JPS63316510A - Boosting circuit - Google Patents
Boosting circuitInfo
- Publication number
- JPS63316510A JPS63316510A JP62152562A JP15256287A JPS63316510A JP S63316510 A JPS63316510 A JP S63316510A JP 62152562 A JP62152562 A JP 62152562A JP 15256287 A JP15256287 A JP 15256287A JP S63316510 A JPS63316510 A JP S63316510A
- Authority
- JP
- Japan
- Prior art keywords
- fet
- conductivity type
- voltage
- channel
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 18
- 230000005669 field effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 9
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Landscapes
- Manipulation Of Pulses (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は昇圧回路に関し、特にIG−FETを利用し、
与えられる電源電圧よりも高い電圧出力を効率的に得る
ことを図った昇圧回路に関する。[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a booster circuit, in particular, a booster circuit that uses an IG-FET,
The present invention relates to a booster circuit that aims to efficiently obtain a voltage output higher than a given power supply voltage.
従来、この種のIG−FETでiviされた昇圧回路の
1つの第3図に示す昇圧回路がある。この種の昇圧回路
は、クロック入力端子6.7から入力するクロックφ、
「で駆動し昇圧回路が動作する2この昇圧回路の■G−
FET TDo〜TDnはダイオード接続されている為
、逆流することはなくクロック半サイクルごとに電荷が
吹成と後段に伝達されていき、出力端子8に付加された
出力電圧安定化用コンデンサCLが充電され、第2の電
源端子5から入力した電圧V1が最終的には(1)弐V
o:出力端子8の出力電圧
Vl :第2の電源端子の入力電圧
VT:バックゲート効果を含んだTDo〜TDnのしき
い値電圧
N :IG−FETとコンデンサで構成された回路の
段数
■l:クロツクφ、Tの出力振幅電圧
■o :出力端子8から流れる負荷電流f :クロック
周波数
〔発明が解決しようとする問題点〕
上述した従来の昇圧回路では、(1)式のカッコ内にバ
ックゲート効果を含んだTDo〜TDnのしきい値電圧
7丁の項があり、このVTは製造条件に依存し、出力電
圧はわずかなVTの変動でもN倍されて大きく変動する
という欠点がある。さらにこのVTの項がある為にクロ
ック入力の出力振幅電圧Vβの値を小さくできないとい
う欠点がある。Conventionally, there is a booster circuit shown in FIG. 3, which is one of the booster circuits that are ivized using this type of IG-FET. This type of booster circuit has a clock φ input from the clock input terminal 6.7,
2 The booster circuit operates by driving with
Since FETs TDo to TDn are diode-connected, there is no reverse flow, and the charge is blown and transmitted to the subsequent stage every half cycle of the clock, and the output voltage stabilizing capacitor CL attached to the output terminal 8 is charged. The voltage V1 input from the second power supply terminal 5 is finally (1)2V
o: Output voltage Vl of output terminal 8: Input voltage of second power supply terminal VT: Threshold voltage of TDo to TDn including back gate effect N: Number of stages of the circuit composed of IG-FET and capacitor ■l : Output amplitude voltage of clock φ, T ■o : Load current f flowing from output terminal 8 : Clock frequency [Problem to be solved by the invention] In the above-mentioned conventional booster circuit, the equation (1) has a back value in parentheses. There are seven threshold voltage terms, TDo to TDn, including gate effects, and this VT depends on manufacturing conditions, and even a slight variation in VT causes the output voltage to vary greatly by a factor of N, which is a drawback. Furthermore, because of this VT term, there is a drawback that the value of the output amplitude voltage Vβ of the clock input cannot be reduced.
また、(1)式のVlはバックゲート効果を含んでおり
、Voが(2)式の条件になると出力電圧V。はそれ以
上昇圧されないことを示している。Further, Vl in equation (1) includes a back gate effect, and when Vo meets the condition of equation (2), the output voltage V. indicates that the voltage will not be boosted any further.
■
VT>Vφ−「ト ・・・・・・(2)し
たがって、従来の昇圧回路では入力する電源電圧が低く
なると昇圧可能な電圧が著しく低くなるという欠点があ
る。(2) Therefore, the conventional booster circuit has the disadvantage that when the input power supply voltage becomes low, the voltage that can be boosted becomes significantly lower.
