JPH034597B2 - - Google Patents

Info

Publication number
JPH034597B2
JPH034597B2 JP62153030A JP15303087A JPH034597B2 JP H034597 B2 JPH034597 B2 JP H034597B2 JP 62153030 A JP62153030 A JP 62153030A JP 15303087 A JP15303087 A JP 15303087A JP H034597 B2 JPH034597 B2 JP H034597B2
Authority
JP
Japan
Prior art keywords
heat
methanol
water
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62153030A
Other languages
Japanese (ja)
Other versions
JPS63317595A (en
Inventor
Toshihisa Kanamaru
Shoji Urano
Masayuki Inoe
Chikashi Nishino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemicals Engineering Co Ltd
Original Assignee
Mitsubishi Petrochemicals Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemicals Engineering Co Ltd filed Critical Mitsubishi Petrochemicals Engineering Co Ltd
Priority to JP62153030A priority Critical patent/JPS63317595A/en
Priority to KR1019880007360A priority patent/KR910005726B1/en
Priority to CN88103778A priority patent/CN1022255C/en
Priority to DE88109772T priority patent/DE3885517T2/en
Priority to EP88109772A priority patent/EP0295715B1/en
Publication of JPS63317595A publication Critical patent/JPS63317595A/en
Publication of JPH034597B2 publication Critical patent/JPH034597B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はメタノールを原料として都市ガスを製
造する方法に関する。 (技術の背景) 最近、大都市圏を中心に都市ガス原料として
LNG(液化天然ガス)の導入が図られ都市ガスの
高熱量化が集められているが、LNGの場合マイ
ナス162℃という超低温にして諭送、貯蔵する必
要があり、中小都市の都市ガス事業者では諭送、
貯蔵等について技術的、経済的問題が多い。この
ため、常温において液体であり諭送、貯蔵等が容
易なメタノールを原料として都市ガスを製造する
手段の開発が集められている。 このメタノールは、前記諭送、貯蔵の面での利
点に加え、資源的に豊富な海外産の石炭、天然ガ
ス等から安価、恒常的に得ることができ、またイ
オウ分、チツソ分、重金属等の不純物を含まず脱
硫手間が掛らない等の利点があり、今後の都市ガ
ス原料として有望視されている。 (従来の技術とその問題点) 従来、メタノールを原料として都市ガスを製造
する手段としては、例えば特公昭57−24835号公
報に記載のものが知られている。 この従来の手段は、メタノールと水との混合原
料をルテニウム(Ru)系触媒の存在化で接触分
解し、水素(H2)、一酸化炭素(CO)、二酸化炭
素(CO2)を含有するガスを生成し、さらに水
素、一酸化炭素をメタン化させるものである。な
お、このメタン化の後には、脱炭酸、脱水、熱量
調整が行なわれる。 このような従来の手段によると、接触分解によ
る生成ガスについてさらにメタン化操作を行なう
ため、製造コストが掛り製造効率が低くなると共
に、装置構造が複雑大型化するという問題があ
る。 (発明が解決しようとする問題点) 本発明が解決しようとする問題点は、メタノー
ルと水の混合原料から一段階の反応工程のみでメ
タン含有ガスを生成させると共にスタートアツプ
時以外には、メタノールを供給するだけで、原料
加熱用の燃料及びメタノールに混合する水の供給
を不要にすることである。 (問題点を解決するための手段) 上記問題点を解決するために本発明を講ずる技
術的手段はメタノールと水の混合物を熱媒熱交換
により所要温度に加熱した後、イオウ化合物の含
有量を低下させまた比表面積を低減させたアルミ
ナ系担体にニツケル系を担持させた触媒を介して
300℃程度以下の低温度反応条件下で反応させて
メタン含有ガスを直接発生させ、該メタン含有ガ
スから水を分離した後炭酸ガス除去、脱水、ブタ
ン添加による増熱の各工程を経て高熱量都市ガス
を定常的に製造し、上記メタノールに混合する水
及び熱媒加熱用の熱源は、スタートアツプ時に外
部から供給する以外には、夫々その全量を、製造
過程においてメタン含有ガスから分離せしめた
水、メタン含有ガス発生時に生じた反応熱により
充当するものである。 (発明の具体的説明) 以下、本発明のメタノール原料高熱量都市ガス
製造方法を第1図に示すプロセスフローに基づい
て詳細に説明する。 原料のメタノールは水を混合され、反応器1に
送られる。 この際メタノールと水の混合原料は反応器1か
ら出る反応ガスの熱及び、反応器1における気相
接触反応によるメタン化反応熱を回収して加熱気
化され、反応器1に送り込まれる。 即ちメタノール・水混合原料は反応ガスが熱交
換器を流動する予熱器2、夫々反応器1における
メタン化反応熱により加熱された熱媒が循環流動
する蒸発器3、過熱器4を順次経由することによ
り、予熱器2で予熱され、蒸発器3で気化された
うえ、過熱器4で更に加熱されて反応器1に送ら
れる。 反応器1は前工程において予熱器2、蒸発器
3、過熱器4で加熱気化されたメタノール・水混
合原料を触媒の存在下で気相接触反応させて反応
ガスとしてメタン含有混合ガスを生成するもの
で、例えばシエルアンドチユーブ型構造からな
る。 この反応器1のチユーブ内に充填される触媒は
イオウ化合物の含有量を低下させまた比表面積を
低減させたアルミナ系担体にニツケル系を担持さ
せてなるもので、例えばイオウ化合物含有量
(SO4 -2として)1.2重量%以下の微粉状r−アル
ミナまたは微粉状アルミナ水和物の担体にニツケ
ル(Ni)および(または)ニツケルの参加物な
いしその還元物を担持させてなるもの、または、
比表面積350m2/g以下のシリカ・アルミナの担
体にニツケルの還元物を担持させてなるものであ
る。この触媒は低温高活性、高メタン化率を示す
特性を有しており、9Atm、300℃程度以下の反
応条件で6900Kcal/Nm3程度の発熱量のメタン
含有混合ガス(CH472%、CO225%、H23%程
度)を1段の反応のみで生成することができる。 而して、この生成されたメタン含有混合ガス
は、水を分離した後、脱炭酸ガス、脱湿し、更に
ブタン混合により増熱して高熱量都市ガスとす
る。 メタン含有混合ガスの水の分離は反応ガス分離
槽5において常法に従つて行われるが、上記メタ
ン含有混合ガスは、反応器1から出て反応ガス分
離槽5に送られる過程において、予熱器2でメタ
ノール・水混合原料に熱回収されると共に脱炭酸
ガス工程の再沸器6で炭酸カリ蒸気に熱回収さ
れ、更に冷却器7で冷却されてから反応ガス分離
槽5に送り込まれる。 一、上記反応器1での気相接触反応によるメタ
ン化応は発熱反応であり、ここで発生する反応熱
は、熱媒を介して過熱器4を経て蒸発器3に送ら
れ、過熱器4では蒸発器3で蒸発気化されたメタ
ノール・水混合原料に熱回収され、更に蒸発器3
では、予熱器2で予熱されて送り込まれるメタノ
ール・水混合原料に熱回収される。 上記、熱媒は142℃溶融する溶融塩を用い、熱
媒貯槽8、反応器1、過熱器4、蒸発器3を経由
する熱媒循環系路Aをポンプ9の作動により循環
流動し、反応器1通常時にメタン化反応の反応熱
を吸熱し、過熱器4、蒸発器3通常時にメタノー
