術的手段
はメタノールと水の混合物を熱媒熱交換によシ所要温度
に加熱した後、イオウ化合物の含有量を低下させまた比
表面積を低減させたアルミナ系担体にニッケル系を担持
させた触媒を介して300℃程度以下の低温度反応条件
下で反応させてメタン含有ガスを直接発生させ、該メタ
ン含有ガスから水を分離した後炭酸ガス除去、脱水、ブ
タン添加による増熱の各工程を経て高熱量都市ガスを定
常的に製造し、上記メタノールに混合する水及び熱媒加
熱用の熱源は、スタートアップ時に外部から供給する以
外には、夫々その全1を、製造過程においてメタン含有
ガスから分離せしめた水、メタン含有ガス発生時に生じ
た反応熱により充当するものである。
(Means for Solving the Problems) The technical means taken by the present invention to solve the above problems is to heat a mixture of methanol and water to a required temperature by heat exchange with a heat medium, and then convert the mixture of sulfur compounds into A methane-containing gas is directly generated by reacting under low temperature reaction conditions of about 300°C or less via a nickel-based catalyst supported on an alumina-based carrier with a reduced content and specific surface area. After separating water from the contained gas, high calorific city gas is constantly produced through the steps of carbon dioxide removal, dehydration, and heat increase by adding butane, and the water to be mixed with the methanol and the heat source for heating the heat medium are as follows: In addition to being supplied from the outside at the time of start-up, the entire amount is supplied by water separated from the methane-containing gas during the manufacturing process and reaction heat generated when the methane-containing gas is generated.

(発明の詳細な説明) 以下、本発明のメタノール原料高熱量都市ガス製造方法
を第1図に示すプロセスフローに基づいて詳細に説明す
る。
(Detailed Description of the Invention) Hereinafter, the method for producing high-calorie city gas as a methanol raw material of the present invention will be described in detail based on the process flow shown in FIG.

原料のメタノールは水を混合され、反応器(1)に送ら
れる。
The raw material methanol is mixed with water and sent to the reactor (1).

この際メタノールと水の混合原料は反応器(1)から出
る反応ガスの熱及び、反応器(1)における気相接触反
応によるメタン化反応熱を回収して加熱気化され、反応
器(1)K送り込まれる。
At this time, the mixed raw material of methanol and water is heated and vaporized by recovering the heat of the reaction gas coming out of the reactor (1) and the heat of the methanation reaction caused by the gas phase contact reaction in the reactor (1). K is sent.

即ちメタノール・水混合原料は反応ガスが熱変換器を流
動する予熱器(2)、夫々反応器(1)におけるメタン
化反応熱によシ加熱された熱媒が循環流動する蒸発器(
3)、過熱器(4)を順次経由することKより、予熱器
(2)で予熱され、蒸発器(3)で気化されたうえ、過
熱器(4)で更に加熱されて反応器(1)に送られる。
That is, the methanol/water mixed raw material is passed through a preheater (2) in which the reaction gas flows through a heat converter, and an evaporator (in which a heating medium heated by the heat of methanation reaction in the reactor (1) circulates and flows).
3), passes through the superheater (4) sequentially, so that it is preheated in the preheater (2), vaporized in the evaporator (3), further heated in the superheater (4), and then heated in the reactor (1). ) will be sent to.

反応器(1)は前工程において予熱器(2)、蒸発器(
3)、加熱器(4)で加熱気化されたメタノール・水混
合原料を触媒の存在下で気相接触反応させて反応ガスと
してメタン含有混合ガスを生成するもので、例えばシェ
ルアンドチューブ型構造からなる。
The reactor (1) is equipped with a preheater (2) and an evaporator (
3) A mixture of methanol and water that has been heated and vaporized in the heater (4) is subjected to a vapor phase contact reaction in the presence of a catalyst to produce a methane-containing mixed gas as a reaction gas. Become.