本発明の目的は上述した欠点を除去し、製造条件の影響
やバックゲート効果の影響を排除して低電圧電源からの
効果的昇圧が可能な昇圧回路を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a booster circuit that can effectively boost voltage from a low voltage power supply by eliminating the influence of manufacturing conditions and the back gate effect.
本発明の昇圧回路は、IG−FETで構成される集積回
路の第1の導電型の第1のIG−FETのドレインと第
2の導電型の第2のIG、FETのドレインとコンデン
サの一方の端子とを接続し前記第2の導電型の第2のI
G−FETのソースと第1の電源のグランドとを接続し
、前記第2の導電型の第2のIG−FETとしきい値が
異なる第2の導電型の第3のIG−FETのソースと第
2の入力電源とを接続し、前記第1の導電型の第1のI
G−FETのゲートと前記第2の導電型の第2のIG−
FETのゲートと前記第2の導電型の第3のIG−FE
Tのゲートとクロック入力端子とを接続したうえ、前記
コンデンサの他方端子と前記第2の導電型の第3のIG
−FETのドレインとを接続してこれを出力としかつ前
記第1の導電型の第1のIG−FETのソースを入力と
する昇圧回路ブロックをN(N=2.3・・・・・・)
段直列に接続して構成される。The booster circuit of the present invention includes a drain of a first IG-FET of a first conductivity type, a second IG of a second conductivity type, and one of the drain of the FET and a capacitor of an integrated circuit configured of IG-FETs. and the second I of the second conductivity type.
The source of the G-FET is connected to the ground of the first power supply, and the source of a third IG-FET of a second conductivity type having a different threshold value from that of the second IG-FET of the second conductivity type. a second input power source, and a first I of the first conductivity type.
the gate of the G-FET and the second IG- of the second conductivity type.
the gate of the FET and the third IG-FE of the second conductivity type
The gate of T and the clock input terminal are connected, and the other terminal of the capacitor and the third IG of the second conductivity type are connected.
-N (N=2.3... )
Consists of stages connected in series.
次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図は本発明の第1の実施例の回路図である。FIG. 1 is a circuit diagram of a first embodiment of the present invention.
N段の昇圧回路ブロック10−1〜10−Nから成り、
昇圧回路ブロック10−1を例として説明すると、Pチ
ャンネルのエンハンスメント形IG・FETのTAlの
ドレインとNチャンネルのエンハンスメント形l0−F
ETのTBlのドレインと昇圧用コンデンサとを接続し
、Nチャンネルのエンハンスメント形IG、FETのT
Blのソースと第1の電源端子3とを接続し、Nチャン
ネルのデプレッション形IG−FETのT。1のソース
と第2の電源端子2とを接続し、Pチャンネルのエンハ
ンスメント形IG−FETのゲートとNチャンネルのエ
ンハンスメント形IG−FETのTBlのゲートとNチ
ャンネルのデプレッション形IG・FETのTc1のゲ
ートとクロック入力端子1とを接続し、昇圧用コンデン
サC1の他の端子とNチャンネルのデプレッション形I
G、FETのTc1のドレインとを接続してこれを出力
とし、かつTAlのソースを入力したものを1つの回路
ブロックとし、この回路ブロックをN段直列に接続し、
1段目の昇圧回路ブロック10−1の入力11と第2の
電源端子2とを接続し、以下N段の昇圧ブロックを吹成
に直列に接続したあとN段目の昇圧6一
回路ブロック10−Nの出力OnとダイオードD1のア
ノードとを接続し、ダイオードD1のカソードと出力電
圧安定化用コンデンサCLと出力端子4とを接続し、ク
ロック入力端子1にはクロック入力、第2の電源端子2
には入力電源を、さらに第1の電源端子3はグランドに
接続した回路で構成される。Consisting of N stage booster circuit blocks 10-1 to 10-N,
Taking the booster circuit block 10-1 as an example, the drain of P-channel enhancement type IG FET TAL and the N-channel enhancement type l0-F
Connect the drain of TBl of ET and the boost capacitor, and connect the N-channel enhancement type IG and T of FET.