ル・水混合原料に熱回収され、このメタノール・
水混合原料を反応器1を出るメタン含有混合ガス
と共に必要な温度、即ち活性温度に迄加熱する。 即ち、メタン化反応熱と、反応により発生する
メタン含有混合ガスの熱はメタン含有混合ガスの
生成に必要な熱量の全てを賄う。 尚、反応熱は必要以上に多く発熱するため熱媒
温度調節器10で冷却して温度を調節する。 この熱媒温度調節器10は、熱媒貯槽8と反応
器1との間に設ける。 また反応ガス分離槽5で、メタン含有混合ガス
から分離した分離水は、外部のメタノール供給源
からメタノールフイードポンプ11により供給さ
れる原料のメタノールに混合してメタノール・水
混合原料を作る水としてリサイクル使用するが余
乗分は捨てられる。 即ち、メタノール含有混合ガス生成のために必
要とされる水の全量はこの分離水によつて賄われ
る。 上記、水は反応器1での気相接触反応にするカ
ボン折出防止のためにメタノールに混合するもの
であり、水・メタノールモル比は0.5に調整する
のが好適である。 水・メタノールモル比を0.7以上にすると、メ
タノール・水混合原料を所要温度に加熱するため
に必要な熱量が多くなり、その熱量の全てを反応
器1から出るメタン含有混合ガスの熱及びメタン
化反応による反応熱でまかなうためには断熱、保
温を十分にしないと困難があり、また循環系統の
負担も増大するため製造コスト的に不利になる。 また、水・メタノールモル比を0.3%以下にす
ると長期間の定常運転中にはカボン折出の問題が
生じる必配がある。 尚、当然のことながらスタートアツプ時におい
ては、メタン含有混合ガスから分離された水も無
いし、熱媒を加熱する反応熱も発生していないた
め、外部からの水の供給及び外部熱源による熱媒
加熱の必要が生じるが、定常運転に移行後はこれ
らは全く必要がなく、メタノールの送り込みだけ
を行なえば良い。 スタートアツプについては後述する。 次に脱炭酸ガス工程、脱湿工程及びブタン増熱
工程は常法により行なう。 即ち、反応ガス分離槽5において水を分離した
メタン含有混合ガスは、炭酸ガス吸収塔12で炭
酸ガスを炭酸カリに吸収させて除去した後、冷却
器13,14,15を通して精製ガス水分離槽1
6に導き、ここで水分を分離する。 上記脱炭酸ガス工程における炭酸ガス除去によ
りメタン含有混合ガスの熱量を9200Kcal/Nm3
程度に高めることができる。尚、この脱炭酸ガス
工程は乾式(PSA法)等他の方法により行うこ
とも勿論可能である。 そして、最後に上記脱炭酸ガス及び脱湿された
精製ガスにミキサー17を介して所要量のブタン
を混合し、熱量を11000Kcal/Nm3程度に増熱調
整する。 この際、ブタンは、炭酸ガス吸収塔12を出て
最初の冷却器13に通す前の脱炭酸ガス済みのメ
タン含有混合ガスから熱回収し蒸発気化させる。 斯くして、高熱量の都市ガスが常温で定常的に
得られる。 斯る都市ガスの製造工程をフローチヤートに示
せば第2図のようになる。 次に、本発明の要旨とは直接関係ないが、本発
明メタノール原料高熱量都市ガスの製造方法を実
施する場合のスタートアツプについて若干説明を
加える。 スタートアツプ時、メタノールに混合するため
の水は水フイードポンプ18により外部から純水
を供給する。 また熱媒の昇温は熱媒循環系路Aの反応器1と
過熱器4の間に設ける熱媒加熱炉19と、熱媒貯
槽8に設けるヒーター20により行う。 上記、熱媒昇温の手段と経過を第3図乃至第7
図に基づいて説明すると、第3図に示すように熱
媒循環系路A中に、適宜バイパスを設けて、熱媒
貯槽8の出口から直接熱媒貯槽8入口に戻る第1
循環系a、熱媒貯槽8から熱媒温度調節器10、
熱媒加熱炉19を経て熱媒貯槽8に戻る第2循環
系b、熱媒貯槽8から熱媒温度調節器10、熱媒
加熱炉19、過熱器4、蒸発器3を経由して熱媒
貯槽8に戻る第3循環系cを形成すると共に原料
の供給から都市ガスの取り出しに至る経路Bに
は、反応ガス分離槽5から炭酸ガス吸収塔12に
至る管路の途中とエタノール・水混合原料を供給
する管路の予熱器2の上流側を連絡してスタート
アツプブロアー21を備えたバイパス22を設け
てスタートアツプブロアー21から予熱器2、蒸
発器3、過熱器4、反応器1、予熱器2、再沸器
6、反応ガス分離槽5を経由してスタートアツプ
ブロアー21に戻る第4の循環系dを形成する。 而して、先ずヒーター20により熱媒貯槽8内
の熱媒を加熱しつつポンプ9を作動させて熱媒を
第1循環系aに循環流動させ、熱媒温度を170℃
程度まで昇温させる(第4図)。 続いて熱媒の流動を第2循環系bに切換えると
共に熱媒加熱炉19に燃料を供給し燃焼させて加
熱し、熱媒温度を250℃程度に昇温させる(第5
図)。 次に、熱媒の流動を第3循環系cに切替える
(第6図)。 然る後、スタートアツプブロアー21により第
4の循環系dにチツソ(N2)を送り込み循環流
動させる。 すると、第4の循環系dを流動するチツソ(N2
は蒸発器3、過熱器4で熱媒の熱を回収して熱媒
温度の250℃程度に昇温し、反応器1を加熱して
活性温度をり出す(第7図)。 そして上記反応条件が整つたところで、熱媒の
流動を正規の熱媒循環系路Aに切替え、メタノー
ルにフイールド水を加えた原料を反応器1に送り
込む。 これにより反応熱が発生すると共に反応ガス
(メタン含有混合ガス)から水が分離されるをも
つて、以後この反応熱と分離水を使用し、フイー
ド水の供給、加熱炉19への燃料の供給を停止し
て定常温転が行なわれる。 (実施例) 本発明に係るメタノール原料高熱量都市ガスの
製造方法について高熱量都市ガスを第1図に示す
プロセスフローに基づいて実際に製造した例を以
下に示す。 実施例 1 原料の水、メタノール、モル比を0.5として、
前記反応器16で反応温度305℃、反応圧力9.0
Kg/cm2Gの条件下で運転したところ、次のような
性状の製造ガスを得た。 発熱量 11000Kcal/Nm3 比 重 0.68 WI(ウオツペ指数) 13340 CP(燃焼速度) 41.9cm/s なお、この実施例における第2図に示すフロー
チヤートの各ストリームナンバーの各種数値を第
1表に示す。 実施例 2 原料の水、メタノール、モル比を0.5として、
前記反応器16で反応温度299℃、反応圧力8.9
Kg/cm2Gの条件下で運転したところ、次のような
性状の製造ガスを得た。 発熱量 11000Kcal/Nm3 比 重 0.68 WI(ウオツペ指数) 13340 CP(燃焼速度) 41.6cm/s なお、この実施例における第2図に示すフロー
チヤートの各ストリームナンバーの各種数値を第
2表に示す。
(Industrial Application Field) The present invention relates to a method for producing city gas using methanol as a raw material. (Technical background) Recently, gas has been used as a raw material for city gas mainly in metropolitan areas.
With the introduction of LNG (liquefied natural gas), city gas with a high calorific value is being collected, but in the case of LNG, it is necessary to transport and store it at an ultra-low temperature of minus 162 degrees Celsius, which is difficult for city gas companies in small and medium-sized cities. Reminder,
