JPH0686598B2 - High calorific city gas production method - Google Patents

High calorific city gas production method

Info

Publication number
JPH0686598B2
JPH0686598B2 JP3142903A JP14290391A JPH0686598B2 JP H0686598 B2 JPH0686598 B2 JP H0686598B2 JP 3142903 A JP3142903 A JP 3142903A JP 14290391 A JP14290391 A JP 14290391A JP H0686598 B2 JPH0686598 B2 JP H0686598B2
Authority
JP
Japan
Prior art keywords
reaction
gas
heat
raw material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3142903A
Other languages
Japanese (ja)
Other versions
JPH04366200A (en
Inventor
利壽 金丸
昌治 浦野
夏雄 木下
啓 太田
春次 川崎
近 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saibu Gas Co Ltd
Original Assignee
Saibu Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saibu Gas Co Ltd filed Critical Saibu Gas Co Ltd
Priority to JP3142903A priority Critical patent/JPH0686598B2/en
Priority to TW081103098A priority patent/TW197467B/zh
Priority to KR1019920009888A priority patent/KR930000658A/en
Priority to AT92109709T priority patent/ATE127146T1/en
Priority to DE69204361T priority patent/DE69204361T2/en
Priority to EP92109709A priority patent/EP0518269B1/en
Priority to CN92104519A priority patent/CN1068357A/en
Publication of JPH04366200A publication Critical patent/JPH04366200A/en
Publication of JPH0686598B2 publication Critical patent/JPH0686598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

In the process of producing high calorie SNG type city gas from hydrocarbonic crude gas, e.g., butane, propane, naphtha etc., an elementary feed gas is produced by using hydrodesulfurization as a first step, and then secondly further methanizing the product in a column. The hydrodesulfurization uses a nimox catalyst and a zinc oxide adsorbent. The desulfurized feed gas is further methanized on an alumina group carrier supported by nickel to obtain methane-rich gas, i.e. the elementary feed gas in a combined use type column. The necessary hydrogen to be fed into the hydrodesulfurization is obtained from a methanol/water mixture. This hydrogenizing reaction tube is combined within the same column above. Inorganic salt is used as a heat transfer medium heat-sourced in an external furnace and the heat transfer medium temperature branched into two system-flows are controlled by a three-way flow rate control valve simultaneously. The above reaction temperature is about 320<o>C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はブタン・プロパン・ナフ
サ等の炭化水素を原料とする高熱量都市ガスを製造する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high calorific city gas using hydrocarbons such as butane, propane and naphtha as raw materials.

【0002】[0002]

【発明の背景】我国の都市ガス業界では大都市を中心に
液化天然ガス(LNG)を原料とする13A(11,000kca
l/Nm3 )の燃焼性のガスへと都市ガスの高熱量化が急速
に進められている。この状況の中で都市ガス事業者がL
NGと同じ成分のガスすなわち代替天然ガス(SNG)
を必要とする理由は、13Aの燃焼性のガスへの全国
的な統合、供給するガスの需給変動の調整、ガス製
造原価の低減、原料の多様化であり都市ガスの利便性
と安定供給が目的である。
BACKGROUND OF THE INVENTION In the city gas industry in Japan, 13A (11,000 kca), which uses liquefied natural gas (LNG) as a raw material, is mainly used in large cities.
The high calorific value of city gas has been rapidly promoted into combustible gas (l / Nm 3 ). In this situation, the city gas utility is
Gas with the same composition as NG, or alternative natural gas (SNG)
The reason for the need is the nationwide integration into combustible gas of 13A, adjustment of supply and demand fluctuations of supplied gas, reduction of gas production cost, diversification of raw materials, and convenience and stable supply of city gas. Is the purpose.

【0003】従って、SNG製造プロセスに特に要求さ
れる性能は、プラントの起動・停止・負荷変更が即時
に行えて容易であること、ガス化効率が高く品質が安
定していること、プラントがシンプルで操作性・経済
性が良いことが必要条件である。
Therefore, the performance particularly required for the SNG manufacturing process is that the start / stop / load change of the plant can be performed immediately and easily, the gasification efficiency is high and the quality is stable, and the plant is simple. It is a necessary condition that operability and economy are good.

【0004】[0004]

【従来の技術とその問題点】従来ブタン・プロパン・ナ
フサ等の炭化水素原料からSNGを製造する手段は原
料中のS分の活性化+原料の脱硫+原料の水蒸気改
質+1段メタン化+2段メタン化+湿式脱炭酸+
ガスの脱水+LPG熱調の概略8工程で行うのが主
流である。この前段、、、、の5工程が原料
の前処理を含めた素原料ガスの製造工程、、の2工
程がガスの精製工程、最後のが増熱による熱量調整工
程である。
2. Description of the Related Art Conventionally, the means for producing SNG from hydrocarbon raw materials such as butane, propane and naphtha has been the activation of S in the raw materials + desulfurization of the raw materials + steam reforming of the raw materials + 1-stage methanation +2 Stage methanation + wet decarbonation +
It is the mainstream to carry out in about 8 steps of gas dehydration + LPG heat regulation. In the preceding stage, 5 steps are the raw material gas manufacturing step including the pretreatment of the raw material, 2 steps are the gas refining step, and the last step is the heat quantity adjustment step by increasing heat.