この反応器(1)のチューブ内に充填される触媒はイオ
ウ化合物の含有量を低下させまた比表面積を低減させた
アルミナ系担体にニッケル系を担持させ【なるもので、
例えばイオウ化合物含有量(504−2として)1.2
重量%以下の微粉状r−アルミナまたは微粉状アルミナ
水和物の担体に二′ツケル(Ni )および(または)
ニッケルの参加物ないしその還元物を担持させてなるも
の、または、比表面積350m27g以下のシリカ・ア
ルミナの担体にニッケルの還元物を担持させてなるもの
でおる。この触媒は低温高活性、誦メタン化率を示す特
性を有しており、9Atm。
The catalyst filled in the tube of this reactor (1) consists of a nickel-based carrier supported on an alumina-based carrier with a reduced content of sulfur compounds and a reduced specific surface area.
For example, sulfur compound content (as 504-2) 1.2
Up to % by weight of finely divided r-alumina or finely divided alumina hydrate on a carrier of Ni' and/or
It is made by supporting a nickel substance or its reduced product, or it is made by supporting a reduced product of nickel on a silica-alumina carrier having a specific surface area of 350 m27 g or less. This catalyst has the characteristics of high activity at low temperatures and a methanation rate of 9 Atm.

300℃程度以下の反応条件で6,900Kcal/N
m3程度の発熱量のメタン含有混合ガス(CH472%
、CO225%、H23%程度)を1段の反応のみで生
成することができる。
6,900Kcal/N under reaction conditions of about 300℃ or less
Methane-containing mixed gas (CH472%) with a calorific value of about m3
, about 25% of CO2, and about 3% of H) can be produced in only one stage of reaction.

而して、この生成されたメタン含有混合ガスは、水を分
離した後、脱炭酸ガス、脱湿し、更にブタン混合により
増熱して高熱量都市ガスとする。
After water is separated from the generated methane-containing mixed gas, it is decarbonized and dehumidified, and further heated by mixing with butane to produce high calorific value city gas.

メタン含有混合ガスの水の分離は反応ガス分離槽(5)
において常法に従って行われるが、上記メタン含有混合
ガスは、反応器(1)から出て反応ガス分離槽(5)に
送られる過程において、予熱器(2)でメタノール・水
混合原料に熱回収されると共に脱炭酸ガス工程の再沸器
(6)で炭酸カリ蒸気に熱回収され、更にQ却器(7)
で冷却されてから反応ガス分離flff (5) K送
り込まれる。
Separation of water from methane-containing mixed gas is done in the reaction gas separation tank (5)
The methane-containing mixed gas leaves the reactor (1) and is sent to the reaction gas separation tank (5), where heat is recovered to the methanol/water mixed raw material in the preheater (2). At the same time, the heat is recovered to potassium carbonate vapor in the reboiler (6) of the decarbonation process, and then the Q-cooler (7)
The reactant gas is cooled in the reactor gas separation flff (5) K and then sent to the reaction gas separation flff (5) K.

一方、上記反応器(1)での気相接触反応によるメタン
化反応は発熱反応であり、ここで発生する反応熱は、熱
媒を介して過熱器(4)を経て蒸発器(3)に送られ、
過熱器(4)では蒸発器(3)で蒸発気化されたメタノ
ール・水混合原料に熱回収され、更に蒸発器(3)では
、予熱器(2)で予熱されて送り込まれるメタノール・
水混合原料に熱回収される。
On the other hand, the methanation reaction by gas phase catalytic reaction in the reactor (1) is an exothermic reaction, and the reaction heat generated here is transferred to the evaporator (3) via the superheater (4) via a heating medium. sent,
In the superheater (4), heat is recovered to the methanol/water mixed raw material that has been evaporated in the evaporator (3), and in the evaporator (3), the methanol/water that has been preheated in the preheater (2) is fed into the evaporator (3).
Heat is recovered to water mixed raw material.

