JPS63315987A - Reactor vessel of fast breeder - Google Patents

Reactor vessel of fast breeder

Info

Publication number
JPS63315987A
JPS63315987A JP62151384A JP15138487A JPS63315987A JP S63315987 A JPS63315987 A JP S63315987A JP 62151384 A JP62151384 A JP 62151384A JP 15138487 A JP15138487 A JP 15138487A JP S63315987 A JPS63315987 A JP S63315987A
Authority
JP
Japan
Prior art keywords
reactor vessel
reactor
partition wall
gas
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62151384A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakamura
博 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62151384A priority Critical patent/JPS63315987A/en
Publication of JPS63315987A publication Critical patent/JPS63315987A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To uniformly cool a reactor vessel cylinder so as to minimize thermal stress and to improve the nondefectiveness of the structure by passing an inert gas such as gaseous argon to the inside of the reactor vessel at the time of tripping. CONSTITUTION:A cylindrical partition wall 18 is provided to the inside of the reactor vessel cylinder 1B apart at a prescribed spacing therefrom and an annular gas header 19 along the reactor vessel cylinder 1B is provided to the lower side of the partition wall. Plural pieces of gas supply pipes 20 are circumferentially mounted to the gas header 19 in order to supply the gas thereto. Plural air bubble risers may be circumferentially provided between the inside cylinder or the reactor vessel cylinder 1B and the partition wall 18 on the inner side of the wall 18. Then, many air bubbles force Na upward and, therefore, a coolant is sucked from below the hot pool and flows over the top end of the wall 18 so as to be circulated and supplied atop the hot pool. The thermal stress generated in the reactor vessel is thereby relieved and the non-defectiveness of the structure is improved.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は液体ナトリウム等の液体金属を冷却材として使
用する高速増殖炉の熱遮蔽装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a thermal shielding device for a fast breeder reactor that uses liquid metal such as liquid sodium as a coolant.

(従来の技術) 一般に高速増殖炉、例えばタンク型高速増殖炉は第8図
に示すように構成されている。第8図はタンク型高速増
殖炉の概略構成を示す縦断面図である。
(Prior Art) Generally, a fast breeder reactor, such as a tank type fast breeder reactor, is constructed as shown in FIG. FIG. 8 is a vertical cross-sectional view showing a schematic configuration of a tank-type fast breeder reactor.

図中、符号1は原子炉容器であって、この原子炉容器1
の外側には安全容器2が設けられている。
In the figure, reference numeral 1 indicates a reactor vessel, and this reactor vessel 1
A safety container 2 is provided outside.

これら原子炉容器1および安全容器2はリングガへ夕3
を介して原子炉建屋4に据付けられている。
These reactor vessel 1 and safety vessel 2 were sent to Linga in the evening.
It is installed in the reactor building 4 via.

前記原子炉容器1の上部開口IAk閉塞するようにルー
フスラブ5が設けられている。このルーフスラブ5は、
固定プラグ5A、この固定プラグ5Aに回転自在に装着
された大回転プラグ5B、この大回転プラグ5Bに回転
可能に装着された小回転プラグ5Cとから構成されてい
る。前記原子炉容器1内には炉心6および液体ナトリウ
ム等の冷却材7が収容されており、この炉心6は炉心支
持構成によって支持されている。
A roof slab 5 is provided to close the upper opening IAk of the reactor vessel 1. This roof slab 5 is
It is composed of a fixed plug 5A, a large rotation plug 5B rotatably attached to the fixed plug 5A, and a small rotation plug 5C rotatably attached to the large rotation plug 5B. A reactor core 6 and a coolant 7 such as liquid sodium are housed within the reactor vessel 1, and the reactor core 6 is supported by a core support structure.