There are many technical and economic problems regarding storage, etc. For this reason, efforts are being made to develop means for producing city gas using methanol as a raw material, which is liquid at room temperature and easy to transport and store. In addition to the above-mentioned advantages in terms of transportation and storage, this methanol can be obtained constantly at low cost from overseas abundant resources such as coal and natural gas, and is also free from sulfur, nitrogen, and heavy metals. It has the advantages of not containing any impurities and requiring no desulfurization work, and is seen as a promising future city gas raw material. (Prior art and its problems) Conventionally, as a means for producing city gas using methanol as a raw material, the method described in, for example, Japanese Patent Publication No. 57-24835 is known. This conventional method involves catalytic cracking of a raw material mixture of methanol and water in the presence of a ruthenium (Ru) catalyst to produce hydrogen (H 2 ), carbon monoxide (CO), and carbon dioxide (CO 2 ). It generates gas and also methanizes hydrogen and carbon monoxide. Note that after this methanation, decarboxylation, dehydration, and calorific value adjustment are performed. According to such conventional means, since the gas produced by catalytic cracking is further subjected to a methanation operation, there are problems in that the manufacturing cost is increased, the manufacturing efficiency is lowered, and the device structure becomes complicated and large. (Problems to be Solved by the Invention) The problems to be solved by the present invention are that methane-containing gas is generated from a mixed raw material of methanol and water in only one reaction step, and that methanol is This eliminates the need to supply fuel for heating raw materials and water to be mixed with methanol. (Means for Solving the Problems) The technical means of the present invention to solve the above problems is to heat a mixture of methanol and water to a required temperature by heat exchange with a heat medium, and then reduce the content of sulfur compounds. Via a nickel-based catalyst supported on an alumina-based carrier with a reduced specific surface area.
A methane-containing gas is directly generated by the reaction under low-temperature reaction conditions of about 300℃ or less, and after separating water from the methane-containing gas, a high amount of heat is generated through the steps of removing carbon dioxide, dehydration, and increasing heat by adding butane. Town gas is regularly produced, and the water mixed with the methanol and the heat source for heating the heat medium are all separated from the methane-containing gas during the production process, except for being supplied from outside at startup. This is done using the reaction heat generated when gas containing water and methane is generated. (Specific Description of the Invention) Hereinafter, the method for producing high-calorific city gas as a methanol raw material of the present invention will be described in detail based on the process flow shown in FIG. The raw material methanol is mixed with water and sent to the reactor 1. At this time, the mixed raw material of methanol and water is heated and vaporized by recovering the heat of the reaction gas coming out of the reactor 1 and the heat of the methanation reaction caused by the gas phase contact reaction in the reactor 1, and then sent to the reactor 1. That is, the methanol/water mixed raw material sequentially passes through a preheater 2 in which a reaction gas flows through a heat exchanger, an evaporator 3 in which a heating medium heated by the heat of methanation reaction in the reactor 1 circulates and flows, and a superheater 4. Thereby, it is preheated in the preheater 2, vaporized in the evaporator 3, further heated in the superheater 4, and sent to the reactor 1. The reactor 1 performs a vapor phase contact reaction of the methanol/water mixed raw material heated