上記、熱媒は142℃溶融する溶融塩を用い、熱媒貯槽
(8)、反応器(1)、過熱器(4)、蒸発器(3)を
経由する熱媒循環系路(A)をポンプ(9)の作動によ
り循環流動し、反応器(1)通過時にメタン化反応の反
応熱を吸熱し、過熱器(4)、蒸発器(3)通過時にメ
タノール・水混合原料に熱回収され、このメタノール・
水混合原料と反応器、(1)を出るメタン含有混合ガス
と共に必要な温度、即ち活性温度に迄加熱する。
In the above, a molten salt that melts at 142°C is used as the heat medium, and the heat medium circulation path (A) passes through the heat medium storage tank (8), reactor (1), superheater (4), and evaporator (3). The pump (9) operates to circulate and flow, absorbing the reaction heat of the methanation reaction when passing through the reactor (1), and recovering the heat to the methanol/water mixed raw material when passing through the superheater (4) and evaporator (3). , this methanol
The water mixed raw material and the reactor are heated together with the methane-containing mixed gas exiting (1) to the required temperature, that is, the activation temperature.

即ち、メタン化反応熱と、反応により発生するメタン含
有混合ガスの熱はメタン含有混合ガスの生成に必要な熱
量の全てを賄う。
That is, the heat of the methanation reaction and the heat of the methane-containing mixed gas generated by the reaction cover all of the amount of heat required to generate the methane-containing mixed gas.

尚、反応熱は必要以上に多く発熱するため熱媒温度調節
器(10)で冷却して温度を調節する。
Incidentally, since the reaction heat is generated in an amount larger than necessary, the temperature is adjusted by cooling with a heating medium temperature controller (10).

この熱媒温度調節器(10)は、熱々¥貯漕(8)と反
応器(1)との間に設ける。
This heat medium temperature regulator (10) is provided between the hot storage tank (8) and the reactor (1).

また反応ガス分t1%、l!(5)で、メタン含有混合
ガスから分離した分離水は、外部のメタノール供給源か
らメタノールフィードポンプ(11)により供給される
原料のメタノールに混合してメタノールψ水混合原料を
作る水としてリサイクル使用するが余乗分は捨てられる
Also, the reaction gas content is t1%, l! The separated water separated from the methane-containing mixed gas in (5) is mixed with the raw material methanol supplied by the methanol feed pump (11) from an external methanol supply source to be recycled and used as water to create the methanol ψ water mixed raw material. However, the covalent part is discarded.

即ち、メタノール含有混合ガス生成のために必要とされ
る水の全量はこの分離水によって賄われる。
That is, the entire amount of water required for producing the methanol-containing mixed gas is covered by this separated water.

上記、水は反応器(1)での気相接触反応にするカボン
析出防止のためにメタノールに混合するものであシ、水
・メタノールモル比は0.5にgl、’5整するのが好
適である。
In the above, water is mixed with methanol to prevent carbon precipitation during the gas phase contact reaction in reactor (1), and the water/methanol molar ratio is adjusted to 0.5 gl. suitable.

水・メタノールモル比を0.7以上にすると、メタノー
ル・水混合原料を所要温度に加熱するために必要な熱量
が多くなり、その熱量の全てを反応器(1)から出るメ
タン含有混合ガスの熱及びメタン化反応による反応熱で
まかなうためには断熱、保温を十分にしないと困難があ
り、また循環系統の負担も増大するため製造コスト的に
不利になる。
When the water/methanol molar ratio is set to 0.7 or more, the amount of heat required to heat the methanol/water mixed raw material to the required temperature increases, and all of that heat is transferred to the methane-containing mixed gas coming out of the reactor (1). In order to cover the heat and reaction heat from the methanation reaction, it is difficult to provide sufficient heat insulation and heat retention, and the burden on the circulation system increases, which is disadvantageous in terms of manufacturing costs.

また、水・メタノールモル比を0.3X以下にすると長
期間の定常運転中にはカボン析出の問題が生じる心配が
ある。
Further, if the water/methanol molar ratio is set to 0.3X or less, there is a fear that carbon precipitation may occur during long-term steady operation.

