JPS63315938A - State measuring instrument for material surface - Google Patents

State measuring instrument for material surface

Info

Publication number
JPS63315938A
JPS63315938A JP15275487A JP15275487A JPS63315938A JP S63315938 A JPS63315938 A JP S63315938A JP 15275487 A JP15275487 A JP 15275487A JP 15275487 A JP15275487 A JP 15275487A JP S63315938 A JPS63315938 A JP S63315938A
Authority
JP
Japan
Prior art keywords
light
calibration
reflected
prism
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15275487A
Other languages
Japanese (ja)
Other versions
JPH0535984B2 (en
Inventor
Seiichiro Kiyobe
清部 政一郎
Hideo Takada
秀夫 高田
Shigeo Takahashi
高橋 重男
Hirotoshi Ishikawa
石川 宏俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN SENSOR CORP KK
Yokogawa Electric Corp
Original Assignee
JAPAN SENSOR CORP KK
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN SENSOR CORP KK, Yokogawa Electric Corp filed Critical JAPAN SENSOR CORP KK
Priority to JP15275487A priority Critical patent/JPS63315938A/en
Publication of JPS63315938A publication Critical patent/JPS63315938A/en
Publication of JPH0535984B2 publication Critical patent/JPH0535984B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Abstract

PURPOSE:To detect smoothness and glossiness by one sensor by providing a means which projects light condensed at a prescribed angle on a normal on the surface of a material and a means which photodetects reflected light in a normal reflection direction from the surface. CONSTITUTION:When the light condensed by the light irradiating means 7 is made incident at a certain angle on the normal of paper S, the reflected light is detected by the photodetecting means 12 arranged in the normal reflection direction. The width W and peak light quantity VP of dispersion of a prescribed level VS are found from detection signals of respective elements constituting a linear sensor to obtain a smoothness signal from the width W and a glossiness signal from the peak light quantity VP. Then a prism 8 for calibration is moved onto an optical path P at the time of calibration. The light which enters the prism 8 from the light irradiating means 7 is reflected by a border surface and supplied directly to the photodetecting means 12. A drift quantity is detected from the current measured value and a measurement signal at the time of measurement is corrected.

Description

【発明の詳細な説明】 ぐ産業上の利用分野ン 本発明は物質表面の状態を測定する装置1に関し、史に
詳しくは、紙等の表面の平滑度及び光沢度をE5r−の
検出ヘッドを用いてオンラインで1ll11定:JV東
る装′!/に関ηる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an apparatus 1 for measuring the condition of the surface of a material. Use 1ll11 online: JV East Ruso'! / related to.

〈従来の技術゛・ 紙の41滑■を検出する方法として、例えばJIS  
P8119にJ、Q定cjれている。第6図はこの方法
による従来装置のn面図である。Z+ イ′:iきの1
「)j容器1の蓋ゴaと容器1との間に測定すべさでバ
Sを挾んて゛、ポンプ2によって内室1bの空気を引く
。圧力δ13によって容器]内の圧がある一定の匂圧に
イ(るまでの時間を測定する。紙Sの表面が危い場合に
(ま、紙面に治って空気が内室1 bに漏れるため負圧
になるまでの時間が短く、表面が滑かな場合に(よ時間
が長く掛かり、この時間差がらft(Sの平f1度を検
知している。
<Conventional technology> As a method for detecting 41 slips on paper, for example, JIS
P8119 has J and Q constant cj. FIG. 6 is an n-plane view of a conventional device using this method. Z+ i': i Kino 1
``)) A measuring valve S is placed between the lid a of the container 1 and the container 1, and the air in the inner chamber 1b is drawn by the pump 2. Measure the time it takes for the surface of the paper S to reach the pressure. In the case of kana, it takes a long time, and this time difference is used to detect the flat f1 degree of ft(S).

しかしながら、この方ン人で1.1ザンブルを011反
って試験装置ζjにが0る必要があり、また測定に時間
が)1Fかる為、抄紙プロセス等のオンラインで−ta
 H史えない。
However, this method requires 011 warping of the 1.1 zamble and 0 of the test equipment ζj, and it also takes time (1F) for measurement, so it is necessary to
I can't read H.

紙の平滑度をオンラインで測定づる方rムとして、例λ
ぽUSI)4,019,066弓によって第7図に示す
ような光学式平滑麿計が提案されている。
As a method for measuring the smoothness of paper online, for example λ
An optical smoothing meter as shown in FIG. 7 has been proposed by U.S. Pat. No. 4,019,066.