前記炉心6の上方には前記小回転プラグ5Cを(1通し
て炉心上部機構9が設けられている。この炉心上部機構
9内には1図示しない制御棒駆1j+機構が設けられて
おり、この制御棒駆@機構により図示しない制御棒の炉
心6への挿入度を調整し炉心出力制御を行なう。また、
前記原子炉容器1内は隔壁10によって上1ぐに区画さ
れており、L方はホットプール11に、下方はコールド
プール12に形成されている。炉心6を通過して高温と
なった冷却材7は前記ホットプールIHこ流れ、中間熱
交換機13を通過して2次冷却材と熱交換され、コール
ドプール12に流出する。この冷却材7は循環ポンプ1
4によって、循環ポンプ吐出配管15を介して炉心6の
下方に移送される。なお、吐出配管15はその両地を循
環ポンプ14および炉心支持l!&構8に固着されてい
る。
Above the reactor core 6, a core upper mechanism 9 is provided through which the small rotating plug 5C (1) passes.In this core upper mechanism 9, a control rod drive 1j+ mechanism (not shown) is provided. The control rod drive mechanism adjusts the degree of insertion of control rods (not shown) into the reactor core 6 to control the core output.
The interior of the reactor vessel 1 is partitioned into an upper section by a partition wall 10, with a hot pool 11 formed on the L side and a cold pool 12 formed on the lower side. The coolant 7 that has reached a high temperature after passing through the core 6 flows through the hot pool IH, passes through the intermediate heat exchanger 13, exchanges heat with the secondary coolant, and flows out into the cold pool 12. This coolant 7 is the circulation pump 1
4, the fuel is transferred to the lower part of the reactor core 6 via the circulation pump discharge pipe 15. Note that the discharge piping 15 is connected to the circulation pump 14 and the core support l! & It is fixed to structure 8.

前記炉心支持機構8は吊り114416を介して前記ル
ーフスラブ5から吊下げられており、このルーフスラブ
5が振動しても炉心6と炉心上部機構9が共に振動し、
両者の相対的な変位を防止する。
The core support mechanism 8 is suspended from the roof slab 5 via a suspension 114416, and even if the roof slab 5 vibrates, both the core 6 and the core upper mechanism 9 vibrate.
Prevent relative displacement between the two.

図中、符号17はフローホールであって、炉心6の上面
から流出した冷却材7はこれらのフローホール17.1
7・・・からホットプール11へ流出する。
In the figure, reference numerals 17 are flow holes, and the coolant 7 flowing out from the upper surface of the core 6 flows through these flow holes 17.1.
7... flows into the hot pool 11.

原子炉がトリップしM1転停止に到る場合、制御棒が炉
心内へ挿入され、炉心部の発熱量は減少してホットプー
ル11へ出てくる冷却材温度は低下する。この時循環ポ
ンプ14の流量は定格運転流景から小流量運転に切換え
られる。
When the reactor trips and reaches M1 shutdown, the control rods are inserted into the reactor core, the amount of heat generated in the reactor core decreases, and the temperature of the coolant coming out to the hot pool 11 decreases. At this time, the flow rate of the circulation pump 14 is switched from rated operation to small flow operation.

」−記運転によって得られる原子炉トリップ後のホット
プール11内での温度分布状態を第9図しこ示す。原子
炉トリップ後ホットプール高さ位置での温度分布は■、
■、■の順に時間とともに変化をする。ホットプール下
方が低温で上方が高温であるため、自然対流による熱移
動は生じがたく温度勾配を持った境界部がそのまま」:
方へゆっくり移動することになる。
FIG. 9 shows the state of temperature distribution in the hot pool 11 after the reactor trip, obtained by the above operation. The temperature distribution at the height of the hot pool after a reactor trip is ■,
Changes over time in the order of ■ and ■. Because the lower part of the hot pool is cold and the upper part is hot, heat transfer by natural convection is difficult to occur, and the boundary with a temperature gradient remains as it is.
You will be moving slowly in that direction.

(発明が解決しようとする問題点) 第9図で示したホットプール高さ方向の温度勾配は、ホ
ットプールに接した))St子炉容圏11kll13の
711N度に影響を与え、原子炉容器+t)4 Ill
も第9図とほぼ同様な温度勾配を持つことになる。大口
径円筒形状の原子炉容器胴IBにこのような温度勾配が
ついた場合その熱応力は非常に過大なものとなり、特に
温度勾配の屈曲点付近において最大熱応力が発生して原
子炉容器胴IBの構造−Eの健全性に悪影響を及ぼすこ
とになる。
(Problem to be Solved by the Invention) The temperature gradient in the height direction of the hot pool shown in Figure 9 affects the temperature of 711 N degrees in the St sub-reactor space 11kll13 which is in contact with the hot pool, and +t)4 Ill
also has a temperature gradient almost similar to that shown in Fig. 9. If such a temperature gradient occurs in the reactor vessel body IB, which has a large diameter cylindrical shape, the thermal stress will be extremely excessive, and the maximum thermal stress will occur especially near the bending point of the temperature gradient, causing the reactor vessel body This will have a negative impact on the integrity of IB structure-E.