and vaporized in the preheater 2, evaporator 3, and superheater 4 in the preheater 2, evaporator 3, and superheater 4 in the presence of a catalyst to generate a methane-containing mixed gas as a reaction gas. For example, it has a shell-and-tube structure. The catalyst packed in the tube of the reactor 1 is made by supporting a nickel-based catalyst on an alumina-based carrier with a reduced content of sulfur compounds and a reduced specific surface area. -2 ) 1.2% by weight or less of finely powdered r-alumina or finely powdered alumina hydrate supported on a carrier of nickel (Ni) and/or a part of nickel or its reduced product, or
A reduced product of nickel is supported on a silica/alumina carrier having a specific surface area of 350 m 2 /g or less. This catalyst has the characteristics of exhibiting high low-temperature activity and high methanation rate, and produces a methane-containing mixed gas (CH 4 72%, CO 25% and H2 3%) can be produced in only one stage of reaction. After water is separated from the generated methane-containing mixed gas, it is decarbonized and dehumidified, and further heated by mixing with butane to produce high calorific value city gas. Separation of water from the methane-containing mixed gas is carried out in the reaction gas separation tank 5 according to a conventional method. At step 2, the heat is recovered to the methanol/water mixed raw material, and at the same time, the heat is recovered to potassium carbonate vapor at the reboiler 6 in the decarbonation gas step, further cooled at the cooler 7, and then sent to the reaction gas separation tank 5. 1. The methanation reaction by gas phase catalytic reaction in the reactor 1 is an exothermic reaction, and the reaction heat generated here is sent to the evaporator 3 via the superheater 4 via a heating medium. Then, the heat is recovered to the methanol/water mixed raw material that is evaporated in evaporator 3, and then the heat is recovered in evaporator 3.
Then, the heat is recovered by the methanol/water mixed raw material that is preheated by the preheater 2 and sent. The above heat medium is a molten salt that melts at 142°C, and is circulated through the heat medium circulation path A via the heat medium storage tank 8, the reactor 1, the superheater 4, and the evaporator 3 by the operation of the pump 9, and is reacted. The reaction heat of the methanation reaction is absorbed in the reactor 1 during normal operation, and the heat is recovered into the methanol/water mixed raw material in superheater 4 and evaporator 3 during normal operation, and this methanol/water is recovered.
The water mixed feed is heated together with the methane-containing mixed gas exiting the reactor 1 to the required temperature, ie the activation temperature. That is, the heat of the methanation reaction and the heat of the methane-containing mixed gas generated by the reaction cover all of the amount of heat required to generate the methane-containing mixed gas. Incidentally, since the reaction heat is generated in an amount larger than necessary, the heat medium temperature controller 10 is used to cool and adjust the temperature. This heating medium temperature regulator 10 is provided between the heating medium storage tank 8 and the reactor 1. In addition, the separated water separated from the methane-containing mixed gas in the reaction gas separation tank 5 is used as water to mix with the raw material methanol supplied by the methanol feed pump 11 from an external methanol supply source to produce a methanol/water mixed raw material. It is recycled and used, but the remainder is discarded. That is, the entire amount of water required for producing the methanol-containing mixed gas is covered by