【0005】この様な従来の手段によると素原料ガスの
製造だけでも、5工程の容器と2つの加熱炉、又、脱硫
のための水素含有ガス昇圧用リサイクルガスコンプレッ
サーが最低必要であり、更にスタートアップ時には、ス
タートアップ加熱炉とその昇温配管、又、これらの付帯
設備等、装置及び運転操作が複雑であり、設備が多くそ
の動力と熱損失が大きく製造コストがかかるので経済性
に欠け、特にSNGの性能として要求される機動性では
プラントの起動に冷間で最低3日を要し、温間で約半日
を要すると共に負荷変更については1%1分以上の長い
時間を要する問題がある。
According to such conventional means, only in the production of the raw material gas, the container of 5 steps, the two heating furnaces, and the recycle gas compressor for boosting the hydrogen-containing gas for desulfurization are at least necessary. At the time of start-up, the start-up heating furnace and its temperature raising piping, and the equipment and operation of these auxiliary equipment, etc. are complicated, and there are many equipment, power and heat loss are large and manufacturing cost is high, so it is not economical, especially With regard to the mobility required for SNG performance, there is a problem that it takes at least 3 days to start the plant cold, about half a day to warm and a long time of 1% 1 minute or more for load change.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来技術の
有する上記問題点に鑑みてなされたものであり、ブタン
・プロパン・ナフサ等の炭化水素原料のメタン化及びメ
タノールの水素化を1塔でそれぞれ1段階の反応工程の
みで脱硫用水素と富メタンガスを得るもので、装置をシ
ンプル化させると共にガス化効率の向上と品質の安定を
はかり、特に重要なことはプラントの起動・停止・負荷
変更がそれぞれ、15分程度の短時間で容易に行える方法
を得ることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art, and is one column for methanation of hydrocarbon raw materials such as butane, propane and naphtha and hydrogenation of methanol. In each case, hydrogen for desulfurization and methane-rich gas are obtained in only one reaction step, which simplifies the equipment and improves gasification efficiency and quality stability. Particularly important is plant start / stop / load. The purpose is to obtain a method that can be easily changed in a short time of about 15 minutes.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明の講ずる技術的手段は、ブタン・プロパン・ナ
フサ等の炭化水素を原料とするSNG用素原料ガスの製
造において、メタン化反応・脱硫反応共、触媒の反応条
件である温度キープと温度制御並びにその熱の移動を迅
速にするのに熱媒による外熱式で行うもので具体的に
は、水添脱硫を行うのにニモックス触媒と酸化亜鉛を
充填した反応管を有する1体型熱交換方式U字流路の脱
硫塔を用い、胴側の熱媒循環により350℃程度の温度を
保持しながら上記炭化水素原料と別の反応塔で発生した
水素を添加した水素混合原料を、往路のニモックス層で
水素と原料中の非活性硫黄化合物と反応させて硫化水素
(活性硫黄化合物)に変え、次に復路の酸化亜鉛層で硫
化亜鉛として吸着させ原料中より硫黄化合物を取り除
き、水蒸気改質を行うのにアルミナ系担体にニッケル
を担持させたメタン化触媒を充填した反応管を有する熱
交換方式シェルチューブ型反応塔を用い、胴側の熱媒循
環によりブタン・プロパン・ナフサ各ケースに於いて 3
20℃、 315℃、 330℃程度の温度を保持しながら上記脱
硫された原料と水蒸気の混合物を触媒を介して1塔にて
1段階の反応速度を大きくした特定の反応条件下で等温
反応させて富メタン含有ガスを直接発生させ、水添脱
硫用水素を得るのに、上記の反応塔の1部のチューブ
に水素化触媒を充填して反応管として別流路で用い、メ
タノールと水の混合物を上記と同じ温度で触媒を介し
て1段階の反応速度を大きくした特定の反応条件下で等
温反応させて富水素含有ガスを直接発生させ、水添脱
硫と水蒸気改質のそれぞれの最適な温度保持と温度制御
をするのに、熱移動速度の大きなNaNO2 −NaNO3 − KNO
3 3成分系の無機塩熱媒体を用い循環して、発熱反応の
熱を吸収し、吸熱反応の熱を供給する迅速な熱移動を行
い触媒層内の蓄積熱を低下させる改質系と分流弁を介し
て脱硫系共任意の温度に調節できる2系統の熱媒循環系
で行う。
[Means for Solving the Problems] The technical means taken by the present invention to achieve the above-mentioned object is a methanation reaction in the production of a raw material gas for SNG using hydrocarbons such as butane, propane and naphtha as raw materials.・ The desulfurization reaction is carried out by an external heat system using a heating medium in order to speed up the temperature keeping and temperature control which are the reaction conditions of the catalyst, and its heat transfer. Specifically, Nimox is used for hydrodesulfurization. Using a one-body heat exchange type U-shaped desulfurization tower having a reaction tube filled with a catalyst and zinc oxide, a reaction different from the above hydrocarbon raw material while maintaining a temperature of about 350 ° C by circulating a heat medium on the shell side The hydrogen-mixed raw material added with hydrogen generated in the tower is converted to hydrogen sulfide (active sulfur compound) by reacting with hydrogen and the inactive sulfur compound in the raw material in the outward Nimox layer, and then sulfurized in the zinc oxide layer on the return route. Adsorbed as zinc A heat exchange shell-tube type reaction tower with a reaction tube filled with a methanation catalyst supporting nickel on an alumina-based carrier is used to remove sulfur compounds from the inside and perform steam reforming. By butane, propane and naphtha in each case 3
While maintaining temperatures of about 20 ° C, 315 ° C, and 330 ° C, the mixture of the desulfurized raw material and steam is allowed to react isothermally under specific reaction conditions in which one step is used to increase the reaction rate in one column through a catalyst. In order to directly generate a methane-rich gas and obtain hydrogen for hydrodesulfurization, a tube for a part of the above reaction tower is filled with a hydrogenation catalyst and used as a reaction tube in a separate channel, and methanol and water are used. The mixture is isothermally reacted under the specific reaction conditions in which the reaction rate is increased by one step at the same temperature as described above to directly generate the hydrogen-rich gas, and the optimum hydrodesulfurization and steam reforming are performed. to a temperature holding and temperature control, the rate of heat transfer large NaNO 2 -NaNO 3 - KNO
3 A reforming system and a shunt that circulate using a three-component inorganic salt heat medium to absorb the heat of the exothermic reaction and supply the heat of the endothermic reaction to perform rapid heat transfer and reduce the accumulated heat in the catalyst layer. The desulfurization system is controlled by two heat medium circulation systems which can be adjusted to arbitrary temperatures via valves.

【0008】又、SNGの素原料ガスを精製する手段に
於いては本願出願人の出願に係り、既に特開平2 −2810
96号として出願公開され公知となっている富メタン混合
ガスの炭酸ガス及び水分を除去する装置(連続流PSA
方式の脱炭酸・脱水装置)を用いる。
Regarding the means for refining the SNG raw material gas, the application of the applicant of the present application has already been filed.
A device for removing carbon dioxide and water in a methane-rich mixed gas, which has been published and publicly known as No. 96 (continuous flow PSA
Type decarbonation / dehydration device) is used.

【0009】以上、素原料ガスの製造と素原料ガスの精
製及び熱量調整で構成されるSNGの運転操作を簡単に
し、設備をシンプル化し、ガス化効率の向上と製造コス
トの低減はもとよりプラント全体の起動・停止・負荷変
更時間をそれぞれ15分以内で実施可能にするものであ
る。
As described above, the operation of the SNG consisting of the production of the raw material gas, the purification of the raw material gas and the adjustment of the heat quantity is simplified, the equipment is simplified, the gasification efficiency is improved and the production cost is reduced, and the entire plant is It is possible to start, stop, and change the load of each within 15 minutes.