尚、当然のことながらスタートアップ時においては、メ
タン含有混合ガスから分離された水も無いし、熱媒を加
熱する反応熱も発生していないため、外部からの水の供
給及び外部熱源による熱媒加熱の必要が生じるが、2常
運転に移行後はこれらは全く必要がなく、メタノールの
送り込みだけを行なえば良い。
Of course, at startup, there is no water separated from the methane-containing mixed gas, and no reaction heat is generated to heat the heating medium, so water must be supplied from outside and the heating medium must be supplied from an external heat source. Although heating is required, after shifting to normal operation, there is no need for this at all, and only methanol needs to be fed.

スタートアップについては後述する。The startup will be discussed later.

次に脱炭酸ガス工程、脱湿工程及びブタン増熱工程は常
法により行なう。
Next, the decarbonation gas step, dehumidification step, and butane heating step are performed by conventional methods.

即ち、反応ガス分[411(5)1/C,おいて水を分
離したメタン含有混合ガスは、炭酸ガス吸収弔(12)
マ炭酸ガスを炭酸カリに吸収させて除去した後、冷却器
(13) (14) (15)を通して精製ガス水分離
槽(16)に導き、ここで水分を分離する。
That is, the methane-containing mixed gas from which water has been separated at a reaction gas content of [411 (5) 1/C] absorbs carbon dioxide (12).
After the potassium carbonate gas is absorbed and removed, the refined gas is led to a water separation tank (16) through coolers (13), (14), and (15), where water is separated.

上記脱炭酸ガス工程における炭酸ガス除去によりメタン
含有混合ガスの熱量を9,200 Kca〆N m 3
程度に高めることができる。 尚、この脱炭酸ガスエ穆
は乾式(PSA法)等地の方法によシ行うことも勿論可
能である。
By removing carbon dioxide gas in the above decarbonation step, the calorific value of the methane-containing mixed gas was reduced to 9,200 Kca〆N m3
It can be increased to a certain extent. Incidentally, this decarbonation gas removal can of course be carried out by other methods such as a dry method (PSA method).

そして、最後に上記脱炭酸ガス及び脱湿された精製ガス
にミキサー(17)を介して所要量のブpyIH混合し
、熱1を11,000 Kcal/Nm3程度に増熱調
整する。
Finally, a required amount of pyIH is mixed with the decarbonated gas and dehumidified purified gas through a mixer (17), and the heat 1 is increased to about 11,000 Kcal/Nm3.

この際、ブタンは、炭酸ガス吸収塔(12)を出て最初
の冷却器(13)に通す前の脱炭酸ガス済みのメタン含
有混合ガスから熱回収し蒸発気化させる。
At this time, butane is evaporated by recovering heat from the decarbonated methane-containing mixed gas that has left the carbon dioxide gas absorption tower (12) and before passing through the first cooler (13).

斯くして、高熱量の都市ガスが常温で定常的に得られる
In this way, city gas with high calorific value can be constantly obtained at room temperature.

斯る都市ガスの製造工程をフローチャートに示せば第2
図のようになる。
If the manufacturing process of city gas is shown in a flowchart, the second
It will look like the figure.

次に、本発明の要旨とは直接関係ないが、本発明メタノ
ール原料高熱量都市ガスの製造方法を実施する場合のス
タートアップについて若干説明を加える。
Next, although not directly related to the gist of the present invention, some explanation will be given regarding the start-up when carrying out the method for producing high-calorific city gas as a raw material for methanol according to the present invention.

スタートアップ時、メタノールに混合するための水は水
フィードポンプ(18)により外部から純水を供給する
At startup, water for mixing with methanol is externally supplied with pure water by a water feed pump (18).

また熱媒の昇温は熱媒循環系路(A)の反応器(1)と
過熱器(りの間に設ける熱媒加熱炉(19)と、熱媒貯
槽(8)に設けるヒーター(20) Kより行う。
In addition, the temperature of the heating medium is increased by the heating medium heating furnace (19) installed between the reactor (1) and the superheater (in the heating medium circulation path (A)) and the heater (20) installed in the heating medium storage tank (8). ) Start from K.