this separated water. The water mentioned above is mixed with methanol in order to prevent carbon precipitation during the gas phase contact reaction in the reactor 1, and the molar ratio of water to methanol is preferably adjusted to 0.5. When the water/methanol molar ratio is set to 0.7 or more, the amount of heat required to heat the methanol/water mixed raw material to the required temperature increases, and all of that heat is used to heat and methanize the methane-containing mixed gas exiting reactor 1. In order to cover the heat from the reaction, it is difficult to provide sufficient heat insulation and heat retention, and the burden on the circulation system also increases, which is disadvantageous in terms of manufacturing costs. Furthermore, if the water/methanol molar ratio is set to 0.3% or less, carbon precipitation problems are bound to occur during long-term steady operation. Of course, at startup, there is no water separated from the methane-containing mixed gas, and no reaction heat is generated to heat the heating medium, so there is no need for external water supply or heat from an external heat source. Although it is necessary to heat the medium, after the transition to steady operation there is no need for this at all, and it is sufficient to just feed methanol. The startup will be described later. Next, the decarbonation gas step, dehumidification step, and butane heating step are performed by conventional methods. That is, the methane-containing mixed gas from which water has been separated in the reaction gas separation tank 5 is removed by absorbing carbon dioxide into potassium carbonate in the carbon dioxide absorption tower 12, and then passed through the coolers 13, 14, and 15 to the purified gas water separation tank. 1
6, where water is separated. The calorific value of the methane-containing mixed gas was reduced to 9200Kcal/ Nm3 by removing carbon dioxide gas in the decarbonation process described above.
It can be increased to a certain extent. Note that this decarbonation step can of course be performed by other methods such as a dry method (PSA method). Finally, a required amount of butane is mixed with the decarbonated gas and the dehumidified purified gas via the mixer 17, and the amount of heat is increased and adjusted to about 11000 Kcal/Nm 3 . At this time, butane is evaporated by recovering heat from the decarbonated methane-containing mixed gas that has left the carbon dioxide absorption tower 12 and has not passed through the first cooler 13. In this way, city gas with high calorific value can be constantly obtained at room temperature. The flowchart of the city gas production process is shown in Figure 2. Next, although not directly related to the gist of the present invention, some explanation will be given regarding the start-up when carrying out the method for producing high-calorific city gas as a raw material for methanol according to the present invention. At startup, water for mixing with methanol is supplied from outside by a water feed pump 18. Further, the temperature of the heating medium is raised by a heating medium heating furnace 19 provided between the reactor 1 and the superheater 4 in the heating medium circulation path A, and a heater 20 provided in the heating medium storage tank 8. The means and process of heating the heating medium described above are shown in Figures 3 to 7.
To explain based on the figure, as shown in FIG. 3, a bypass is appropriately provided in the heat medium circulation path A, and a first
circulation system a, heat medium storage tank 8 to heat medium temperature regulator 10;