The source of Bl and the first power supply terminal 3 are connected to T of an N-channel depression type IG-FET. 1 and the second power supply terminal 2, and connect the gate of the P-channel enhancement type IG-FET, the gate of TB1 of the N-channel enhancement type IG-FET, and the Tc1 of the N-channel depletion type IG-FET. The gate and clock input terminal 1 are connected, and the other terminal of the boost capacitor C1 and the N-channel depletion type I
G, the drain of FET Tc1 is connected to output this, and the source of TAL is inputted as one circuit block, and this circuit block is connected in series in N stages,
The input 11 of the first stage booster circuit block 10-1 and the second power supply terminal 2 are connected, and after the N stage booster blocks are connected in series to the blower, the Nth stage booster 6-circuit block 10 is connected. -N output On is connected to the anode of the diode D1, the cathode of the diode D1 is connected to the output voltage stabilizing capacitor CL, and the output terminal 4 is connected to the clock input terminal 1, and the second power supply terminal is connected to the clock input terminal 1. 2
The input power supply is connected to the input power supply terminal 3, and the first power supply terminal 3 is connected to the ground.
本実施例の昇圧回路の場合、クロック人力CKのLレベ
ルが第1の電源電位(OV)、Hレベルが第2の電源電
位(Vl )で駆動されているとすると、タロツク人力
CKがHレベルの時、Nチャンネルのエンハンスメント
形IG−FETのTB1〜TBn、及びNチャンネルの
デプレッション形■G・FETのT。1〜Tonがオン
、Pチャンネルのエンハンスメント形IG−FETのT
A1〜TAflがオフとなり、昇圧用コンデンサC1〜
Cnを充電する。In the case of the booster circuit of this embodiment, assuming that the L level of the clock manual power CK is driven by the first power supply potential (OV) and the H level is driven by the second power supply potential (Vl), the clock manual power CK is driven by the H level. When , TB1 to TBn of the N-channel enhancement type IG-FET and T of the N-channel depression type ■G-FET. 1~Ton is on, T of P channel enhancement type IG-FET
A1~TAfl is turned off, and the boost capacitor C1~
Charge Cn.
次にクロック入力CKがLレベルになると、Nチャンネ
ルのエンハンスメント形IG−FETのTBI〜TBn
及びNチャンネルのデプレッション形■G・FETの’
pc、−’rcnがオフ、Pチャンネルのエンハンスメ
ント形IG−FETのTA1〜TAllがオンとなり、
充電された昇圧用コンデンサC1〜Cnが直列に接続さ
れた状態となる。Next, when the clock input CK goes to L level, the N-channel enhancement type IG-FETs TBI to TBn
and N-channel depression type G FET'
pc, -'rcn are off, P-channel enhancement type IG-FETs TA1 to TAll are on,
The charged boost capacitors C1 to Cn are connected in series.
したがって、出力端子4に出力される電圧は次Vo:出
力端子4の出力電圧
■、:第2の電源端子2の入力電圧
N :昇圧回路ブロックの段数
■。:昇圧用コンデンサC,〜Cnを充電した時のコン
デンサの両端の電
位差
■o:出力端子8から流れる負荷電流
a :クロックのデユーティ−比などで決まる係数
f :クロック周波数
C:昇圧用コンデンサC1〜Cnの容
量値
■D:ダイオードの順方向電圧
上述した(3)式から明らかな如く、lo−FETのし
きい値VTの項を含まないため製造条件の影響やバック
ゲート効果による影響を受けず低電圧電源からの昇圧も
可能となる。Therefore, the voltage output to the output terminal 4 is as follows: Vo: the output voltage of the output terminal 4 (■): input voltage of the second power supply terminal 2 N: the number of stages of the booster circuit block (■). : Potential difference across the capacitors when charging the boost capacitors C, ~Cn o: Load current a flowing from the output terminal 8 : Coefficient f determined by clock duty ratio, etc. : Clock frequency C: Boost capacitor C1 ~ Capacitance value of Cn ■D: Forward voltage of diode As is clear from equation (3) above, it does not include the term of the lo-FET threshold VT, so it is not affected by manufacturing conditions or the back gate effect. It also becomes possible to boost the voltage from a low-voltage power supply.
第2図は第1図の実施例の出力波形の電圧/時間特性図
であり、第4図は第3図の従来の昇圧回路の出力波形の
電圧/時間特性図である。第4図の場合に比し、第3図
の特性では昇圧回路ブロックの段数に対応して出力電圧
が逐次増大していき、これに対応する出力が得られるの
に比し、第4図の場合は昇圧可能な電圧が制限される状
況を示している。なお、第4図の場合は出力電圧の変動
の可能性が高いことも前述したとおりである。2 is a voltage/time characteristic diagram of the output waveform of the embodiment of FIG. 1, and FIG. 4 is a voltage/time characteristic diagram of the output waveform of the conventional booster circuit of FIG. 3. Compared to the case shown in Fig. 4, in the characteristic shown in Fig. 3, the output voltage increases successively in accordance with the number of stages of the booster circuit block, and a corresponding output is obtained. This indicates a situation where the voltage that can be boosted is limited. In addition, as mentioned above, in the case of FIG. 4, there is a high possibility that the output voltage will fluctuate.