このH′l??では光′に!4からの光を連続的に移送
されろ紙S−Fに照射し、反射光をコレクター5で集光
した後、受光16r検出するしので、反射光は紙Sの表
面の平滑度に応じて分散し、この分散の広がりを測定す
ることによって祇Sの平滑度を測定することが出来る。
This H'l? ? Now onto the light! The light from 4 is continuously transferred and irradiated onto the filter paper S-F, and after the reflected light is collected by the collector 5, it is detected by the light receiving unit 16r, so that the reflected light is dispersed according to the smoothness of the surface of the paper S. However, by measuring the spread of this dispersion, it is possible to measure the smoothness of the S.

紙の表面状態を表わす仙のパラメータとして光沢度があ
る。光沢度をi!Ill定する従来装置として例えば狛
【;i1雪(61−203347号で示されるような装
置がある。この装置で番ユ、紙の表面の法線にえ1し所
定角度で集光した光を照則し、紙表面からの正反射光を
検出し、この正反射光の値(ビーク光1t1)から光沢
度を測定するものである。
Glossiness is a parameter that expresses the surface condition of paper. The gloss level is i! For example, there is a device as shown in Koma [; i1 Yuki (No. 61-203347) as a conventional device for determining Ill.This device collects light focused at a predetermined angle to the normal to the surface of the paper. For reference, the specularly reflected light from the paper surface is detected, and the glossiness is measured from the value of this specularly reflected light (beak light 1t1).

〈発明が解決しようとする問題点〉 前記ゝV滑度計と光沢度91とを別々に設置した場合、
多くのスペースが要り、また価格の点でもj1策でない
。更に、これらセンサは光源或は受光素子の特性ドリフ
トによって測定誤差が発生する為、校正を(jう必要が
あるが、従来方式では、前記紙の位置に校正用の基準サ
ンプルを置いて校正 (!行う方式であった為、測定中
では校正を行うことが出来なかっに0 本発明の解決しようとする技1(目的課題は、平滑度と
光沢度とを一つのセンサで検出できるようにづると共に
、測定中であっても校正が間中に行えるようにすること
にある。
<Problems to be solved by the invention> When the above-mentioned V slipmeter and glossiness 91 are installed separately,
It requires a lot of space and is not the best option in terms of price. Furthermore, since measurement errors occur in these sensors due to drift in the characteristics of the light source or the light receiving element, it is necessary to perform calibration. Technique 1 to be solved by the present invention (the objective problem is to develop a method to detect smoothness and glossiness with one sensor). In addition, the purpose is to enable calibration to be performed even during measurement.

ぐ問題点を解決するだめの手段) 本発明の偶成は、物質表面の法線にス・1し所定角度で
集光した光を照)1する光熱用手段と、前記物質表面で
反射された正反射方向の反0=1光を受光する受光手段
と、前記物質表面より一定間rPI雛れて、1)η記光
量用手段から前記受光手段に至る光路に出入し、前記光
熱用手段からの光を境界面で反則さl!前記受光手段へ
直1a与える校正用プリズムとを具備し、測定時、前記
校正用プリズムを114記光路りから外し、前記物質表
面からの正反射光を前記受素子で検出し、この反射光の
ビーク光量から光沢度18号を19で、この反射光の分
散の大きさから平滑度13月を(りるようにし、校正時
、前記校正用プリズムを前記光路上に挿入して校正を行
うようにしたことにある。
The combination of the present invention includes a photothermal means for emitting light focused at a predetermined angle to the normal to the surface of a material, and a means for emitting light reflected from the surface of the material. a light-receiving means for receiving the opposite 0=1 light in the specular reflection direction; The light of is reflected at the boundary surface l! and a calibration prism that directly applies 1a to the light receiving means, and during measurement, the calibration prism is removed from the optical path 114, the specularly reflected light from the material surface is detected by the receiving element, and the reflected light is detected by the receiving element. The gloss level is set to 18 based on the amount of beam light, and the smoothness is set to 19 based on the amount of dispersion of this reflected light. During calibration, the calibration prism is inserted on the optical path. It's because I did it.

ぐ作用〉 114記の技術手段は次のように作用する。即ら、平滑
度信弓は前記正反射光の分散具合に対応し、光沢度信号
は正反射光のビーク光量に対応しており、前記受光手段
に例えば2次元の受光面を有する受光手段を用いれば、
反射光の分散の大きさが測定出来、また、これら受光手
段の各素子の検出b: F’3を記憶さけて比較)るこ
とによってビーク光量を測定することが出来、これらか
ら前記’F ?f1度倍月及び光沢jη悟8が求まる。
Operation> The technical means described in No. 114 operates as follows. That is, the smoothness signal corresponds to the degree of dispersion of the specularly reflected light, and the glossiness signal corresponds to the peak light amount of the specularly reflected light. If you use
The magnitude of the dispersion of the reflected light can be measured, and by detecting each element of these light receiving means (b: comparing without storing F'3), the amount of peak light can be measured, and from these, the amount of the 'F'? f1 degree double moon and luster jηgo8 are found.