The second circulation system b returns to the heat medium storage tank 8 via the heat medium heating furnace 19, and the heat medium is returned from the heat medium storage tank 8 to the heat medium temperature regulator 10, the heat medium heating furnace 19, the superheater 4, and the evaporator 3. The route B that forms the third circulation system c that returns to the storage tank 8 and connects the supply of raw materials to the extraction of city gas includes an ethanol/water mixture in the middle of the pipe leading from the reaction gas separation tank 5 to the carbon dioxide absorption tower 12. A bypass 22 equipped with a start-up blower 21 is provided by connecting the upstream side of the preheater 2 of the pipeline for supplying the raw material, and connects the start-up blower 21 to the preheater 2, the evaporator 3, the superheater 4, the reactor 1, A fourth circulation system d is formed which returns to the start-up blower 21 via the preheater 2, the reboiler 6, and the reaction gas separation tank 5. First, the heat medium in the heat medium storage tank 8 is heated by the heater 20, and the pump 9 is operated to circulate and flow the heat medium into the first circulation system a, so that the temperature of the heat medium is 170°C.
(Figure 4). Subsequently, the flow of the heating medium is switched to the second circulation system b, and fuel is supplied to the heating medium heating furnace 19 to be combusted and heated, and the temperature of the heating medium is raised to about 250°C (fifth
figure). Next, the flow of the heat medium is switched to the third circulation system c (Fig. 6). Thereafter, nitrogen (N 2 ) is fed into the fourth circulation system d by the start-up blower 21 and circulated. Then, Chituso (N 2 ) flowing through the fourth circulatory system d
The heat of the heat medium is recovered by the evaporator 3 and the superheater 4, and the temperature is raised to about 250°C, which is the heat medium temperature, and the reactor 1 is heated to obtain the activation temperature (Fig. 7). When the above reaction conditions are established, the flow of the heating medium is switched to the normal heating medium circulation path A, and the raw material prepared by adding field water to methanol is fed into the reactor 1. As a result, reaction heat is generated and water is separated from the reaction gas (methane-containing mixed gas).Then, this reaction heat and separated water are used to supply feed water and fuel to the heating furnace 19. is stopped and steady temperature rotation is performed. (Example) Regarding the method for producing high-calorific city gas as a methanol raw material according to the present invention, an example in which high-calorific city gas was actually manufactured based on the process flow shown in FIG. 1 will be shown below. Example 1 Water and methanol as raw materials, with a molar ratio of 0.5,
In the reactor 16, the reaction temperature is 305°C and the reaction pressure is 9.0.
When operated under the condition of Kg/cm 2 G, a manufactured gas having the following properties was obtained. Calorific value 11000Kcal/Nm 3 Specific gravity 0.68 WI (Wotsupe index) 13340 CP (combustion velocity) 41.9cm/s Table 1 shows various numerical values for each stream number in the flowchart shown in Figure 2 for this example. . Example 2 Water and methanol as raw materials, with a molar ratio of 0.5,
In the reactor 16, the reaction temperature was 299°C and the reaction pressure was 8.9°C.
When operated under the condition of Kg/cm 2 G, a manufactured gas having the following properties was obtained. Calorific value 11000Kcal/Nm 3 Specific gravity 0.68 WI (Wotsupe index) 13340 CP (combustion velocity) 41.6cm/s Table 2 shows various numerical values for each stream number in the flowchart shown in Figure 2 for this example. .