【0010】[0010]

【発明の具体的説明】以下本発明のSNGの製造方法を
図1に示すプロセスフローに基づいて詳細に説明する。
原料のブタン・プロパン・ナフサ等の炭化水素は原料ポ
ンプ1で反応圧力程度に昇圧され原料予熱器2、原料蒸
発器3で加熱・気化された後、原料/水素ミキサー4に
於いて反応塔8で直接発生した富水素含有混合ガスと混
合され、次に原料過熱器5で 350℃程度の反応温度に調
節され、原料中のS分の活性化とS分の吸着を行う1体
型の脱硫塔6に送られ、塔内入口側管内のニモックス触
媒層で水素と原料中の非活性硫黄化合物が水添反応によ
り、硫黄は硫化水素(H2 S)に還元される(H2 +S
=H2 S)。次にこの硫化水素を含む原料ガスは、塔下
部から塔内出口側管内の酸化亜鉛層に達し、原料ガス中
の硫化水素がH2 S+ZnO→ZnS+H2 Oの反応を
起こし、ZnSの形で吸着剤ZnO中に吸着され、原料
中の硫黄分が除去される。
DETAILED DESCRIPTION OF THE INVENTION The SNG manufacturing method of the present invention will be described in detail below with reference to the process flow shown in FIG.
Hydrocarbons such as butane, propane and naphtha as raw materials are boosted to a reaction pressure by a raw material pump 1 and heated and vaporized by a raw material preheater 2 and a raw material evaporator 3, and then a reaction tower 8 in a raw material / hydrogen mixer 4. Is mixed with the hydrogen-rich mixed gas generated directly in the raw material, and is then adjusted to a reaction temperature of about 350 ° C by the raw material superheater 5 to activate the S content in the raw material and to adsorb the S content in a one-body desulfurization tower. sent to 6, the non-active sulfur compound is hydrogenated reaction of hydrogen and in the raw material in Nimokkusu catalyst layer of the column in the inlet side pipe, sulfur is reduced to hydrogen sulfide (H 2 S) (H 2 + S
= H 2 S). Next, the raw material gas containing this hydrogen sulfide reaches the zinc oxide layer in the tower outlet side pipe from the lower part of the tower, the hydrogen sulfide in the raw material gas causes a reaction of H 2 S + ZnO → ZnS + H 2 O, and is adsorbed in the form of ZnS. Adsorbed in the agent ZnO, the sulfur content in the raw material is removed.

【0011】この脱硫塔6は、図2に示すように熱交換
方式シェルチューブ型固定管板構造であり、上部チャン
ネルを仕切板61でガス入口62と出口63の2つに仕切って
U字流路を形成し仕切の入口側管(往路)64にニモック
ス触媒65を、出口側管(復路)66に酸化亜鉛67を充填
し、管の外側であるシェル側下部熱媒入口68より、あら
かじめ熱媒加熱炉7で 350℃程度の温度に調節された熱
媒をバッフルプレート70の間を通って上部方向に流し、
触媒をその活性温度に保持する。この場合脱硫塔6に送
られる水素混合原料ガスと脱硫塔に充填された触媒は共
に熱媒加熱炉7→原料過熱器5→脱硫塔6と直列に流さ
れる熱容量の大きな熱媒の温度支配により常に一定の温
度となる。この温度支配は定常時のみならずプラントの
スタートアップ及び負荷変更時にも有利に働きプラント
の即時起動及び即時負荷変更が出来る主な要因である。
As shown in FIG. 2, the desulfurization tower 6 has a heat exchange type shell tube type fixed tube plate structure, and the upper channel is divided into a gas inlet 62 and an outlet 63 by a partition plate 61 to form a U-shaped flow. A nimox catalyst 65 is filled in the inlet side tube (outward path) 64 of the partition forming the passage, and zinc oxide 67 is filled in the outlet side tube (return path) 66. The heat medium adjusted to a temperature of about 350 ° C. in the medium heating furnace 7 is passed between the baffle plates 70 in the upward direction,
Hold the catalyst at its activation temperature. In this case, the hydrogen-mixed raw material gas sent to the desulfurization tower 6 and the catalyst filled in the desulfurization tower are both controlled by the temperature control of the heat medium heating furnace 7 → raw material superheater 5 → desulfurization tower 6 in which the heat medium having a large heat capacity flows in series. The temperature is always constant. This temperature control is advantageous not only in the steady state but also when the plant is started up and the load is changed, and is a main factor that enables immediate start-up and immediate load change of the plant.

【0012】従来手段ではガスの熱で操作する内熱式で
あるので、この水素混合原料ガス温度と触媒の温度に差
が生じ易く又、この温度制御が特にスタートアップ時に
は困難であり、温度が高すぎると炭素系析出のトラブル
を起こし、低すぎると脱硫反応が好ましくない。本発明
は、この問題を熱媒による外熱式手段により解消した。
Since the conventional means is an internal heat type operated by the heat of gas, a difference is likely to occur between the temperature of this hydrogen-mixed raw material gas and the temperature of the catalyst, and this temperature control is difficult especially at startup, and the temperature is high. If it is too low, carbon-based precipitation problems occur, and if it is too low, the desulfurization reaction is not preferable. The present invention solves this problem by means of an external heating system using a heating medium.

【0013】次に、従来技術におけるニモックス塔と酸
化亜鉛塔の2基の機器を1体化し、表面積を減少し得た
ためプラント効率に及ぼす影響の大きい脱硫装置からの
放熱量の低減を可能にした。
Next, the two devices of the prior art, the Nimox tower and the zinc oxide tower, were integrated into one unit, and the surface area could be reduced, so that it was possible to reduce the amount of heat released from the desulfurization equipment, which has a great effect on plant efficiency. .

【0014】脱硫塔6を出た脱硫された原料は、原料/
蒸気ミキサー9に於いて蒸気と混合され次に、原料/蒸
気過熱器10で 320℃程度の反応温度に調節された後、水
蒸気改質を行う反応塔8に送られ、1段階の反応速度を
大きくした特定の反応条件で、アルミナ系担体にニッケ
ルを担持させた活性の大きな触媒を介して等温のリホー
ミング(分解)反応及びメタン化反応を行い、CO含有
量が少なくCH4 含有量の多い高カロリーガスに転化す
る。
The desulfurized raw material leaving the desulfurization tower 6 is
After being mixed with steam in the steam mixer 9, and then adjusted to a reaction temperature of about 320 ° C. by the raw material / steam superheater 10, it is sent to the reaction tower 8 for steam reforming, and a one-step reaction rate is obtained. Under specific increased reaction conditions, an isothermal reforming (decomposition) reaction and methanation reaction are carried out through a highly active catalyst in which nickel is supported on an alumina-based carrier, resulting in a low CO content and a high CH 4 content. Convert to high calorie gas.

【0015】反応は非常に複雑であり、触媒上でまず炭
化水素(ブタンを例に説明)の1部がスチームにより加
熱的に分解し、C4 10+4H2 O→4CO+9H2
反応によりCOとH2 を生ずる。ガス化が進むにつれ
て、COとH2 によるメタン化反応及びシフト反応が起
こり、
The reaction is very complicated. First, a part of the hydrocarbon (explained with butane) is thermally decomposed by steam on the catalyst, and the reaction of C 4 H 10 + 4H 2 O → 4CO + 9H 2 produces CO. And H 2 are produced. As gasification progresses, CO and H 2 methanation and shift reactions occur,

【化1】 この合成反応を1塔にて1段階で行うものである。[Chemical 1] This synthesis reaction is carried out in one step in one tower.