上記、熱媒昇温の手段と経過を第3図乃至第7図に基づ
いて説明すると、第3図に示すように熱媒循環系路(A
)中に、適宜バイパスを設けて、熱媒貯fil(8)の
出口から直接熱媒貯槽(8)入口に戻る第1循環系(a
)、熱媒貯+1 (8)から熱媒温度調節器(10)、
熱媒加熱炉(19)を経て熱媒貯4 (8) K戻る第
2循環系(b)、熱媒貯4(8)から熱媒温度調節器(
10) 、熱媒加熱炉(19)、過熱器(4)、蒸発器
(3)を経由して熱媒貯槽(8)K戻る第3循環系(C
)を形成すると共に原料の供給から都市ガスの*b出し
に至る経路(B)には、反応ガス分離槽(5)から炭酸
ガス吸収塔(12)に至る管路の途中とエタノール・水
混合原料を供給する管路の予熱器(2)の上流側を連絡
してスタートアップブロアー(21)を備えたバイパス
(22)を設けてスタートアップブロアー(21)から
予熱器(2)、蒸発器(3)、過熱器(4)、反応器(
1)、予熱器(2)、再沸器(6)、反応ガス分離[(
5)を経由してスタートアップブロアー(21)K戻る
第4の循環系(d)を形成する。
The means and process of heating the heating medium described above will be explained based on FIGS. 3 to 7. As shown in FIG. 3, the heating medium circulation path (A
), an appropriate bypass is provided in the first circulation system (a
), heat medium storage +1 (8) to heat medium temperature regulator (10),
The second circulation system (b) returns from the heat medium storage 4 (8) through the heat medium heating furnace (19), and from the heat medium storage 4 (8) to the heat medium temperature regulator (
10), the third circulation system (C
), and the path (B) from the supply of raw materials to the outflow of city gas includes an ethanol/water mixture in the middle of the pipe leading from the reaction gas separation tank (5) to the carbon dioxide absorption tower (12). A bypass (22) equipped with a startup blower (21) is provided to connect the upstream side of the preheater (2) in the pipeline for supplying raw materials, and connect the startup blower (21) to the preheater (2) and the evaporator (3). ), superheater (4), reactor (
1), preheater (2), reboiler (6), reaction gas separation [(
5) to form a fourth circulation system (d) returning to the startup blower (21)K.

而して、先ずヒーター(20)によシ熱媒貯磨(8)内
の熱媒を加熱しつつポンプ(9)を作動させて熱媒を第
1循環系(a)に循環流動させ、熱媒温度を170°C
程度まで昇温させる(第4図)。
First, the heating medium in the heating medium storage (8) is heated by the heater (20), and the pump (9) is operated to circulate and flow the heating medium into the first circulation system (a). Heat medium temperature to 170°C
(Figure 4).

続いて熱媒の流動を第2循環系(b)に切替えると共に
熱媒加熱炉(19)に燃料を供給し燃焼させて加熱し、
熱媒温度を250℃程度に昇温させる(第5図)。
Subsequently, the flow of the heating medium is switched to the second circulation system (b), and fuel is supplied to the heating medium heating furnace (19) and heated by combustion.
The heating medium temperature is raised to about 250°C (Fig. 5).

次に、熱媒の流動を第3循環系(c)に切替える(第6
図)。
Next, the flow of the heat medium is switched to the third circulation system (c) (sixth
figure).

然る後、スタートアップブロアー(21) Kよシ第4
の循環系(d)にチッソ(N2)を送り込み循環流動さ
せる。
After that, the startup blower (21) K Yoshi No. 4
Nitrogen (N2) is fed into the circulation system (d) and circulated.

すると、第4の循環系(d)を流動するチッソ(N2)
は蒸発器(3)、過熱器(4)で熱媒の熱を回収して熱
媒温度の250℃程度に昇温し、反応器(1)を加熱し
て活性温度を作シ出す(第7図)。
Then, nitrogen (N2) flowing through the fourth circulation system (d)
The evaporator (3) and superheater (4) recover the heat from the heat medium and raise the heat medium temperature to about 250°C, and then heat the reactor (1) to create the activation temperature. Figure 7).