【表】【table】

【表】【table】

【表】 (効果) 本発明は上記の構成であるから以下の利点を有
する。 (1) メタノールが反応器における触媒の存在下で
の気相接触反応によりメタン化され、反応手段
1つの1段階でメタン収率の高いメタン含有混
合ガスを得ることができる。 (2) メタノールに対する水の混合を、メタン含有
混合ガスから分離した水で全量充当することが
できる。 (3) メタノール・水混合原料に対する加熱を反応
器での反応熱と、反応器から出るメタン含有混
合ガスの熱を回収して全量充当することができ
る。 (4) 従つて上記(2),(3)によりメタノールの断続的
供給のみで、加熱エネルギー、原料水の供給を
全くしなくても定常的にメタン含有混合ガスを
得ることができ、その経済的効果は極めて大で
ある。
[Table] (Effects) Since the present invention has the above configuration, it has the following advantages. (1) Methanol is methanated by a gas phase catalytic reaction in the presence of a catalyst in a reactor, and a methane-containing mixed gas with a high methane yield can be obtained in one step using one reaction means. (2) The mixture of water and methanol can be made up entirely of water separated from the methane-containing gas mixture. (3) The reaction heat in the reactor and the heat of the methane-containing mixed gas discharged from the reactor can be recovered and used for heating the methanol/water mixed raw material. (4) Therefore, according to (2) and (3) above, it is possible to constantly obtain a methane-containing mixed gas by only intermittent supply of methanol and without any supply of heating energy or raw material water, which is economical. The effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施過程の一例を概略的に示す
プロセスフロー、第2図は本発明の実施態様を示
すフローチヤートであり、第2図の番号1〜8第
1表及び第2表に示す諸元の測定位置を示す。第
3図乃至第7図はスタートアツプの過程を説明す
る説明図である。
FIG. 1 is a process flow schematically showing an example of the process of implementing the present invention, and FIG. 2 is a flowchart showing an embodiment of the present invention. Indicates the measurement position of the indicated specifications. FIGS. 3 to 7 are explanatory diagrams illustrating the start-up process.

Claims (1)

【特許請求の範囲】[Claims] 1 メタノールと水の混合物を熱媒熱交換により
所要温度に加熱した後、イオウ化合物の含有量を
低下させまた比表面積を低減させたアルミナ系担
体にニツケル系を担持させた触媒を介して300℃
程度以下の低温度反応条件下で反応させてメタン
含有ガスを直接発生させ、該メタン含有ガスから
水を分離した後炭酸ガス除去、脱水、ブタン添加
による増熱の各工程を経て高熱量都市ガスを定常
的に製造し、上記メタノールに混合する水及び熱
媒加熱用の熱は、スタートアツプ時に外部から供
給する以外には、夫々その全量を、製造過程にお
いてメタン含有ガスから分離せしめた水、メタン
含有ガス発生時に生じた反応熱により充当するこ
とを特徴とするメタノール原料高熱量都市ガスの
製造方法。
1. After heating a mixture of methanol and water to the required temperature by heat exchange with a heat medium, the mixture is heated to 300°C via a nickel-based catalyst supported on an alumina-based carrier with a reduced content of sulfur compounds and a reduced specific surface area.
A methane-containing gas is directly generated by the reaction under low-temperature reaction conditions, and after separating water from the methane-containing gas, it undergoes the steps of carbon dioxide removal, dehydration, and heating by adding butane to produce high-calorie city gas. The water to be mixed with the methanol and the heat for heating the heating medium are supplied from outside at the time of start-up. A method for producing high calorific city gas as a raw material for methanol, characterized in that the heat of reaction generated during generation of methane-containing gas is used.
JP62153030A 1987-06-19 1987-06-19 Production of high-btu town gas from methanol Granted JPS63317595A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62153030A JPS63317595A (en) 1987-06-19 1987-06-19 Production of high-btu town gas from methanol
KR1019880007360A KR910005726B1 (en) 1987-06-19 1988-06-18 Production of high-btu town gas from methanol
CN88103778A CN1022255C (en) 1987-06-19 1988-06-19 Process for preparing high heating value city gas used methyl alcohol as stock
DE88109772T DE3885517T2 (en) 1987-06-19 1988-06-20 Process for the production of town gas with a high calorific value from methanol.
EP88109772A EP0295715B1 (en) 1987-06-19 1988-06-20 Process for forming city gas with high heat value from methanol as a crude material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153030A JPS63317595A (en) 1987-06-19 1987-06-19 Production of high-btu town gas from methanol

