JPS63316493A - Josephson laser - Google Patents

Josephson laser

Info

Publication number
JPS63316493A
JPS63316493A JP62151194A JP15119487A JPS63316493A JP S63316493 A JPS63316493 A JP S63316493A JP 62151194 A JP62151194 A JP 62151194A JP 15119487 A JP15119487 A JP 15119487A JP S63316493 A JPS63316493 A JP S63316493A
Authority
JP
Japan
Prior art keywords
voltage
laminating
superconducting
laminated
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62151194A
Other languages
Japanese (ja)
Inventor
Matahiro Komuro
又洋 小室
Yuzo Kozono
小園 裕三
Yoshiaki Yazawa
義昭 矢澤
Masanobu Hanazono
雅信 華園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62151194A priority Critical patent/JPS63316493A/en
Publication of JPS63316493A publication Critical patent/JPS63316493A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1683Solid materials using superconductivity, e.g. provided with Josephson junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To apply laminated superconducting materials to optical communication and optical computers by laminating superconducting material and insulating material, impressing a voltage on the superconducting material, and discharging photons from laminating interfaces. CONSTITUTION:A voltage is impressed from a voltage source 3 on materials where an oxidizing insulation layer 1 and a superconducting layer 2 are laminated alternately. The voltage V impressed between laminated materials discharges photons having oscillation frequencies omega. As to the frequency of a high frequency current passing through a laminating interface, it becomes the high frequency current of a micro wave band in cases where V is muV order and further, infrared, visible radiation, ultraviolet, X-and gamma-rays are discharged from laminating interfaces in cases where V is increased. In this way, lights or X-and gamma-rays having optional frequencies can be generated by laminating superconductors and insulators and by impressing a voltage on the laminated materials and then, their outputs are so high that such laminated materials can be used to high output, modulated laser and further, they are applicable for optical switches, magnetic switches as well as optical communication systems.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超伝導材料と絶縁材料を積層し、超伝導材料
に電圧を印加し、積層界面からフォトンを放出すること
を特徴とするジョセフソンレーザに関し、光通信、光コ
ンピュータに好適である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is based on a method of laminating a superconducting material and an insulating material, applying a voltage to the superconducting material, and emitting photons from the laminated interface. Son lasers are suitable for optical communications and optical computers.

〔従来の技術〕[Conventional technology]

従来、化合物レーザ用材料としてG a A s gr
nP等の化合物半導体が用いられ、光出力は注入電流と
共に増加するが50mWを越すことは、成長速度や格子
不整合度を正確にコントロールする必要があり、しきい
値電流が10mA程度であることが応用物理筒56巻筒
3号357−360において論じられている。
Conventionally, GaAs gr was used as a material for compound lasers.
A compound semiconductor such as nP is used, and the optical output increases with the injection current, but exceeding 50 mW requires accurate control of the growth rate and degree of lattice mismatch, and the threshold current is about 10 mA. is discussed in Applied Physics Tutorial 56 Volume 3 No. 357-360.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、超伝導材料について配慮がされておら
ず、格子不整合制御をする必要があり、しきい値電流が
高く、光出力が50mWを越えることが困難であった。
The above-mentioned conventional technology does not take superconducting materials into consideration, requires lattice mismatch control, has a high threshold current, and has difficulty in achieving an optical output exceeding 50 mW.

本発明の目的はしきい値電流の低いジョセフソンレーザ
を提供することにある。
An object of the present invention is to provide a Josephson laser with a low threshold current.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、超伝導材料と絶縁材料をvL層し、超伝導材
料に電圧を印加することにより、積層界面からフォトン
を放出することを特徴とするジョセフソンレーザにある
The present invention resides in a Josephson laser characterized in that a VL layer is formed of a superconducting material and an insulating material, and photons are emitted from the laminated interface by applying a voltage to the superconducting material.

上記目的は、第1図に示す酸化絶縁層1と超伝導WJ2
を交互に積層した材料に電圧源3から超伝導層のTc以
下で電圧を印加することによって達成される。
The above purpose is to combine the oxide insulating layer 1 and the superconducting WJ2 shown in FIG.
This is achieved by applying a voltage from the voltage source 3 to the material in which the superconducting layers are alternately laminated at a voltage lower than the Tc of the superconducting layer.