本発明はこれらの点に鑑みてなさ九たものであす、原子
炉容器胴の熱応力を緩和し、原子炉容器の横道上の健全
性を向上させることのできる高速増殖炉の原子炉容器を
提供することを目的とする。
The present invention has been made in view of these points, and provides a reactor vessel for a fast breeder reactor that can alleviate the thermal stress of the reactor vessel shell and improve the integrity of the reactor vessel on its sideways. The purpose is to provide.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の高速増殖炉の)I’l=子炉容器は、原子炉容
器内面と所定の間隔をもって設けられた筒状の仕切壁と
、この仕切壁の下方に設けられたガスヘッダと、このガ
スヘッダに接続するガス供給管を具備したことを特徴と
する。また、上記構成に加え、仕切壁の内側にさらに所
定の間隔をもって設けられた筒状の円筒を具備したこと
を特徴とする。
(Means for solving the problem) The I'l (child reactor vessel) of the fast breeder reactor of the present invention includes a cylindrical partition wall provided at a predetermined distance from the inner surface of the reactor vessel, and a cylindrical partition wall provided at a predetermined distance from the inner surface of the reactor vessel. It is characterized by comprising a gas header provided below and a gas supply pipe connected to the gas header. Further, in addition to the above configuration, the present invention is characterized in that a cylindrical cylinder is further provided inside the partition wall at a predetermined interval.

(作用) 本発明においては、原子炉トリップ後に生ずるホットブ
ール内冷却材の温度勾配によって発生する原子炉容器胴
の熱応力を極めて小さくすることができるようにしてい
る。
(Function) In the present invention, it is possible to extremely reduce the thermal stress in the reactor vessel shell caused by the temperature gradient of the coolant in the hot boule after a reactor trip.

すなわちj)″に子炉トリップ後ホットプール内冷却材
に生じた温度勾配は下方が低温で上方が高温となるが、
トリップ時にのみ原子炉容器の内側にアルゴンガス等の
不活性ガスを流すことにより発生した気泡は上昇する。
In other words, the temperature gradient that occurs in the coolant in the hot pool after the child furnace trips in j)'' is low at the bottom and high at the top;
Bubbles generated by flowing an inert gas such as argon gas inside the reactor vessel rise only during a trip.

この気泡の上昇力によりこの部分の冷却材は押し上げら
れ、下方からホットプールの低温冷却材が流入して原子
炉容器胴を均一に冷却をすることができるので原子炉容
器胴の温度分布は均一となる。
The rising force of these bubbles pushes up the coolant in this area, and the low-temperature coolant from the hot pool flows in from below, allowing uniform cooling of the reactor vessel shell, resulting in a uniform temperature distribution in the reactor vessel body. becomes.

このように、本発明においては、原子炉トリップ時にお
いてもDx子炉容器胴の温度分布は均一で、原子炉容器
胴の熱応力を最小限に押えることができるため、 JM
t子炉容器の構造健全性が大幅に改善される。
In this way, in the present invention, the temperature distribution of the Dx sub-reactor vessel shell is uniform even during a reactor trip, and the thermal stress of the reactor vessel shell can be kept to a minimum.
The structural integrity of the sub-reactor vessel is greatly improved.

(実施例) 以下、本発明の実施例を第1図および第1図の要部Aを
拡大して示す第2図について説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIG. 1 and FIG. 2, which shows a main part A of FIG. 1 in an enlarged manner.

なお、従来と同一部分には同一符号を付しである。Note that the same parts as in the prior art are given the same reference numerals.

本実施例においては、原子炉容器胴IBの内側に所定の
間隔をもって円筒状の仕切壁18を設け、この仕切壁の
下方に原子炉容器胴に沿ったリング状のガスヘッダ19
を設ける。このガスヘッダ19にガスを供給するためガ
ス供給管20を周方向に複数本取付けている。また第3
図は、他の実施例として−に記構成に加え、仕切壁18
の内側に、円筒状の内筒を1没けたものである。
In this embodiment, a cylindrical partition wall 18 is provided at a predetermined interval inside the reactor vessel body IB, and a ring-shaped gas header 19 is provided below the partition wall along the reactor vessel body.
will be established. In order to supply gas to this gas header 19, a plurality of gas supply pipes 20 are installed in the circumferential direction. Also the third
In addition to the structure described in -, the figure shows a partition wall 18 as another embodiment.
A cylindrical inner tube is sunk inside.

その他の1M成は従来と同様に形成されている。The other 1M components are formed in the same manner as before.

次に1本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

原子炉トリップ後に生じろホットブールll内での冷却
材の温度分布は、原子炉容器胴IBの温度分布に影響を
与えその熱応力を著しく大きくする。
The temperature distribution of the coolant in the hot boule 1, which occurs after a reactor trip, affects the temperature distribution of the reactor vessel body IB and significantly increases its thermal stress.