゛そして上記反応条件が整ったところで、熱媒の流動を
正規の熱媒循環系路(A)に切替え、メタノールにフィ
ード水を加えた原料を反応器(1)に送9込む。
``And when the above reaction conditions are set, the flow of the heating medium is switched to the regular heating medium circulation path (A), and the raw material, which is methanol and feed water, is fed into the reactor (1).

これKより反応熱が発生すると決に反応ガス(メタン含
有混合ガス)から水が分離されるをもって、以後この反
応熱と分離水を使用し、フィード水の供給、加熱炉(1
9)への燃料の供給を停止して定常混転が行なわれる。
Once reaction heat is generated from this K, water is separated from the reaction gas (methane-containing mixed gas). From then on, this reaction heat and separated water are used to supply feed water and heat the heating furnace (1
Steady rotation is performed by stopping the supply of fuel to 9).

(実施例) 本発明に係るメタノール原料高熱情都市ガスの製造方法
について高熱量都市ガスを第1図に示すプロセス70−
に基づいて実除に製造した例を以下に示す。
(Example) Regarding the method for producing high-calorie city gas as a raw material for methanol according to the present invention, high-calorie city gas is produced in the process 70- shown in FIG.
An example of actual production based on the following is shown below.

実施例1 原料の水、メタノール、モル比を05として、前記反応
器16で反応温度305°C1反応圧力9.0kg/c
rIIGの条件下で運転したところ、次のような性状の
製造ガスを得た。
Example 1 Water and methanol as raw materials, molar ratio 05, reaction temperature 305°C, reaction pressure 9.0kg/c in the reactor 16
When operated under rIIG conditions, a manufactured gas having the following properties was obtained.

発熱量11.000 Kca l/NmJ比重   0
.68 WI(ウオツベ指数)   13340CP(燃焼速度
)41.9crn/S なお、この実施例における第2図に示すフローチャート
の各ストリームナンバーの各種数値を第1表に示す。
Calorific value 11.000 Kcal/NmJ Specific gravity 0
.. 68 WI (Wotsube Index) 13340 CP (Burning Rate) 41.9 crn/S Table 1 shows various numerical values for each stream number in the flowchart shown in FIG. 2 in this example.

実施例 2 原料の水、メタノール、モル比をo、 s トして、前
記反応器16で反応温度299℃、反応圧力8.9に9
/c+dGの条件下で運転したところ、次のような性状
の製造ガスを得た。
Example 2 The raw materials water and methanol were mixed in a molar ratio of 0, s, and the reaction temperature was 299°C and the reaction pressure was 8.9% in the reactor 16.
When operated under the condition of /c+dG, a manufactured gas having the following properties was obtained.

発熱1       11,000 Kcal/NJ比
重   0.68 WI(ウオツベ指数)   13340cp(燃焼速度
)   41.6 に@/ sなお、この実験例におけ
る第2図に示すフローチャートの各ストリームナンバー
の各種数値を第2表に示す。
Heat generation 1 11,000 Kcal/NJ specific gravity 0.68 WI (Wotsube Index) 13340cp (burning rate) 41.6 @/s Note that the various numerical values for each stream number in the flowchart shown in Figure 2 in this experimental example are It is shown in Table 2.

(効 果) 本発明は上記の構成で、bるから以下の利点を有する。(effect) The present invention has the above configuration and has the following advantages.

(1)  メタノールが反応器における触媒の存在下で
の気相接触反応によジメタン化され、反応手段1つの1
段階でメタン収率の高いメタン含有混合ガスを得ること
ができる。
(1) Methanol is dimethane-formed by a gas phase catalytic reaction in the presence of a catalyst in a reactor,
A methane-containing mixed gas with a high methane yield can be obtained in this step.

(2)メタノールに対する水の混合を、メタン含有混合
ガスから分離した水で全量充当することができる。
(2) The entire amount of water separated from the methane-containing gas mixture can be used to mix methanol with water.

(3)メタノール・水混合原料に対する加熱を反応器で
の反応熱と、反応器から出るメタン含有混合ガスの熱を
回収して全量充当することができる。
(3) The entire amount can be used for heating the methanol/water mixed raw material by recovering the reaction heat in the reactor and the heat of the methane-containing mixed gas coming out of the reactor.