第5図は本発明の第2の実施例を示す回路図であり、第
1図の実施例の各IG−FETのPチャンネルとNチャ
ンネルを入れ替えた状態として構成され、従ってこれら
IG−FETの動作のオン。FIG. 5 is a circuit diagram showing a second embodiment of the present invention, in which the P channel and N channel of each IG-FET in the embodiment of FIG. Operation on.
オフ状態が第1図の場合と逆になるほかは、基本−9= 的にはほぼ同一の機能を提供するものである。Basically -9 = except that the off state is the opposite of that in Figure 1. In general, they provide almost the same functionality.
以上説明したように本発明によれば、IG−FETのし
きい値による影響を排除した昇圧回路構成とすることに
より、IG−FETの製造条件の影響やバックゲート効
果による影響を受けず、低電圧電源からの昇圧が可能と
なる昇圧回路が実現できるという効果がある。As explained above, according to the present invention, by creating a booster circuit configuration that eliminates the influence of the threshold value of the IG-FET, it is not influenced by the manufacturing conditions of the IG-FET or the back gate effect, and has a low This has the effect of realizing a booster circuit that can boost the voltage from a voltage power source.
第1図は本発明の第1の実施例の回路図、第2図は第1
図の実施例の出力波形の電圧/時間特性図、第3図は従
来の昇圧回路の例を示す回路図、第4図は第3図に示す
昇圧回路の出力波形の電圧/時間特性図、第5図は本発
明の第2の実施例を示す回路図である。
1・・・クロック入力端子、2.5・・・第2の電源端
子、3・・・第1の電源端子、4.8・・・出力端子、
6゜7・・・クロック入力端子、10−1〜10−N、
20−1〜20−N・・・昇圧回路ブロック、i、〜i
n・・・昇圧回路ブロック入力、0〜On・・・昇圧回
路ブロック出力、TAI〜TAn、 TE、〜’rEn
−・−Pチャンネルのエンハンスメント形IG−FET
、TBl〜TB!、、 T、、〜TFn・・・Nチャン
ネルのエンハンスメン)、形I G−F、E T 、T
c+〜Tcfl−Nチャンネルのデプレッション形I
G−F ET、 Too〜Tgn−I G−F E T
、TG、〜TGn”’ Pチャンネルのデプレッショ
ン形IG−FET、cl〜Cn・・・昇圧用コンデンサ
、CL・・・出力電圧安定化用コンデンサ、D+・・・
ダイオード。
−11デ\FIG. 1 is a circuit diagram of a first embodiment of the present invention, and FIG. 2 is a circuit diagram of a first embodiment of the present invention.
3 is a circuit diagram showing an example of a conventional booster circuit; FIG. 4 is a voltage/time characteristic diagram of the output waveform of the booster circuit shown in FIG. 3; FIG. 5 is a circuit diagram showing a second embodiment of the present invention. 1... Clock input terminal, 2.5... Second power supply terminal, 3... First power supply terminal, 4.8... Output terminal,
6゜7...Clock input terminal, 10-1 to 10-N,
20-1 to 20-N...boost circuit block, i, ~i
n... Boost circuit block input, 0~On... Boost circuit block output, TAI~TAn, TE, ~'rEn
-・-P channel enhancement type IG-FET
, TBL~TB! ,, T, , ~TFn... N channel enhancement member), form I G-F, E T , T
c+~Tcfl-N channel depression form I
G-FET, Too~Tgn-I G-FET
, TG, ~TGn"' P-channel depression type IG-FET, cl~Cn...boosting capacitor, CL...output voltage stabilization capacitor, D+...