【0016】この反応塔8は、図3に示すように熱交換
方式シェルチューブ型固定管板構造であり反応管81内に
前述のメタン化触媒82を充填し、管81の外側であるシェ
ル側下部熱媒入口83より、熱媒分流調節弁11で分流され
た 320℃程度の温度の熱媒を上部方向に流し触媒を活性
温度に保持する。
As shown in FIG. 3, the reaction tower 8 has a heat exchange type shell tube type fixed tube plate structure, and the reaction tube 81 is filled with the above-mentioned methanation catalyst 82, and is outside the tube 81 on the shell side. From the lower heat medium inlet 83, the heat medium having a temperature of about 320 ° C., which is split by the heat medium splitting control valve 11, is flown in the upper direction to keep the catalyst at the active temperature.

【0017】この場合反応塔8に送られる脱硫された蒸
気混合原料ガスと反応塔8に充填された触媒82は共に、
熱媒分流調節弁11→反応塔8→原料/蒸気過熱器10と直
列に流される熱容量の大きな熱媒の温度支配により、常
に一定の温度となる。この温度支配は前述した脱硫塔6
の場合と同じく定常時のみならずプラントのスタートア
ップ及び負荷変更時に特に有利に働きプラントの即時起
動及び即時負荷変更が出来る主な要因である。
In this case, the desulfurized vapor mixed raw material gas sent to the reaction tower 8 and the catalyst 82 filled in the reaction tower 8 are both
The heat medium branch control valve 11 → reaction tower 8 → raw material / steam superheater 10 maintains a constant temperature due to the temperature control of the heat medium having a large heat capacity that is flowed in series. This temperature control is based on the desulfurization tower 6 described above.
As in the case of (1), it works particularly advantageously not only in the steady state but also when the plant starts up and the load is changed, and it is the main factor that enables immediate startup and immediate load change of the plant.

【0018】反応管内触媒層82で起こる反応は、前述し
た通り複雑であるがリホーミング(分解)反応に於いて
は吸熱反応、メタン化反応は発熱反応であるので反応管
81内の軸方向の温度分布は図4の実線で示すように一度
下がって急激に上昇しその後熱媒体で冷却されて熱媒体
温度とほぼ同じ温度となる。
The reaction that takes place in the catalyst layer in the reaction tube 82 is complicated as described above, but in the reforming (decomposition) reaction, the endothermic reaction and the methanation reaction are exothermic reactions.
As shown by the solid line in FIG. 4, the temperature distribution in the axial direction within 81 drops once and then rises sharply, then is cooled by the heat medium and becomes almost the same temperature as the heat medium temperature.

【0019】反応塔8の出口付近の反応ガス(素原料ガ
ス)は反応塔8のシェル側下部熱媒入口83に入ってくる
低温度の熱媒体で充分に冷却されるため低い温度にする
ことが出来、従ってCH4 収率が高くとれる。このガス
は、ほぼ熱力学的に平衡組成になっており、この熱力学
的平衡組成は理論計算で求められ図5で示すように低温
ほどCH4 収率が高い。
The reaction gas (raw material gas) in the vicinity of the outlet of the reaction tower 8 is sufficiently cooled by the low temperature heat medium entering the shell side lower heat medium inlet 83 of the reaction tower 8 so that it should be kept at a low temperature. Therefore, the CH 4 yield can be increased. This gas has a thermodynamically equilibrium composition, and this thermodynamic equilibrium composition is obtained by theoretical calculation, and as shown in FIG. 5, the CH 4 yield is higher at lower temperatures.

【0020】一方熱媒体は前述したように胴下部よりフ
ィードされ、図3に示すバッフルプレート84の間を通っ
て上部方向に流れチューブ側発熱反応ゾーンの熱を吸収
し一番高くなった処で今度はチューブ側の吸熱反応ゾー
ンに至る。ここで逆に熱媒体からチューブ側に熱を供給
して反応塔胴側上部から出て行く。これは熱媒体が発熱
反応ゾーンで加熱され、高い温度になった処で次に、吸
熱反応の熱を供給することになる。吸熱反応部での熱供
給は、熱媒体と反応ガスの温度差が大きくとられるため
熱移動速度が大きくなり吸熱は充分である。即ち、吸熱
反応を充分にさせることが出来る。
On the other hand, the heat medium is fed from the lower part of the body as described above, flows through the baffle plates 84 shown in FIG. 3 in the upward direction, absorbs the heat in the tube side exothermic reaction zone, and becomes the highest. This time it reaches the endothermic reaction zone on the tube side. Here, conversely, heat is supplied from the heat medium to the tube side and exits from the upper part of the reaction tower body side. This means that when the heat carrier is heated in the exothermic reaction zone and reaches a high temperature, it then supplies the heat of the endothermic reaction. Since the temperature difference between the heat medium and the reaction gas is large in the heat supply in the endothermic reaction section, the heat transfer rate is high and the heat absorption is sufficient. That is, the endothermic reaction can be made sufficient.

【0021】本発明のプロセスは発熱反応ゾーンで熱媒
体が多量の熱を吸収することが出来るので、1段階方式
を採用することができる。もし、多量の熱を瞬時に吸収
できないと2段〜3段の反応システムを採用しなければ
ならなくなる。現に前述した従来の手段は水蒸気改質+
1段メタン化+2段メタン化の3段階が主流で、これら
の段間に冷却器を設け冷却して反応条件を整えているの
に対し本発明は、これの1体化をすることによって、機
器の数を減少させその表面積を減少し得たため、脱硫塔
6で述べたと同様にプラント効率に影響の大きい装置か
らの放熱量の低減を可能にする効果がある。
In the process of the present invention, the one-step method can be adopted because the heat carrier can absorb a large amount of heat in the exothermic reaction zone. If a large amount of heat cannot be absorbed instantaneously, a 2- to 3-stage reaction system will have to be adopted. Actually, the above-mentioned conventional means is steam reforming +
The main stage is three-stage methanation + two-stage methanation, and a cooling device is provided between these stages to cool the reaction conditions, whereas the present invention integrates them. Since the number of devices can be reduced and the surface area thereof can be reduced, there is an effect that it is possible to reduce the amount of heat radiation from the device, which has a great influence on the plant efficiency, similarly to the desulfurization tower 6.

【0022】本発明のプロセスはプラントの効率向上と
起動及び負荷変更を容易にするため前述の水添脱硫用の
小量の水素をプロセス併用で、メタノールの高濃度水素
化により得ている。メタノールは図1に示すように、メ
タノールポンプ12で反応圧力程度に昇圧され、メタノー
ル/水ミキサー13に於いて脱気された水と混合し、次に
その混合物をメタノール蒸発器14で加熱・気化させた
後、メタノール過熱器15で 320℃程度の反応温度に昇温
して反応塔8に送る。
In the process of the present invention, a small amount of hydrogen for hydrodesulfurization described above is obtained by high-concentration hydrogenation of methanol in combination with the process in order to improve plant efficiency and facilitate start-up and load change. As shown in FIG. 1, methanol is pressurized to a reaction pressure by a methanol pump 12 and mixed with water deaerated in a methanol / water mixer 13, and then the mixture is heated and vaporized in a methanol evaporator 14. After that, the temperature is raised to about 320 ° C. in the methanol superheater 15 and sent to the reaction tower 8.