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22959388A Division JPH01138295A (en) 1988-09-12 1988-09-12 Producer of methane-rich gas for city gas, producer of city gas, and start-up mechanism therefor

Publications (2)

Publication Number Publication Date
JPS63317595A JPS63317595A (en) 1988-12-26
JPH034597B2 true JPH034597B2 (en) 1991-01-23

Family

ID=15553434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153030A Granted JPS63317595A (en) 1987-06-19 1987-06-19 Production of high-btu town gas from methanol

Country Status (5)

Country Link
EP (1) EP0295715B1 (en)
JP (1) JPS63317595A (en)
KR (1) KR910005726B1 (en)
CN (1) CN1022255C (en)
DE (1) DE3885517T2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896707B2 (en) * 2002-07-02 2005-05-24 Chevron U.S.A. Inc. Methods of adjusting the Wobbe Index of a fuel and compositions thereof
GB2400857B (en) * 2002-07-02 2005-06-08 Chevron Usa Inc Methods of adjusting the wobbe index of a fuel and compositions thereof
CN106701229A (en) * 2016-12-30 2017-05-24 李卫教 Device for converting carbon dioxide and methanol into natural gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2431940A (en) * 1945-12-28 1947-12-02 Sun Oil Co Dealkylation of hydrocarbons
US3521985A (en) * 1968-07-23 1970-07-28 Gene W Goble Gas fueled lighter
FR2219218A1 (en) * 1973-02-28 1974-09-20 Mallet Entreprise Gle Const Propane-butane mixing for industrial butane mixtures - with acceptable dew- point and calorific value
DD124531A1 (en) * 1974-12-31 1977-03-02
DE2806568A1 (en) * 1978-02-16 1979-08-23 Metallgesellschaft Ag METHOD FOR GENERATING A HEATING GAS BY CATALYTICALLY CONVERSING METHANOL WITH WATER VAPOR
JPS55139837A (en) * 1979-04-18 1980-11-01 Fujimi Kenmazai Kogyo Kk Catalyst for steam modification of hydrocarbon

Also Published As

Publication number Publication date
EP0295715B1 (en) 1993-11-10
CN1032186A (en) 1989-04-05
DE3885517T2 (en) 1994-04-28
EP0295715A2 (en) 1988-12-21
CN1022255C (en) 1993-09-29
EP0295715A3 (en) 1989-07-12
KR910005726B1 (en) 1991-08-02
KR890000638A (en) 1989-03-15
JPS63317595A (en) 1988-12-26
DE3885517D1 (en) 1993-12-16

Similar Documents

Publication Publication Date Title
US5512599A (en) Process for the production of methanol
RU2343109C2 (en) Method for producing hydrogen-rich flow, method for electric current generation, method of hydrofining, device for hydrogen-rich flow creation
US6248794B1 (en) Integrated process for converting hydrocarbon gas to liquids
AU2002300206B2 (en) Method for manufacturing synthesis gas and method for manufacturing methanol
AU2002300204B2 (en) Method of manufacturing methanol
JP2001507017A (en) Methanol production method and plant
CN102782161A (en) Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
JPH1143306A (en) Obtaining carbon monoxide and hydrogen
JPS6036321A (en) Manufacture of ammonia from carbon-containing supply flow
KR20240017359A (en) Method and plant for producing pure hydrogen by steam reforming while lowering carbon dioxide emissions
CA2692898C (en) Hydrogen generation processes and apparatus and control system
JP4601742B2 (en) Method for producing city gas
JPH034597B2 (en)
JPH0762356A (en) Production of liquid hydrocarbon from methane as starting material
CN101432393B (en) Method for start-up of liquid fuel synthesis system, and liquid fuel synthesis system
JP4256013B2 (en) Environmentally friendly hydrogen production method
JP2001342003A (en) Method of production for gasoline, gas oil and synthesis gas for kerosene
JPS59167527A (en) Manufacture of methanol
JPH0686598B2 (en) High calorific city gas production method
JP2002321904A (en) Method for producing hydrogen
JPH06211502A (en) Production of carbon monoxide and hydrogen
JP2000233918A (en) Production of carbon monoxide
JPS61122102A (en) Steam reforming of hydrocarbon
JPS58190821A (en) Ammonia production
JPH0364558B2 (en)