JPH03170810A - Noncontact analyzer for measuring glossiness and smoothness - Google Patents

Noncontact analyzer for measuring glossiness and smoothness

Info

Publication number
JPH03170810A
JPH03170810A JP1311113A JP31111389A JPH03170810A JP H03170810 A JPH03170810 A JP H03170810A JP 1311113 A JP1311113 A JP 1311113A JP 31111389 A JP31111389 A JP 31111389A JP H03170810 A JPH03170810 A JP H03170810A
Authority
JP
Japan
Prior art keywords
glossiness
smoothness
measured
light
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1311113A
Other languages
Japanese (ja)
Inventor
Shigeo Takahashi
高橋 重男
Seiichiro Kiyobe
清部 政一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1311113A priority Critical patent/JPH03170810A/en
Publication of JPH03170810A publication Critical patent/JPH03170810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To improve the stability of measuring values of the glossiness by operating the glossiness of an object to be measured on the assumption that the scattering light has a regular distribution, obtaining the change of the glossiness in a relative narrow range and calculating a unevenness of the glossiness based on a specific formula. CONSTITUTION:A P polarized light is made incident upon a sheet-like object to be measured at an angle of incidence deflecting from the Brewster angle. A condenser lens is set on an optical axis of the reflecting light within a plane including an optical axis of the incident light and a normal line, with a photodetector provided at the focal position of the lens. The scattered light reflected at the surface of the object is received by the photodetector. Supposing that the received scattered light is a regular distribution, the glossiness is obtained in an operating part on the basis of an arithmetic expression of 'PXD' from a peak P and a half width value D of the distribution. Moreover, the change of the glossiness in a relatively narrow range is obtained in the operating part, thereby obtaining the unevenness of the glossiness based on a predetermined formula with the peak light at the surface of the strong gloss being rendered Pmax, and that at the surface of the weak gloss rendered Pmin. Accordingly, it becomes possible to obtain a stable measuring result without influences of the very minute change of the glossiness without the need of complicated operations.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、シート状被測定物体である例えば紙(以下「
被測定物」という)等の表面の光沢度と平滑度とを同時
にオンラインで測定出来る非接触式で光沢度と平滑度を
測定する分析計に関するものである. く従来の技術〉 従来の技術は、JISP8119に紙の平滑度を検出す
る方法(Bekk法)として規定されている. 第8図は前記Bekk法を示す原理図である.第8図に
おいて、測定すべき被測定物Sは、蓋付きの圧力容器1
の蓋1aと容器1の間に挟まれた状態に保持される.こ
の状態において、測定時は、ポンプ2で内室1bの空気
が規定負圧まで引かれ、圧力計3で、容器内の圧がある
一定の負圧(380→3 6 0ln Hg)になるま
での時間が測定される.この時、被測定物Sの表面が荒
い場合は、紙面に沿って空気が内室1bに漏れるために
、規定圧になるまでの時間が短い. 一方、被測定物Sの表面が滑かな場合は、紙面に沿って
空気が内室1bに漏れるために、規定圧になるまでの時
間が長く掛かる. 従って、被測定物Sの平滑度の測定は、測定時間差から
できる.被測定物Sの表面は、平滑の場合はより良い印
刷が行える.従って、この平滑度は印刷の際に重要視さ
れている. ところで、抄紙プロセスにおける被測定物である紙は、
ロールで加圧されながら逐次送られるが、平滑度の測定
はこの移動状態中に行われる.一方、第8図の測定方法
は、サンプルを切取って試験装置にかける.更に、測定
時間が掛かる等のために一般には抄紙プロセス等のオン
ラインでは使えない. オンラインで使用できるこの種の装置としては、例えば
USP4.019.066号で示されるような光学式平
滑度計がある. 第9図は従来の公知の技術である光学式平滑度計の原理
構成図である. 第9図において、光源4は、照射光をシート状の被測定
物Sに照射する.被測定物Sでの反射光は、コレクター
5で集光された後に受光器6で検出される.この時、前
記反射光は、被測定物Sの表面の平滑度に応じて分散す