【0023】この反応塔8は前述した水蒸気改質を行っ
ている反応塔8と兼用であり、1部のチューブを水素化
触媒85を充填して反応管86として別流路で使用してお
り、メタノールと水の混合物を上記水蒸気改質と同じ温
度で触媒を介して1段階の反応速度を大きくした特定の
反応条件で等温の水素化反応を行い、CO及びCH4
有量が少なくH2 含有量の多いガスに転化するものであ
る(CH3 OH+H2 O→3H2 +CO2 )。
This reaction tower 8 is also used as the above-mentioned reaction tower 8 for performing steam reforming, and one part of the tube is filled with the hydrogenation catalyst 85 and used as a reaction tube 86 in another flow path. , A mixture of methanol and water is subjected to an isothermal hydrogenation reaction under the specific reaction conditions in which the reaction rate is increased by one step at the same temperature as in the steam reforming through a catalyst, and the CO and CH 4 contents are small and H 2 is reduced. It is converted to a gas with a large content (CH 3 OH + H 2 O → 3H 2 + CO 2 ).

【0024】この反応管86は図3に示すように熱交換方
式シェルチューブ型固定管板構造の1本のチューブを上
部及び下部のチャンネル部分を貫通させ別流路にし管内
に水素化触媒85を充填したもので、熱媒の流路方向と温
度支配及びプラントのスタートアップ並びに負荷変更時
等の有利性については、前述のメタン化反応管81と同様
である。
As shown in FIG. 3, the reaction tube 86 has one tube of a heat exchange type shell tube type fixed tube plate structure which penetrates through the upper and lower channel parts to form separate flow passages and a hydrogenation catalyst 85 in the tube. It is the same as that of the methanation reaction tube 81 described above with respect to the flow path direction of the heat medium, temperature control, and advantages of starting up the plant, changing loads, and the like.

【0025】この反応管内触媒層85で起こる反応は、メ
タノール合成の逆反応であり温度を上げ圧力を低下させ
るほどメタノールの分解率、あるいは改質率を高くでき
分解反応(CH3 OH→2H2 +CO)に於いては吸熱
反応、シフト反応(CO+H 2 O→H2 +CO2 )では
発熱反応であり全体として吸熱反応が支配するので反応
管86内の軸方向の温度分布は図6の実線で示すように一
度下がって熱媒体からの熱の迅速な供給を受けやがて熱
媒の入口温度とほぼ同じ温度となる。この様に多量の熱
を瞬時に供給することによって触媒の温度低下を防止
し、水素収率の高い反応を1段階で1本の反応管で行う
ことが出来る。
The reaction that takes place in the catalyst layer 85 in the reaction tube is
It is a reverse reaction of tanol synthesis, and it raises the temperature and lowers the pressure.
The higher the decomposition rate or reforming rate of methanol, the higher
Decomposition reaction (CH3OH → 2H2+ CO) endothermic
Reaction, shift reaction (CO + H 2O → H2+ CO2)
Since it is an exothermic reaction and the endothermic reaction is dominant as a whole, the reaction
The axial temperature distribution in the tube 86 is uniform as shown by the solid line in FIG.
Decrease the heat supply from the heat medium
The temperature is almost the same as the inlet temperature of the medium. This much heat
Immediate supply of catalyst prevents catalyst temperature drop
Then, the reaction with high hydrogen yield is carried out in one reaction tube in one step.
You can

【0026】従来手段では、水添脱硫用水素を得るのに
前述の3段階あるガス化(メタン化)手段の内、前段の
1段を水素含有の比較的多いメタン含有ガスを得る目的
で高温で反応する反応塔をこの為に設け、発生ガスの1
部を冷却後リサイクルガスコンプレッサーで昇圧し、脱
硫装置へ水素混合ガスとしてリサイクルしている。この
場合水素含有量が10%程度であり、全ガス発生量の1割
近くのガスを温度を常温近くまで下げ全装置の7割以上
の圧損に打ち勝つ様常に、リサイクルガスコンプレッサ
ーで昇圧する必要がある。
In the conventional means, one of the three gasification (methanation) means described above for obtaining hydrogen for hydrodesulfurization has a high temperature for the purpose of obtaining a methane-containing gas containing a relatively large amount of hydrogen. For this purpose, a reaction tower that reacts at
After cooling the part, the pressure is increased by a recycle gas compressor and recycled to the desulfurizer as a hydrogen mixed gas. In this case, the hydrogen content is about 10%, and the temperature of nearly 10% of the total gas generation should be lowered to near room temperature to overcome the pressure loss of 70% or more of all equipment. is there.

【0027】この様に、本発明の水素を得る手段による
と前段1段の大きな反応塔とリサイクガスコンプレッサ
ー及びリサイクルガスを冷却してまた再度昇温する熱が
常時不要になり、必要以上のガスを低効率で圧縮する非
常に大きな動力は、本手段のメタノールで高濃度水素の
効率的発生を行うことにより小量のメタノール液昇圧ポ
ンプのわずかな動力に変わる。又、プラントの立ち上げ
とロード変更は即時に近い時間で実施可能となる。
As described above, according to the means for obtaining hydrogen of the present invention, the large reaction tower of the first stage, the recycle gas compressor, and the heat for cooling the recycled gas and raising the temperature again are not always required, and more gas than is necessary. The very large power that compresses the fuel with low efficiency is converted into the slight power of the small amount methanol booster pump by efficiently generating the high-concentration hydrogen with the methanol of this means. In addition, the start-up of the plant and the change of load can be carried out almost immediately.

【0028】以上述べた様に本発明プロセスの主要部で
ある水添脱硫と水蒸気改質は、それぞれの触媒の最適な
温度保持とそれぞれの反応を行うガス(水素混合原料ガ
ス・蒸気混合原料ガス・水とメタノール混合ガス)の最
適温度操作を無機塩の熱媒体による外熱で行なってい
る。
As described above, in the hydrodesulfurization and steam reforming, which are the main parts of the process of the present invention, the gas (hydrogen mixed raw material gas / steam mixed raw material gas) that maintains the optimum temperature of each catalyst and each reaction is carried out.・ Water and methanol mixed gas) are operated at the optimum temperature by using external heat from the heat medium of the inorganic salt.