diode. -11 de\
Claims (1)
dGateFieldEffectTransisto
r以下IG・FETと省略する)で構成される集積回路
の第1の導電型の第1のIG・FETのドレインと第2
の導電型の第2のIG・FETのドレインとコンデンサ
の一方の端子とを接続し、前記第2の導電型の第2のI
G・FETのソースと第1の電源のグランドとを接続し
、前記第2の導電型の第2のIG・FETとしきい値が
異なる第2の導電型の第3のIG・FETのソースと第
2の入力電源とを接続し、前記第1の導電型の第1のI
G・FETのゲートと前記第2の導電型の第2のIG・
FETのゲートと前記第2の導電型の第3のIG・FE
Tのゲートとクロック入力端子とを接続したうえ前記コ
ンデンサの他方の端子と前記第2の導電型の第3のIG
・FETのドレインとを接続してこれを出力としかつ前
記第1の導電型の第1のIG・FETのソースを入力と
する昇圧回路ブロックをN(N=2、3……)段直列に
接続して成ることを特徴とする昇圧回路。Insulated gate field effect transistor
dGateFieldEffectTransisto
The drain of the first IG/FET of the first conductivity type and the second
The drain of the second IG-FET of the conductivity type is connected to one terminal of the capacitor, and the second IG-FET of the second conductivity type is connected.
The source of the G-FET is connected to the ground of the first power supply, and the source of a third IG-FET of a second conductivity type has a different threshold value from that of the second IG-FET of the second conductivity type. a second input power source, and a first I of the first conductivity type.
The gate of the G-FET and the second IG-FET of the second conductivity type.
The gate of the FET and the third IG/FE of the second conductivity type
The gate of T and the clock input terminal are connected, and the other terminal of the capacitor and the third IG of the second conductivity type are connected.
・N (N=2, 3...) stages of booster circuit blocks connected in series to the drain of the FET and using this as an output and the source of the first IG FET of the first conductivity type as an input. A booster circuit characterized by being connected to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62152562A JPS63316510A (en) | 1987-06-18 | 1987-06-18 | Boosting circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62152562A JPS63316510A (en) | 1987-06-18 | 1987-06-18 | Boosting circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63316510A true JPS63316510A (en) | 1988-12-23 |
Family
ID=15543192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62152562A Pending JPS63316510A (en) | 1987-06-18 | 1987-06-18 | Boosting circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63316510A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5892267A (en) * | 1996-05-12 | 1999-04-06 | Oki Electric Industry Co., Ltd. | Multi-stage voltage-boosting circuit with boosted back-gate bias |
US6838928B2 (en) | 2002-07-31 | 2005-01-04 | Renesas Technology Corp. | Boosting circuit configured with plurality of boosting circuit units in series |
-
1987
- 1987-06-18 JP JP62152562A patent/JPS63316510A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5892267A (en) * | 1996-05-12 | 1999-04-06 | Oki Electric Industry Co., Ltd. | Multi-stage voltage-boosting circuit with boosted back-gate bias |
US6838928B2 (en) | 2002-07-31 | 2005-01-04 | Renesas Technology Corp. | Boosting circuit configured with plurality of boosting circuit units in series |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3824447A (en) | Booster circuit | |
US4321661A (en) | Apparatus for charging a capacitor | |
KR910007405B1 (en) | Semiconductor integrated circuit | |
US5339236A (en) | Charge pump circuit for intermediate voltage between power supply voltage and its double voltage | |
US4029973A (en) | Voltage booster circuit using level shifter composed of two complementary MIS circuits | |
KR900008187B1 (en) | Voltage multiplier circuit | |
JPH0158896B2 (en) | ||
US4550295A (en) | Switched capacitor integrator | |
US5465069A (en) | Interface circuit and voltage-raising circuit including such a circuit | |
JPS6144414B2 (en) | ||
JPS63316510A (en) | Boosting circuit | |
US5059816A (en) | High speed booster circuit | |
US4275437A (en) | Semiconductor circuit for voltage conversion | |
WO1984004421A1 (en) | Circuit for effecting improved slew rate of operational amplifiers | |
JPS59169B2 (en) | flip flop circuit | |
JPS584280Y2 (en) | logic circuit | |
JPH0681025B2 (en) | Gate drive circuit | |
US7095268B2 (en) | Single-stage and modular multi-stage clock-booster | |
JPS5478069A (en) | Dual complementary mos transistor circuit | |
JPH0531381B2 (en) | ||
KR930006747Y1 (en) | Voltage increasing circuit for mos | |
JP2963913B2 (en) | DC / DC conversion semiconductor device | |
JP3396555B2 (en) | Semiconductor pump circuit | |
CN117639785A (en) | Grid voltage bootstrapping sampling hold circuit | |
JPH02144708A (en) | Constant power circuit |