また、校正は前記校正用プリズムを前配光路上に挿入ザ
るだけで良く、校正用の基準リーンプルは要らず、測定
中であってし簡111に(交工が行える。
In addition, calibration can be carried out by simply inserting the calibration prism onto the front light distribution path, and there is no need for a reference lean pull for calibration, which can be easily performed during measurement.

く実、懺例〉 以下図面に従い本発明の詳細な説明する。第1図は本発
明実施例装置の断面図で、第2図の本発明実施例装置の
側面図にa)ける△−Δ′而での切断面を表わす。図中
、7は紙Sの法線に対し所定角度で集光した光を照射す
る光熱用手段、8は第3図で拡大して示したような断面
を有する校正用プリズムで、ガイドレール9上を移動す
る台車10により、崩(Sより一定間隔離れ、1flり
下げられている。11は台車10を矢印A、力方向勅か
し、校正用プリズム8を光熱用手段7から後出の受光手
段に至る光路Pに出入させる為のモータである。台車1
0を矢印△、方向に肋かり手段として、例えば第4図に
示すような、台車101.:長孔10aを設けて、この
孔に[−タ11の偏心軸1’laを係合させたカム+a
構が用いられる。
Examples> The present invention will be described in detail below with reference to the drawings. FIG. 1 is a cross-sectional view of an apparatus according to an embodiment of the present invention, showing a cross-sectional view taken along the line Δ-Δ' in a) of the side view of the apparatus according to an embodiment of the present invention in FIG. In the figure, 7 is a photothermal means for irradiating light focused at a predetermined angle with respect to the normal line of the paper S, 8 is a calibration prism having a cross section as shown enlarged in FIG. 3, and a guide rail 9 It is lowered by 1 fl at a fixed distance from the collapsing (S) by the trolley 10 moving above. 11 moves the trolley 10 in the direction of force by arrow A, and moves the calibration prism 8 away from the light and heat means 7 as described below. This is a motor for moving the light into and out of the optical path P leading to the light receiving means.Dolly 1
0 in the direction of arrow △, for example, as shown in FIG. 4, a trolley 101. : A long hole 10a is provided, and the eccentric shaft 1'la of the -ta 11 is engaged with the cam+a.
structure is used.

12は紙Sで反)1された正反射光を受光する受光手段
で、反射光の分散の大きさを検出づべく、二組のリニア
アレイセン丈12a、12bが用いられ、リニアアレイ
廿ンφ112aによってX軸方向の反射光を受光し、リ
ニアイレイわンリ12t。
Reference numeral 12 denotes a light receiving means for receiving the specularly reflected light reflected by the paper S. In order to detect the magnitude of dispersion of the reflected light, two sets of linear array sensors 12a and 12b are used. The reflected light in the X-axis direction is received by φ112a, and the linear eyelid 12t is received.

によってy軸方向の反射光を受光する。13はハーフミ
ラ−である。
, the reflected light in the y-axis direction is received. 13 is a half mirror.

このような構成で、光照射手段7より集光した光をtt
t sの法線に対し、例えば75°の角度で入射させる
。測定時には、校正用プリズム7を第2図の一点5O線
の位置まで移動さ「光路P上に校正用プリズム7が位置
しないようにしておく。この状態では、光照射手段7か
らの光はプリズムを通らず直接紙Sに照則され、ここか
らの反射光は正反射方向に配置された受光手段12で検
出される。
With such a configuration, the light collected from the light irradiation means 7 is
The light is incident at an angle of, for example, 75° with respect to the normal to t s. At the time of measurement, the calibration prism 7 is moved to the position of the point 5O line in FIG. 2 so that the calibration prism 7 is not located on the optical path P. The light is directly focused on the paper S without passing through it, and the reflected light from there is detected by the light receiving means 12 arranged in the specular reflection direction.

検出信号は第5図で示すように分散しており、リニアア
レイセンリ−を構成する各素子の検出信号から、所定レ
ベルVsにお参ノる分散の幅Wと、ピーク光量Vpを求
め、幅Wより平滑曵信月を、ピーク光量Vpより光沢瓜
信号を1+?る。
The detection signal is dispersed as shown in Fig. 5. From the detection signal of each element constituting the linear array sensor, the width W of dispersion and the peak light amount Vp that reach a predetermined level Vs are determined, and the width is determined. Smooth Shingetsu from W, glossy melon signal from peak light amount Vp 1+? Ru.