(4)従って上記(2) (3)によりメタノールの継
続的供給のみで、加熱エネルギー、V!L料水の供給を
全くしなくても定常的にメタン含有混合ガスを得ること
ができ、その経済的効果は極めて大である。
(4) Therefore, according to (2) and (3) above, with only continuous supply of methanol, the heating energy, V! A methane-containing mixed gas can be constantly obtained without any supply of L feed water, and the economic effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施過程の一例を概略的に示すプロセス
フロー、第2図は本発明の実施態様を示すフローチャー
トであり、第2図の番号1〜8第1式及び第2表に示す
諸元の測定位置を示す。第3図乃至第7図はスタードア
、プの過程を説明する説明図である。 特許出願人  西部瓦斯株式公社 特許出願人   三菱油化エンジニアリング株式会社f
1へ
FIG. 1 is a process flow schematically showing an example of the process of implementing the present invention, and FIG. 2 is a flowchart showing an embodiment of the present invention. Indicates the measurement position of the specifications. FIGS. 3 to 7 are explanatory diagrams illustrating the process of starting the door. Patent applicant: Seibu Gas Corporation Patent applicant: Mitsubishi Yuka Engineering Co., Ltd. f
Go to 1

Claims (1)

【特許請求の範囲】[Claims] メタノールと水の混合物を熱媒熱交換により所要温度に
加熱した後、イオウ化合物の含有量を低下させまた比表
面積を低減させたアルミナ系担体にニッケル系を担持さ
せた触媒を介して300℃程度以下の低温度反応条件下
で反応させてメタン含有ガスを直接発生させ、該メタン
含有ガスから水を分離した後炭酸ガス除去、脱水、ブタ
ン添加による増熱の各工程を経て高熱量都市ガスを定常
的に製造し、上記メタノールに混合する水及び熱媒加熱
用の熱は、スタートアップ時に外部から供給する以外に
は、夫々その全量を、製造過程においてメタン含有ガス
から分離せしめた水、メタン含有ガス発生時に生じた反
応熱により充当することを特徴とするメタノール原料高
熱量都市ガスの製造方法。
After a mixture of methanol and water is heated to the required temperature by heat exchange with a heat medium, it is heated to about 300°C via a catalyst made of a nickel-based carrier supported on an alumina-based carrier with a reduced content of sulfur compounds and a reduced specific surface area. A methane-containing gas is directly generated by the reaction under the following low-temperature reaction conditions, and after water is separated from the methane-containing gas, high calorific city gas is produced through the steps of carbon dioxide removal, dehydration, and heating by adding butane. The water that is constantly produced and mixed with the methanol and the heat for heating the heating medium are supplied from outside at the time of start-up. A method for producing high calorific city gas as a methanol raw material, characterized in that the heat of reaction generated during gas generation is used.
JP62153030A 1987-06-19 1987-06-19 Production of high-btu town gas from methanol Granted JPS63317595A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62153030A JPS63317595A (en) 1987-06-19 1987-06-19 Production of high-btu town gas from methanol
KR1019880007360A KR910005726B1 (en) 1987-06-19 1988-06-18 Production of high-btu town gas from methanol
CN88103778A CN1022255C (en) 1987-06-19 1988-06-19 Process for preparing high heating value city gas used methyl alcohol as stock
DE88109772T DE3885517T2 (en) 1987-06-19 1988-06-20 Process for the production of town gas with a high calorific value from methanol.
EP88109772A EP0295715B1 (en) 1987-06-19 1988-06-20 Process for forming city gas with high heat value from methanol as a crude material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153030A JPS63317595A (en) 1987-06-19 1987-06-19 Production of high-btu town gas from methanol

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22959388A Division JPH01138295A (en) 1988-09-12 1988-09-12 Producer of methane-rich gas for city gas, producer of city gas, and start-up mechanism therefor

Publications (2)

Publication Number Publication Date
JPS63317595A true JPS63317595A (en) 1988-12-26
JPH034597B2 JPH034597B2 (en) 1991-01-23