超伝導状態におけるクーパ一対濃度をnとし、クーパペ
アの確率振幅ψは、 ’J’ = fiV(!XP(i D )      
     ・= (1)となる。クーパペアが界面を通
過するときに、ポテンシャルエネルギー−2eVとなる
ので、積層した超伝導層でのポテンシャルエネルギーは
eV、−e V 、 e V 、 −e V・・・・・
・となる。これらのクーパペアの確率振幅ψl、ψ2.
・・・・・・に対する方程式は。
Let n be the Cooper pair concentration in the superconducting state, and the probability amplitude ψ of the Cooper pair is 'J' = fiV(!XP(i D )
・= (1). When the Cooper pair passes through the interface, the potential energy becomes -2 eV, so the potential energy in the stacked superconducting layers is eV, -e V , e V , -e V...
・It becomes. The probability amplitudes of these Cooper pairs ψl, ψ2.
The equation for...

t となる。超伝導層から次の超伝導層への電流は、(Jo
 :/1 e n T) となり、電流は振動数 eV ・・・(5) ζ で振動する。(5)式は、クーパペアが絶縁層を通過す
るどきζω=2eVのフォトンを放出することになる。
It becomes t. The current from one superconducting layer to the next superconducting layer is (Jo
:/1 e n T), and the current oscillates at the frequency eV (5) ζ. Equation (5) indicates that when the Cooper pair passes through the insulating layer, it emits photons of ζω=2 eV.

すなわちVを変化させて、任意の振動数ωのフォトンを
放出させることにより、nが高ければ、レーザとして応
用できる。
That is, by changing V and emitting photons of an arbitrary frequency ω, if n is high, it can be applied as a laser.

〔作用〕[Effect]

積層材料間に印加した電圧Vは、(5)で示したように
振動数ωのフォトンを放出する。(5)式より、界面を
通過する高周波電流の周波数は第2図に示す特性となり
Vがμ■オーダの場合には、マイクロ波帯の高周波電流
となる。さらに■を増加させると、赤外線、可視光線、
紫外線、X線、γ線の積層界面から放出される。
The voltage V applied between the laminated materials emits photons of frequency ω, as shown in (5). From equation (5), the frequency of the high-frequency current passing through the interface has the characteristics shown in FIG. 2, and when V is on the order of μ■, it becomes a high-frequency current in the microwave band. Furthermore, when ■ increases, infrared rays, visible light,
Ultraviolet rays, X-rays, and γ-rays are emitted from the laminated interface.

〔実施例〕〔Example〕

以下1本発明の詳細な説明する。 The present invention will be explained in detail below.

酸化絶縁層と超伝導層の積層材料は、MBE法。The laminated material of the oxide insulating layer and superconducting layer is made using the MBE method.

スパッタリング法で作製した。作製条件は、第1表に示
す。
Manufactured by sputtering method. The manufacturing conditions are shown in Table 1.

第  1  表 用いた蒸着源は、BazYCuC)+及びKzMgFa
型酸化物である。超伝導材料であるBazYCuOaは
層状ペロブスカイト横進であるため、絶縁層も格子定数
と構造がほぼ同じであるKzMgFi型酸化物を用いた
。r3azY CIJO4の膜厚を200人とし、絶縁
層の膜厚を変え、全膜圧を0.2μm以上としてスパッ
タ法で作成した場合に、積層界面から放出されたフォノ
ンの周波数Cf)は、第3図のようになった。dl<2
0人では、fはほぼ一定の値であるが、dl>20人と
なると、fは減少するにれは、絶縁層の膜厚が厚くなり
、超伝導体から絶縁層中をトンネルさせるのに必要な、
電圧が低いと考えられる。第3図には、第1表のMBE
条件で作製した全膜厚が0.3μmの積層膜の液体窒素
温度における周波数特性を示す。
Table 1 The vapor deposition sources used were BazYCuC)+ and KzMgFa.
type oxide. Since BazYCuOa, which is a superconducting material, is a transversely layered perovskite, a KzMgFi type oxide having almost the same lattice constant and structure was used for the insulating layer. When the film thickness of r3azY CIJO4 is 200 layers, the film thickness of the insulating layer is changed, and the total film thickness is 0.2 μm or more, the frequency Cf of the phonons emitted from the lamination interface is the third It became like the figure. dl<2
For 0 people, f is almost a constant value, but when dl > 20 people, as f decreases, the thickness of the insulating layer increases, and it becomes difficult to tunnel from the superconductor through the insulating layer. necessary,
The voltage may be low. Figure 3 shows the MBE in Table 1.
The frequency characteristics at liquid nitrogen temperature of a laminated film with a total film thickness of 0.3 μm produced under the following conditions are shown.

MBE法で作製した積層膜は、dlが50人となった場
合でもfはほとんで減少せず、超伝導と絶縁層間のトル
ンネル電流が安定に流れると考えられる。
In the laminated film produced by the MBE method, f hardly decreases even when dl becomes 50 people, and it is thought that the tunnel current between the superconducting layer and the insulating layer flows stably.