次に、校正時、校正用プリズム8を光路P−トに移動づ
る(第2図、実線の位置)。光照射手段7から校正用プ
リズム8内に入った光は第3図で示すように校正用プリ
ズム8の境界部で反射されプリズム8から直接受光手段
12に与えられる。校正は一定時間毎、或は必要に応じ
て行われ、そのときの測定値からドリフト聞を検知し、
この信号を用いC測定時の、tl’l定(八「5を補正
する。
Next, during calibration, the calibration prism 8 is moved to the optical path P (FIG. 2, the position indicated by the solid line). The light entering the calibration prism 8 from the light irradiation means 7 is reflected at the boundary of the calibration prism 8, as shown in FIG. 3, and is applied directly from the prism 8 to the light receiving means 12. Calibration is performed at regular intervals or as needed, and the drift is detected from the measured values at that time.
This signal is used to correct the tl'l constant (8'5) during C measurement.

・ブを明の効果〉 本発明によれば、物′f1表面の平;111!剣と光沢
j復とを同一の検出ヘッドを用いて測定出来、装置を小
ハリかつ安価に構成することが出来る。
・Effect of brightening the surface> According to the present invention, the flat surface of the object'f1; 111! Sword and gloss can be measured using the same detection head, and the device can be constructed with a small size and at low cost.

尚、上記本発明の実施例の説明でtは、前記受光手段と
して二つのリニア77レイヒンリをX、y軸方向に並べ
て反射光の分散の大きさを測定しているが、この部分を
受光素子を2次元にjlGべた受光部としても構わない
Incidentally, in the above description of the embodiment of the present invention, t is the light receiving means in which two linear 77 beams are arranged in the X and Y axis directions to measure the dispersion of reflected light. It is also possible to use a two-dimensional jlG solid light receiving section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例装置の断面図、第2図は本発明実
施例装置の側面図、第3図は本発明実施例装置にお(〕
る佼止用プリズムの拡大所面図、第4図は本発明実施例
装置の部分の具体例を示す平面図、第5図は本発明実施
例装置の動作J2明図、第6図は従来装置の断面図、第
7図は他の従来装置の原理構成図である。 7・・・光量(ト)手段1.8・・・校正用プリズム、
11・・・モータ、12・・・受光手段、12a・・・
X軸すニアアレイセンリ、12b・・・y軸すニアアレ
イ廿ンザ、S・・・紙、P・・・光路 代理人 弁理上 小 沢 信 助・1 f 第1図 第2図 第3図 ε 第4図 !0  //   /Da ;// t 第5図 第4図
Fig. 1 is a sectional view of the apparatus according to the present invention, Fig. 2 is a side view of the apparatus according to the present invention, and Fig. 3 is a cross-sectional view of the apparatus according to the present invention.
4 is a plan view showing a specific example of the device according to the present invention, FIG. 5 is a clear view of the J2 operation of the device according to the present invention, and FIG. 6 is a conventional A sectional view of the device, FIG. 7, is a diagram showing the principle configuration of another conventional device. 7... Light amount (g) means 1.8... Calibration prism,
11...Motor, 12...Light receiving means, 12a...
X-axis near array sensor, 12b...Y-axis near array sensor, S...paper, P...light path agent On patent attorney Shinsuke Ozawa・1 f Figure 1 Figure 2 Figure 3 ε Figure 4! 0 // /Da ;// t Figure 5 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 物質表面の法線に対し所定角度で集光した光を照射する
光照射手段と、前記物質表面で反射された正反射方向の
反射光を受光する受光手段と、前記物質表面より一定間
隔離れて、前記光照射手段から前記受光手段に至る光路
に出入し、前記光照射手段からの光を境界面で反射させ
前記受光手段へ直接与える校正用プリズムとを具備し、
測定時、前記校正用プリズムを前記光路上から外し、前
記物質表面からの正反射光を前記受素子で検出し、この
反射光のピーク光量から光沢度信号を得て、この反射光
の分散の大きさから平滑度信号を得るようにし、校正時
、前記校正用プリズムを前記光路上に挿入して校正を行
うようにしたことを特徴とする物質表面の状態測定装置
a light irradiation means for irradiating light focused at a predetermined angle with respect to the normal to the surface of the material; a light receiving means for receiving the reflected light in the specular direction reflected by the surface of the material; , a calibration prism that enters and exits the optical path from the light irradiation means to the light reception means, reflects the light from the light irradiation means at a boundary surface, and directly supplies the light to the light reception means,
During measurement, the calibration prism is removed from the optical path, the specularly reflected light from the material surface is detected by the receiving element, a glossiness signal is obtained from the peak amount of this reflected light, and the dispersion of this reflected light is calculated. 1. An apparatus for measuring the condition of a surface of a substance, characterized in that a smoothness signal is obtained from the size, and during calibration, the calibration prism is inserted on the optical path.
JP15275487A 1987-06-19 1987-06-19 State measuring instrument for material surface Granted JPS63315938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15275487A JPS63315938A (en) 1987-06-19 1987-06-19 State measuring instrument for material surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15275487A JPS63315938A (en) 1987-06-19 1987-06-19 State measuring instrument for material surface