【0029】この熱媒体は、HEAT TRANSFE
R SALT(HTS)と言われる溶融塩で亜硝酸ソー
ダ・硝酸ソーダ・硝酸カリの共融混合物であり本プロセ
スの様に320 ℃〜350 ℃程度の反応塔又は熱交換器のシ
ェル側に流しチューブ側の熱除去・熱供給を敏速に行な
わせる場合、HTSは一般的に350 ℃以下で使用される
OIL系熱媒体に比べ伝熱係数が約50%高い。従って
この有利性が本方法を実現出来る重要な要素でもある。
The heat medium is HEAT TRANSFFE.
R SALT (HTS) is a molten salt, which is a eutectic mixture of sodium nitrite, sodium nitrate, and potassium nitrate. Like this process, it is a flow tube on the shell side of a reaction tower or heat exchanger at 320 ℃ ~ 350 ℃. In the case of promptly removing heat from the side and supplying heat, HTS has a heat transfer coefficient of about 50% higher than that of an OIL type heat medium generally used at 350 ° C or lower. Therefore, this advantage is also an important factor for realizing the method.

【0030】熱媒は図1に示す様に熱媒貯槽16より熱媒
ポンプ17で昇圧し熱媒分流3方口調節弁11で脱硫系統と
改質系統の2系統に分流され、一方の脱硫系では熱媒加
熱炉7で前述の脱硫反応温度の350 ℃程度に調節するた
め352 ℃程度に加熱昇温され原料過熱器5、脱硫塔6、
2次給水加熱器23のシェル側を通りそれぞれの機器のチ
ューブ側に熱を供給又は吸収(脱硫塔のみ)し、321 ℃
程度の温度になって熱媒貯槽16に戻る。
As shown in FIG. 1, the heat medium is boosted from a heat medium storage tank 16 by a heat medium pump 17 and is divided into two systems, a desulfurization system and a reforming system, by a heat medium distribution three-way control valve 11, and one desulfurization system is used. In the system, in order to adjust the desulfurization reaction temperature to about 350 ° C. in the heating medium heating furnace 7, the temperature is raised to about 352 ° C. and the raw material superheater 5, desulfurization tower 6,
Passes through the shell side of the secondary feed water heater 23 and supplies or absorbs heat to the tube side of each device (desulfurization tower only), 321 ℃
When the temperature reaches a certain level, it returns to the heat medium storage tank 16.

【0031】又、一方熱媒分流3方口調節弁11で分流し
た改質系統では、分流時の熱媒温度は改質反応温度の32
0 ℃程度に調節されており、反応器8、原料/蒸気過熱
器10、原料蒸発器3、メタノール過熱器15のシェル側を
通りそれぞれの機器のチューブ側に熱を供給又は吸収
(反応器のみ)し、321 ℃程度の温度になって熱媒貯槽
16に戻る。
On the other hand, in the reforming system in which the heat medium branching 3-way control valve 11 is used for branching, the heat medium temperature at the time of branching is 32 times the reforming reaction temperature.
The temperature is adjusted to about 0 ° C, and heat is supplied or absorbed to the tube side of each device through the shell side of the reactor 8, the raw material / steam superheater 10, the raw material evaporator 3, and the methanol superheater 15 (reactor only). ), The temperature of 321 ℃ is reached and the heat medium storage tank
Return to 16.

【0032】この様に2系統の異なった温度の熱媒循環
をそれぞれ任意の温度に調節することが必要であり、そ
の手段としてはそれぞれの系統に於いて反応熱機器(反
応塔又は脱硫器)と熱回収機器(蒸発器・過熱器等)及
び加熱器(熱媒加熱炉)の循環系に於ける適正な配列を
上記の様に行い、熱媒貯槽16に戻る2系統の熱媒温度に
差がない様に配置して、任意の温度に調節しようとする
脱硫塔入口熱媒温度と反応塔入口熱媒温度を検出し、そ
の温度差により熱媒分流調節弁11で脱硫系流量と改質
系流量の分流比を変化させ希望する2つの温度を設定す
る。次に脱硫塔熱媒入口温度を検出し、熱媒加熱炉7の
燃料量を変化させ全プロセスの全熱のバランスをとる。
As described above, it is necessary to control the heat medium circulations of the two systems at different temperatures to arbitrary temperatures, and as a means therefor, a reaction heat device (reaction tower or desulfurizer) in each system is used. And heat recovery equipment (evaporator, superheater, etc.) and heater (heat medium heating furnace) are properly arranged in the circulation system as described above, and the heat medium temperature of the two systems is returned to the heat medium storage tank 16. The desulfurization tower inlet heat medium temperature and the reaction tower inlet heat medium temperature, which are arranged so that there is no difference, are detected to detect the desulfurization system flow rate and the desulfurization system flow rate are adjusted by the heat medium shunt control valve 11 based on the temperature difference. Set the two desired temperatures by changing the diversion ratio of the mass flow rate. Next, the temperature of the desulfurization tower heat medium inlet is detected, and the amount of fuel in the heat medium heating furnace 7 is changed to balance the total heat of all processes.

【0033】この熱媒温度の制御方法は最適な脱硫反応
及び改質反応を行わせる為に重要であり、又即時起動及
び負荷変更時にも適切に対応し精密な制御を可能にする
ものである。
This method of controlling the temperature of the heating medium is important for carrying out the optimum desulfurization reaction and reforming reaction, and also enables appropriate control even at the time of immediate start and load change and enables precise control. .

【0034】本発明に係るブタン・プロパン・ナフサ等
の炭化水素原料からSNGを製造する方法について本来
SNGプロセスに要求される性能(起動及び負荷変更特
性)を満足させるには、以上述べた素原料ガス製造プロ
セスに加え、これの脱炭酸・脱水をする精製プロセスを
本願出願人が既に出願して出願公開された連続流PSA
方式(特開平2-281096号参照)で実施した後、炭化水素
ガスで熱量調整する一連の製造工程で行う。上記連続流
PSA方式の精製プロセスは既に公開公報に掲載され公
知となっているプロセスをそのまま実施するため、ここ
では説明を省略する。
Regarding the method for producing SNG from a hydrocarbon raw material such as butane, propane and naphtha according to the present invention, in order to satisfy the performance (starting and load changing characteristics) originally required for the SNG process, the above-mentioned raw materials are required. In addition to the gas production process, a continuous flow PSA has been filed and published by the applicant of the present invention for a refining process for decarboxylation / dehydration
After performing the method (see Japanese Patent Laid-Open No. 2-281096), a series of manufacturing steps in which the amount of heat is adjusted with a hydrocarbon gas is performed. The continuous flow PSA method refining process is the same as the publicly known process already described in the publication, and therefore the description thereof is omitted here.