第1表のMBE条件で作製したB a 2 Cu O4
と5rzTiOaの積層膜は、d+=10人のとき、液
体窒素温度で約700mWの光出力を示した。また、レ
ーザー光出力は第4図に示すようにdlを50人まで増
加させてもほぼ一定であった。
B a 2 Cu O 4 produced under the MBE conditions shown in Table 1
A stacked film of 5rzTiOa and 5rzTiOa exhibited a light output of about 700 mW at liquid nitrogen temperature when d+=10 people. Further, the laser light output remained almost constant even when dl was increased up to 50 people, as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超伝導体と絶縁体を積層し。 According to the present invention, a superconductor and an insulator are laminated.

電圧を印加して任意の周波数をもつ光やX線、γ線を発
生させることができ、出力も高いため、高出力、変調型
レーザとして応用できる。さらに。
It can generate light, X-rays, and γ-rays with any frequency by applying a voltage, and its output is high, so it can be applied as a high-output, modulated laser. moreover.

超伝導回路内での光スィッチ、磁気スイッチ及び光通信
への応用可能性がある。
It has potential applications in optical switches, magnetic switches, and optical communications in superconducting circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のジョセフソンレーザの膜構成を示す断
面図、第2図は周波数と印加電圧との関係を示す線図、
第3図は周波数と電流との関係を示す線図、第4図は光
出力と電流との関係を示す線図である。
FIG. 1 is a cross-sectional view showing the film structure of the Josephson laser of the present invention, and FIG. 2 is a diagram showing the relationship between frequency and applied voltage.
FIG. 3 is a diagram showing the relationship between frequency and current, and FIG. 4 is a diagram showing the relationship between optical output and current.

Claims (1)

【特許請求の範囲】 1、超伝導材料と絶縁材料を積層し、超伝導材料に電圧
を印加することにより、積層界面からフォトンを放出す
ることを特徴とするジョセフソンレーザ。 2、特許請求の範囲第1項において超伝導材料に層状ペ
ロブスカイト型酸化物を用い、絶縁材料としてペロブス
カイト型酸化物を用いることを特徴とするジョセフソン
レーザ。
[Claims] 1. A Josephson laser characterized by laminating a superconducting material and an insulating material and emitting photons from the laminated interface by applying a voltage to the superconducting material. 2. A Josephson laser according to claim 1, characterized in that a layered perovskite oxide is used as the superconducting material, and a perovskite oxide is used as the insulating material.
JP62151194A 1987-06-19 1987-06-19 Josephson laser Pending JPS63316493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62151194A JPS63316493A (en) 1987-06-19 1987-06-19 Josephson laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62151194A JPS63316493A (en) 1987-06-19 1987-06-19 Josephson laser

Publications (1)

Publication Number Publication Date
JPS63316493A true JPS63316493A (en) 1988-12-23

Family

ID=15513316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62151194A Pending JPS63316493A (en) 1987-06-19 1987-06-19 Josephson laser

Country Status (1)

Country Link
JP (1) JPS63316493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413333A2 (en) 1989-08-18 1991-02-20 Hitachi, Ltd. A superconductized semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413333A2 (en) 1989-08-18 1991-02-20 Hitachi, Ltd. A superconductized semiconductor device
US5455451A (en) * 1989-08-18 1995-10-03 Hitachi, Ltd. Superconductized semiconductor device using penetrating Cooper pairs

Similar Documents

Publication Publication Date Title
Braunstein Nonlinear optical effects
US8633472B2 (en) Tunable terahertz radiation source
US5122844A (en) Quantum well structure and semiconductor device using the same
Ostermayer et al. Room‐Temperature cw Operation of a GaAs1− xPx Diode‐Pumped YAG: Nd Laser
JPS63316493A (en) Josephson laser
Afzali-Kushaa et al. Optically pumped intersubband lasers based on quantum wells
Piel Superconducting cavities
Yariv Quantum well semiconductor lasers are taking over
Doh et al. Coherent mode splitting of microwave-induced fluxons in HgI 2− intercalated Bi 2 Sr 2 CaCu 2 O 8+ δ single crystals
USRE29578E (en) Electron tunneling device
JPH0377677B2 (en)
US3588777A (en) Superconducting tunneling barriers
US3265988A (en) Superconducting metallic film maser
Flytzanis et al. Dynamics of fluxons in narrow window junctions
US3281714A (en) Injection laser using minority carrier injection by tunneling
JPS63302581A (en) Light emitting element
JP2002050931A (en) High frequency oscillator using copper oxide superconducting single crystal
JP2564543B2 (en) Superconducting device operating method
JPH02228088A (en) Quantum well laser
US5374831A (en) Quantum well phonon modulator
US5544181A (en) Liquid nitrogen temperature micro-wiggler
JP2662170B2 (en) Semiconductor optical switching device
Sakeek et al. Magnetic-field dependence of microwave properties of ramp-type Josephson junctions with PrBa2Cu3O7 barriers
Jain et al. Material Fabrication for Devices and Components of The 90S
Rabbaa et al. GaAs-based grating system for Q-switching on the basis of IMOS structure