Publications (2)

Publication Number Publication Date
JPS63315938A true JPS63315938A (en) 1988-12-23
JPH0535984B2 JPH0535984B2 (en) 1993-05-27

Family

ID=15547436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15275487A Granted JPS63315938A (en) 1987-06-19 1987-06-19 State measuring instrument for material surface

Country Status (1)

Country Link
JP (1) JPS63315938A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170925A (en) * 2004-12-20 2006-06-29 Dainippon Printing Co Ltd Glossiness measuring method and instrument
EP2023126A1 (en) * 2007-07-27 2009-02-11 Voith Patent GmbH Gloss sensor for a paper machine
JP2014178446A (en) * 2013-03-14 2014-09-25 Ricoh Co Ltd Optical sensor, fixing apparatus, image forming apparatus, and optical sensor arrangement method
EP3859309A1 (en) * 2020-01-31 2021-08-04 Delta Electronics, Inc. Optical calibration tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170925A (en) * 2004-12-20 2006-06-29 Dainippon Printing Co Ltd Glossiness measuring method and instrument
JP4549838B2 (en) * 2004-12-20 2010-09-22 大日本印刷株式会社 Glossiness measuring method and apparatus
EP2023126A1 (en) * 2007-07-27 2009-02-11 Voith Patent GmbH Gloss sensor for a paper machine
JP2014178446A (en) * 2013-03-14 2014-09-25 Ricoh Co Ltd Optical sensor, fixing apparatus, image forming apparatus, and optical sensor arrangement method
EP3859309A1 (en) * 2020-01-31 2021-08-04 Delta Electronics, Inc. Optical calibration tool
US11815445B2 (en) 2020-01-31 2023-11-14 Delta Electronics, Inc. Optical calibration tool

Also Published As

Publication number Publication date
JPH0535984B2 (en) 1993-05-27

Similar Documents

Publication Publication Date Title
JP4382098B2 (en) Analysis method and analyzer
US5080484A (en) Method of measuring the contact angle of wetting liquid on a solid surface
CA1269525A (en) Procedure and means for measuring the thickness of a film-like or sheet-like web
US6987832B2 (en) Calibration and alignment of X-ray reflectometric systems
KR101287644B1 (en) Method and apparatus for inspecting a container sidewall contour
JP3953520B2 (en) Method and apparatus for optical alignment of a measuring head in the XY plane
JPH03267745A (en) Surface property detecting method
US6549286B2 (en) Method and measuring arrangement for measuring paper surface
US6504617B2 (en) Method and measuring arrangement for measuring paper surface
US4800286A (en) Measurement of variation in flute profile height
US6038027A (en) Method for measuring material thickness profiles
CN101379366A (en) Optical translation of triangulation position measurement
JPS63315938A (en) State measuring instrument for material surface
EP1624280A2 (en) Optical triangulation device and method of measuring a variable of a web using the device
Lenferink et al. An improved optical method for surface plasmon resonance experiments
JP3570488B2 (en) Measurement method of alloying degree of galvanized steel sheet using laser beam
JPS59211830A (en) Apparatus for measuring dampening water of printer
WO2010076310A1 (en) A detector system for identifying substances in a sample
WO2003008947A1 (en) Gloss sensor having dirt buildup compensation apparatus and method
US10598692B2 (en) Device for the volumetric analysis of an organic or inorganic sample
JPH03170810A (en) Noncontact analyzer for measuring glossiness and smoothness
US7701582B2 (en) Method and device for carrying out surface plasmon resonance measurement
FI114119B (en) Method and apparatus for measuring optical quality of paper surface using laser optical sensor
JPH03251708A (en) Shape measuring apparatus for parabolic antenna surface
JP2523156B2 (en) Refraction angle measuring method and refractive index distribution measuring device