Family

ID=15553434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153030A Granted JPS63317595A (en) 1987-06-19 1987-06-19 Production of high-btu town gas from methanol

Country Status (5)

Country Link
EP (1) EP0295715B1 (en)
JP (1) JPS63317595A (en)
KR (1) KR910005726B1 (en)
CN (1) CN1022255C (en)
DE (1) DE3885517T2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896707B2 (en) * 2002-07-02 2005-05-24 Chevron U.S.A. Inc. Methods of adjusting the Wobbe Index of a fuel and compositions thereof
GB2400857B (en) * 2002-07-02 2005-06-08 Chevron Usa Inc Methods of adjusting the wobbe index of a fuel and compositions thereof
CN106701229A (en) * 2016-12-30 2017-05-24 李卫教 Device for converting carbon dioxide and methanol into natural gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2431940A (en) * 1945-12-28 1947-12-02 Sun Oil Co Dealkylation of hydrocarbons
US3521985A (en) * 1968-07-23 1970-07-28 Gene W Goble Gas fueled lighter
FR2219218A1 (en) * 1973-02-28 1974-09-20 Mallet Entreprise Gle Const Propane-butane mixing for industrial butane mixtures - with acceptable dew- point and calorific value
DD124531A1 (en) * 1974-12-31 1977-03-02
DE2806568A1 (en) * 1978-02-16 1979-08-23 Metallgesellschaft Ag METHOD FOR GENERATING A HEATING GAS BY CATALYTICALLY CONVERSING METHANOL WITH WATER VAPOR
JPS55139837A (en) * 1979-04-18 1980-11-01 Fujimi Kenmazai Kogyo Kk Catalyst for steam modification of hydrocarbon

Also Published As

Publication number Publication date
EP0295715B1 (en) 1993-11-10
CN1032186A (en) 1989-04-05
DE3885517T2 (en) 1994-04-28
JPH034597B2 (en) 1991-01-23
EP0295715A2 (en) 1988-12-21
CN1022255C (en) 1993-09-29
EP0295715A3 (en) 1989-07-12
KR910005726B1 (en) 1991-08-02
KR890000638A (en) 1989-03-15
DE3885517D1 (en) 1993-12-16

Similar Documents

Publication Publication Date Title
CN101208263B (en) System and method for hydrogen production
AU742314B2 (en) Steam reforming
CN1997444A (en) Hydrogen generation process using partial oxidation/steam reforming
NO158616B (en) PROCEDURE FOR THE MANUFACTURE OF AMMONIAK.
JP2001507017A (en) Methanol production method and plant
JPS5813482B2 (en) I&#39;m going to have a good time with this.
JPH07126201A (en) Methanol production process
JP2011528648A (en) Catalytic partial oxidation reforming
JP2006505646A (en) Production of hydrocarbons
CN107750233A (en) Prepare for the production and processing synthesis gas in psa unit and thus the method and system of ammonia
KR20230085907A (en) Process for producing a gas stream comprising carbon monoxide
KR20240017359A (en) Method and plant for producing pure hydrogen by steam reforming while lowering carbon dioxide emissions
JP2023517755A (en) Hydrocarbon production
JPH06505692A (en) Manufacturing method of high purity carbon monoxide
CA2692898C (en) Hydrogen generation processes and apparatus and control system
JPS63317595A (en) Production of high-btu town gas from methanol
CN101432393B (en) Method for start-up of liquid fuel synthesis system, and liquid fuel synthesis system
JP4256013B2 (en) Environmentally friendly hydrogen production method
NO157498B (en) PROCEDURE FOR THE PREPARATION OF METHANOL.
JPH0686598B2 (en) High calorific city gas production method
JPS61122102A (en) Steam reforming of hydrocarbon
JP4135871B2 (en) Apparatus and method for reforming kerosene or light oil using exhaust heat as a heat source
JP2000233918A (en) Production of carbon monoxide
JPS58190821A (en) Ammonia production
JPH04331705A (en) Method of preparing ammonia synthesis gas