本実施例は、D;(子炉容器胴1Bの温度分布を、ホッ
トブールll内の冷却材の温度分布に影響されない様に
したものである。
In this embodiment, the temperature distribution of the child reactor vessel body 1B is not affected by the temperature distribution of the coolant in the hot boule 11.

原子炉トリップ後にガス供給管20からアルゴンガス等
の不活性ガスを送り、ガスへラダ19の気泡発生孔19
aより気泡を発生させる。この多数の気泡はその浮力に
より原子炉容器1f’A 111と、仕切壁18の間を
上昇する。この際この部分のナトリウムは気泡により上
方に押し上げられる。すなわち冷却材はホットブールの
下方から吸込まれ、仕切壁18の上端からオーバフロー
してホットプール上面へ循環供給されることになる。
After a reactor trip, inert gas such as argon gas is sent from the gas supply pipe 20 to the bubble generation hole 19 of the ladder 19.
Generate bubbles from a. These many bubbles rise between the reactor vessel 1f'A 111 and the partition wall 18 due to their buoyancy. At this time, the sodium in this area is pushed upward by air bubbles. That is, the coolant is sucked in from below the hot pool, overflows from the upper end of the partition wall 18, and is circulated and supplied to the upper surface of the hot pool.

従ってr):を子炉1−リップ後ホットプール部が第5
〕図の■に示す温度分布になった時アルゴンガスを供給
することにより仕切壁18の下方よりホットブール下部
の冷却材を吸込むことになり、原子炉容器l1lI41
Bは高さ方向にわたり常に温度勾配のない均一な温度に
冷却されることになるのでホットブール部は不連続な温
度勾配となることがない。
Therefore, r): After the child furnace 1-rip, the hot pool part is the 5th
] When the temperature distribution reaches the temperature distribution shown in ■ in the figure, by supplying argon gas, the coolant at the bottom of the hot boule is sucked from below the partition wall 18, and the reactor vessel l1lI41
Since B is always cooled to a uniform temperature with no temperature gradient over the height direction, there is no discontinuous temperature gradient in the hot boule portion.

さらに第3図に示す如く、内筒を設けた場合は。Furthermore, as shown in FIG. 3, when an inner cylinder is provided.

ガス供給開始時に、ホットブール下部の低温冷却材を吸
込み原子炉容器11r41[1に流れ込む際の原子炉容
器胴IBの鮎度変化をなるべく緩和するために有効であ
り、ホットプールの冷却材を直接流さず、内筒を介して
ホットプールの冷却材と熱交換をする構造としている。
At the start of gas supply, it is effective to reduce as much as possible the temperature change in the reactor vessel body IB when the low-temperature coolant at the bottom of the hot pool is sucked in and flows into the reactor vessel 11r41 [1. It has a structure that exchanges heat with the hot pool's coolant through an inner cylinder without flowing it.

このように1本実施例によれば、簡単な溝if!iによ
り原子炉容器の熱応力を大幅に緩和し構造上の健全性が
向上する。
As described above, according to one embodiment, a simple groove if! i significantly alleviates thermal stress in the reactor vessel and improves its structural integrity.

次に他の実施例について説明する。第4図、第5図は、
原子炉容器胴IBと仕切壁18の間に気泡り昇管30を
円周方向に複数個設けたもので、気泡を上記気泡上昇管
30に沿って上昇させろとともに気泡の上昇により冷却
材を上昇流動せしめ、冷却をするものである。
Next, other embodiments will be described. Figures 4 and 5 are
A plurality of bubble riser pipes 30 are provided in the circumferential direction between the reactor vessel shell IB and the partition wall 18, and the bubbles are made to rise along the bubble riser pipes 30, and the rise of the bubbles causes the coolant to rise. It allows fluid to flow and cools it.

第6図、第7図は、原子炉容器胴IBと仕切壁18の間
の空間を気泡仕切壁40により小さなセルに仕切り、気
泡に上昇による冷却材の上昇力を増大せしめろものであ
る。
6 and 7, the space between the reactor vessel shell IB and the partition wall 18 is partitioned into small cells by a bubble partition wall 40, and the upward force of the coolant due to the rise of the bubbles is increased.