【0035】[0035]

【実施例】この高熱量都市ガス製造の一実施例のプロセ
スフローを図7に示し、そのフローチャートの各ストリ
ームナンバーの各数値を表1に示す。尚、図7において
27は増熱ブタン蒸発器である。
EXAMPLE FIG. 7 shows a process flow of one example of the production of high calorific city gas, and Table 1 shows each numerical value of each stream number in the flowchart. In addition, in FIG. 7, 27 is a heat-increasing butane evaporator.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【効果】本発明は上記の構成であるから以下の利点を有
する。 (1)原料の水添脱硫を1塔で行い添加水素はメタノー
ルを改質した高濃度H2 を直接用いるので設備が簡素で
あり、これに要する熱及び動力エネルギーが非常に小さ
い。 (2)ブタン・プロパン・ナフサ等の炭化水素が反応塔
に於ける触媒の存在下で気相接触分解反応によりメタン
化され反応手段の1つの1段階でメタン収率の高いメタ
ン含有混合ガスを得る事が出来る。 (3)水添脱硫と水蒸気改質でそれぞれの反応条件を整
えるのに熱移動速度の大きな熱媒体を用いて反応をそれ
ぞれ外熱式で行っているのでプラントの起動と負荷変更
が容易に行える。 (4)機器数が少なく又、反応熱の迅速な移動及び有効
な熱回収が出来るのでガス化効率が高い。 (5)素原料ガスの精製を連続流PSA方式で行えばよ
り操作が簡単になりプラントの起動・停止・負荷変更
(変更巾100%)時間は、それぞれ15分以内で行え
る。
The present invention has the following advantages because of the above configuration. (1) Since the hydrodesulfurization of the raw material is carried out in one column and the added hydrogen directly uses the high-concentration H 2 obtained by reforming methanol, the equipment is simple, and the heat and kinetic energy required for this are very small. (2) Hydrocarbons such as butane, propane, and naphtha are methanated by gas phase catalytic cracking reaction in the presence of a catalyst in the reaction tower to produce a methane-containing mixed gas having a high methane yield in one step of the reaction means. You can get it. (3) In order to adjust the respective reaction conditions for hydrodesulfurization and steam reforming, the reaction is carried out externally using a heat medium with a high heat transfer rate, so the plant can be easily started and the load can be changed. . (4) The gasification efficiency is high because the number of devices is small and the reaction heat can be moved rapidly and the heat can be effectively recovered. (5) If the raw material gas is purified by the continuous flow PSA method, the operation becomes simpler, and the plant start / stop / load change (change range 100%) can be performed within 15 minutes each.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明SNG素原料ガスの製造方法プロセス
フロー図。
FIG. 1 is a process flow chart of a method for producing an SNG raw material gas according to the present invention.

【図2】 脱硫塔の構造の概略を示す図。FIG. 2 is a diagram showing a schematic structure of a desulfurization tower.

【図3】 反応塔の構造の概略を示す図。FIG. 3 is a diagram schematically showing the structure of a reaction tower.

【図4】 ブタンのメタン化反応時の触媒層内温度分布
を示す図。
FIG. 4 is a diagram showing a temperature distribution in a catalyst layer during a butane methanation reaction.

【図5】 ブタン改質の反応温度と収率の相関を示す
図。
FIG. 5 is a diagram showing a correlation between a reaction temperature of butane reforming and a yield.

【図6】 メタノールの水素化反応時の触媒層内温度分
布図。
FIG. 6 is a temperature distribution diagram in the catalyst layer during a hydrogenation reaction of methanol.

【図7】 脱炭酸と脱水を連続流PSA方式で行ったS
NGプロセスフロー図。
FIG. 7: S obtained by continuous flow PSA method for decarboxylation and dehydration
NG process flow diagram.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木下 夏雄 福岡県福岡市博多区千代1丁目17番1号 西部瓦斯株式会社内 (72)発明者 太田 啓 福岡県福岡市博多区千代1丁目17番1号 西部瓦斯株式会社内 (72)発明者 川崎 春次 福岡県福岡市博多区千代1丁目17番1号 西部瓦斯株式会社内 (72)発明者 西野 近 千葉県我孫子市寿2丁目22−64 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Natsuo Kinoshita 1-17-1 Chiyo, Hakata-ku, Fukuoka-shi, Fukuoka Within Seibu Gas Co., Ltd. (72) Inventor Kei Ota 1-1-17, Chiyo, Hakata-ku, Fukuoka No. 1 in Western Gas Co., Ltd. (72) Inventor Haruji Kawasaki 1-17-1 Chiyo, Hakata-ku, Fukuoka City, Fukuoka Prefecture In West Gas Co., Ltd. (72) Inventor Akira Nishino 22-64, Kotobuki, Abiko, Chiba Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ブタン・プロパン・ナフサ等の炭化水素
原料を水添脱硫で硫黄分を除去し水蒸気改質(メタン化
反応)を行って素原料ガスを発生させ、次に脱炭酸・脱
水して精製した後、炭化水素ガスで熱量調整を行う高熱
量都市ガス(代替天然ガス)の製造工程に於いて、
水添脱硫を行うのに、ニモックス触媒と酸化亜鉛を充填
した反応管を有する1体型熱交換方式U字流路の脱硫塔
を用い胴側の熱媒循環により 350℃程度の温度を保持し
ながら水素混合原料を、往路のニモックス層で水素と原
料中の非活性硫黄化合物と反応せしめ硫化水素(活性硫
黄化合物)に変え、次に復路のZnO層でZnSにして
原料中より硫黄分を除去し、 水蒸気改質を行うの
に、アルミナ系担体にニッケルを担持させたメタン化触
媒を充填した反応管を有する熱交換方式シェルチューブ
型反応塔を用い胴側の熱媒循環により 320℃程度の温度
を保持しながら脱硫された原料と水蒸気の混合物を触媒
を介して1塔にて1段階の特定の反応条件下で等温反応
させて富メタン含有ガスを直接発生させ、 水添脱硫
用水素を得るのに、上記の反応塔の1部のチューブを
水素化触媒を充填して反応管として別流路で用い、メタ
ノールと水の混合物を同じ温度で触媒を介して1段階の
特定の反応条件下で等温反応させて富水素含有ガスを直
接発生させ、 水添脱硫と水蒸気改質のそれぞれの最
適な反応温度を保持するのに、熱移動速度の大きな無機
塩系の熱媒体を用い循環して、発熱反応の熱を吸収し、
吸熱反応の熱を供給すると共に任意の温度に調節出来る
2系統の熱媒循環系で行うことを特徴とする高熱量都市
ガスの製造方法。
1. A hydrocarbon raw material such as butane, propane, naphtha, etc. is hydrodesulfurized to remove a sulfur content, and steam reforming (methanation reaction) is performed to generate a raw material gas, followed by decarboxylation / dehydration. In the manufacturing process of high calorific city gas (alternative natural gas), in which the calorific value is adjusted with hydrocarbon gas after purification by
To perform hydrodesulfurization, a one-body heat exchange system U-shaped desulfurization tower having a reaction tube filled with a nimox catalyst and zinc oxide was used, while maintaining a temperature of about 350 ° C by circulating a heat medium on the shell side. The hydrogen-mixed raw material was changed to hydrogen sulfide (active sulfur compound) by reacting hydrogen with the inactive sulfur compound in the raw material in the outward Nimox layer, and then converted to ZnS in the return ZnO layer to remove the sulfur content from the raw material. In order to perform steam reforming, a shell tube type reaction tower with heat exchange method having a reaction tube filled with a methanation catalyst in which nickel is supported on an alumina-based carrier is used. While maintaining the temperature, the mixture of the desulfurized raw material and steam is subjected to an isothermal reaction under a specific reaction condition of one step in one tower through a catalyst to directly generate a methane-rich gas to obtain hydrogen for hydrodesulfurization. To the above reaction A part of the tube of the tower was filled with a hydrogenation catalyst and used as a reaction tube in a separate flow path, and a mixture of methanol and water was isothermally reacted under the same reaction temperature under the specific reaction conditions of one step through the catalyst and enriched. In order to generate the hydrogen-containing gas directly and maintain the optimum reaction temperature for hydrodesulfurization and steam reforming, the heat of the exothermic reaction is circulated by using an inorganic salt-based heat medium with a high heat transfer rate to circulate. Absorb,
A method for producing a high calorific value city gas, characterized in that the heat of the endothermic reaction is supplied and the heat is circulated in two heating medium circulation systems which can be adjusted to an arbitrary temperature.
【請求項2】 素原料ガスの精製で脱炭酸・脱水をする
のに、連続流PSA方式を用いることを特徴とする請求
項1記載の高熱量都市ガスの製造方法。
2. The method for producing high calorific gas according to claim 1, wherein a continuous flow PSA method is used for decarbonation / dehydration in refining the raw material gas.
JP3142903A 1991-06-14 1991-06-14 High calorific city gas production method Expired - Lifetime JPH0686598B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3142903A JPH0686598B2 (en) 1991-06-14 1991-06-14 High calorific city gas production method
TW081103098A TW197467B (en) 1991-06-14 1992-04-21
KR1019920009888A KR930000658A (en) 1991-06-14 1992-06-08 Manufacturing method of high calorific city gas
AT92109709T ATE127146T1 (en) 1991-06-14 1992-06-10 METHOD FOR PRODUCING HIGH-CALORIE CITY GAS.
DE69204361T DE69204361T2 (en) 1991-06-14 1992-06-10 Process for the production of high-calorie city gas.
EP92109709A EP0518269B1 (en) 1991-06-14 1992-06-10 A process for making high calorie city gas
CN92104519A CN1068357A (en) 1991-06-14 1992-06-11 Process of preparation for civic combusti ble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3142903A JPH0686598B2 (en) 1991-06-14 1991-06-14 High calorific city gas production method