C発明の効果〕 本発明の高速増殖炉の原子炉容器は、上述したように構
成されているので原子炉容器に発生する熱応力を大幅に
緩和して原子炉容器の構造健全性の向上させる等大きな
効果を奏する。
C Effects of the invention] Since the reactor vessel of the fast breeder reactor of the present invention is configured as described above, the thermal stress generated in the reactor vessel is significantly alleviated, and the structural integrity of the reactor vessel is improved. It has great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高速増殖炉の原子炉容器の一実施例を
適用した高速増殖炉の縦断面図、第2図は第1し1のA
部詳細断面図、第3図、第4図および第6図は本発明の
他の実施例を示す部分詳細断面図、第5図は第4図のに
−に断面図、第7図は第6図のL−L断面図、第8図は
従来の高速増殖炉を示す縦断面図、第9図は原子炉トリ
ップ後のホットブール内冷却材温度分布の推移を示す(
・Xlである。 1・・・)M子炉容器    18・・仕切壁19・・
・ガスヘッダ    20・・・ガス供給管代理人 弁
理上 則 近 憲 佑 同  第子丸 健 第1図 第2図 第3図 第4図 第6図 第8図
FIG. 1 is a longitudinal sectional view of a fast breeder reactor to which an embodiment of the reactor vessel of the fast breeder reactor of the present invention is applied, and FIG.
3, 4 and 6 are partial detailed sectional views showing other embodiments of the present invention, FIG. Figure 6 is a cross-sectional view taken along line L-L in Figure 6, Figure 8 is a longitudinal cross-sectional view showing a conventional fast breeder reactor, and Figure 9 shows the change in coolant temperature distribution in the hot boule after a reactor trip.
・It is XL. 1...) M child furnace vessel 18... Partition wall 19...
・Gas header 20... Gas supply management agent Patent rules Ken Chika Yudo Ken Daishimaru Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 液体冷却材を貯溜する原子炉容器と、この原子炉容器の
内側に所定間隔をおき、かつ液体冷却材の液面位置に設
置された仕切壁と、この仕切壁の下方に設けられたガス
ヘッダと、このガスヘッダに接続してこれにガスを供給
するガス供給管とを具備してなる高速増殖炉の原子炉容
器。
A reactor vessel for storing liquid coolant, a partition wall installed at a predetermined interval inside the reactor vessel and at the liquid level of the liquid coolant, and a gas header provided below the partition wall. , and a gas supply pipe connected to the gas header to supply gas thereto.
JP62151384A 1987-06-19 1987-06-19 Reactor vessel of fast breeder Pending JPS63315987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62151384A JPS63315987A (en) 1987-06-19 1987-06-19 Reactor vessel of fast breeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62151384A JPS63315987A (en) 1987-06-19 1987-06-19 Reactor vessel of fast breeder

Publications (1)

Publication Number Publication Date
JPS63315987A true JPS63315987A (en) 1988-12-23

Family

ID=15517401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62151384A Pending JPS63315987A (en) 1987-06-19 1987-06-19 Reactor vessel of fast breeder

Country Status (1)

Country Link
JP (1) JPS63315987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037422A (en) * 2010-08-09 2012-02-23 Electric Power Dev Co Ltd Estimation method of stratum parameter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037422A (en) * 2010-08-09 2012-02-23 Electric Power Dev Co Ltd Estimation method of stratum parameter

Similar Documents

Publication Publication Date Title
KR100597722B1 (en) Stable and passive decay heat removal system for liquid metal reator
JP2002156485A (en) Reactor
JP5306257B2 (en) Core melt cooling device and reactor containment vessel
ITTO961081A1 (en) NUCLEAR REACTOR WITH IMPROVED NATURAL CIRCULATION OF THE COOLING FLUID.
JP2007232527A (en) Steam separator
JP2008139023A (en) Device for holding melt in reactor and reactor containment vessel
KR101921406B1 (en) Nuclear reactor system for SMR having improved cooling reliability
JPS63315987A (en) Reactor vessel of fast breeder
CN212741575U (en) Heat exchange device and single crystal furnace
EP2814039B1 (en) Water supply pipe for steam generator
US2390114A (en) Electrolysis of fused baths
US3994777A (en) Nuclear reactor overflow line
JP2012251894A (en) Reactor core molten material retainer
US4676947A (en) Device for thermal protection of a component of a fast-neutron nuclear reactor
JPH02176596A (en) Decay heat removal system for fast breeder
JPS6257959B2 (en)
JPH02157690A (en) Natural heat radiation type storage container
JPH0227351Y2 (en)
JPH03102288A (en) Tank fast breeder
KR20120125011A (en) Nuclear reactor with geometry at the outer wall
JPH0472596A (en) Fast breeder reactor
JPH03257398A (en) Tank type fast breeder reactor
JPH031629B2 (en)
JPH05119181A (en) Fast breeder
JPH0570118B2 (en)