Publications (2)

Publication Number Publication Date
JPH04366200A JPH04366200A (en) 1992-12-18
JPH0686598B2 true JPH0686598B2 (en) 1994-11-02

Family

ID=15326291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3142903A Expired - Lifetime JPH0686598B2 (en) 1991-06-14 1991-06-14 High calorific city gas production method

Country Status (7)

Country Link
EP (1) EP0518269B1 (en)
JP (1) JPH0686598B2 (en)
KR (1) KR930000658A (en)
CN (1) CN1068357A (en)
AT (1) ATE127146T1 (en)
DE (1) DE69204361T2 (en)
TW (1) TW197467B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6799996A (en) * 1996-05-29 1997-12-04 Sunkyong Industries Co., Ltd. Gaseous compositions containing a bittering agent
FR2788839B1 (en) 1999-01-22 2001-04-20 Saint Gobain Vitrage METHOD AND DEVICE FOR REGULATING A GAS FUEL CURRENT
JP5384649B2 (en) * 2008-09-19 2014-01-08 グレイトポイント・エナジー・インコーポレイテッド Method for gasification of carbonaceous feedstock
CN102583593B (en) * 2012-02-21 2015-12-16 北京纬纶华业环保科技股份有限公司 A kind of method and apparatus processing high concentrated organic wastewater production methane gas
CN106560505A (en) * 2015-09-25 2017-04-12 新地能源工程技术有限公司 Process and apparatus for removing water from synthetic natural gas by using low temperature methanol solution
JP6707049B2 (en) 2017-03-23 2020-06-10 大阪瓦斯株式会社 Method of operating fuel gas production system
CN114110736B (en) * 2021-11-25 2023-02-28 广西电网有限责任公司电力科学研究院 Non-contact heat exchange steam supply method for extracting steam at different steam temperatures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1544245A (en) * 1976-05-21 1979-04-19 British Gas Corp Production of substitute natural gas
NL7908283A (en) * 1979-11-13 1981-06-01 Veg Gasinstituut Nv PROCESS FOR THE PRODUCTION OF SYNTHETIC NATURAL GAS FROM HYDROCARBONS.
GB2154600A (en) * 1984-02-23 1985-09-11 British Gas Corp Producing and purifying methane

Also Published As

Publication number Publication date
TW197467B (en) 1993-01-01
KR930000658A (en) 1993-01-15
DE69204361D1 (en) 1995-10-05
JPH04366200A (en) 1992-12-18
CN1068357A (en) 1993-01-27
DE69204361T2 (en) 1996-03-21
EP0518269A2 (en) 1992-12-16
EP0518269A3 (en) 1993-05-12
ATE127146T1 (en) 1995-09-15
EP0518269B1 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
CA2282142C (en) Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products
JP5191888B2 (en) Syngas production method and conversion method
US3828474A (en) Process for producing high strength reducing gas
AU2011234159B2 (en) Hydrogen/syngas generator
KR101120919B1 (en) Hydrocarbon synthesis process using pressure swing reforming
US5512599A (en) Process for the production of methanol
JP4422029B2 (en) Production of hydrocarbons
EA008048B1 (en) Production of hydrocarbons by stream reforming and fischer-tropsch reaction
JP2001507017A (en) Methanol production method and plant
JP2004536006A (en) Single chamber compact fuel processor
EA011521B1 (en) Method for thermo-neutral reforming of petroleum-based liquid hydrocarbons
NO160655B (en) PROCEDURE FOR THE MANUFACTURE OF AMMONIAK.
CN103429527A (en) Synthetic gas and nanocarbon production method and production system
CN104937078A (en) Hybrid plant for liquid fuel production and method for operating it where a gasification unit in the hybrid plant is operating at less than its design capacity or is not operational
JPH0686598B2 (en) High calorific city gas production method
JP4601742B2 (en) Method for producing city gas
CN102746870A (en) FT synthesis technology
CN101432393B (en) Method for start-up of liquid fuel synthesis system, and liquid fuel synthesis system
EP0295715B1 (en) Process for forming city gas with high heat value from methanol as a crude material
JPS58190821A (en) Ammonia production
JP2007131500A (en) Hydrogen production apparatus
JPH09176663A (en) Production of sng
JPS5939837A (en) Preparation of aliphatic monohydric alcohol
JPH0455496A (en) Production of substitute for natural gas
JPH0297401A (en) Liquid phase carbon monoxide conversion method