るから、この分散の広がりを測定することによって前記
被測定物Sの平滑度が分ることとなる. ところがこの装置は、被測定物Sと非接触で測定が行え
るオンライン測定が可能であるが、前記Bekk法と比
べて測定結果が印刷適性と余り良く相関しない、という
点で問題がある.そこで、本願出願人は、この問題点を
解決するために、印刷適性と良い相関を有し、且つオン
ライン測定が可能な技術として、実願昭63−9174
4号を提案した. その構戒は、ブリュースタ角よりずれた入射角で被測定
物にP偏光を入射させる手段,,前記Pa光の入射光軸
並びに法線を含む面内を通る反射光軸上に設けられた集
光レンズ,及びこの集光レンズの焦点位置に前記被測定
物の測定面が前記反射光軸と垂直になるように配置され
た光検出素子を具備して構威とする.そして、測定は、
前記光検出素子で、被測定表面で反射された正反射成分
及び被測定物内部で反射された拡散反射成分を受光して
、前記被測定表面に形成されたピークを持った拡散光(
コーン状の光の広がり)から、前記被測定物の平滑度及
び光沢度を求めることができるようにした. この装置については実験で確かめた.前記被測定物の平
滑度の測定結果は、表面平滑度の情報及び被測定物内部
構造の情報を加えた場合、Bekk法の測定結果と良い
相関があり、印刷適性と良い相関を持つ.この時、測定
光にP偏光を使い、その一部を被測定体内部に入射し、
当該内部で反射された拡散反射戒分を正反射成分と共に
測定に使用する.前記被測定物の内部は、セルロースの
集合体である.セルロースが多く含まれる場合の内部構
造は密で拡散反射或分が多くなり、逆に、内部桶遣が粗
の場合は拡散反射成分は減少する.従って光検出素子は
、正反射成分と拡散反射或分の両方を入射して測定面に
形成される拡散光の広がりを検出する。このことを第1
0図の非接触式で光沢度と平滑度を測定する分析計の原
理構成図、及び第11図乃至第14図の第10図の説明
に供する図を用いて説明する。
[Detailed description of the invention] Industrial application field> The present invention is applicable to a sheet-like object to be measured, such as paper (hereinafter referred to as "paper").
This is a non-contact analyzer that can measure the glossiness and smoothness of the surface of objects (such as objects to be measured) simultaneously online. BACKGROUND ART A conventional technique is defined in JISP8119 as a method for detecting paper smoothness (Bekk method). FIG. 8 is a diagram showing the principle of the Bekk method. In FIG. 8, the object S to be measured is a pressure vessel 1 with a lid.
It is held between the lid 1a of the container 1 and the container 1. In this state, during measurement, the air in the inner chamber 1b is pulled to a specified negative pressure by the pump 2, and the pressure gauge 3 measures the pressure in the container until it reaches a certain negative pressure (380 → 360 ln Hg). The time is measured. At this time, if the surface of the object to be measured S is rough, air leaks into the inner chamber 1b along the plane of the paper, so that the time required to reach the specified pressure is short. On the other hand, if the surface of the object to be measured S is smooth, air leaks into the inner chamber 1b along the paper surface, so it takes a long time to reach the specified pressure. Therefore, the smoothness of the object to be measured S can be measured from the measurement time difference. If the surface of the object to be measured S is smooth, better printing can be performed. Therefore, this smoothness is considered important during printing. By the way, paper, which is the object to be measured in the papermaking process,
It is conveyed sequentially while being pressurized by rolls, and the smoothness is measured during this moving state. On the other hand, in the measurement method shown in Figure 8, a sample is cut out and placed on a test device. Furthermore, it generally cannot be used online in paper-making processes, etc. because it takes time to measure. An example of this type of device that can be used online is an optical smoothness meter as shown in USP 4.019.066. Figure 9 is a diagram showing the principle structure of an optical smoothness meter, which is a conventional well-known technology. In FIG. 9, a light source 4 irradiates a sheet-shaped object S to be measured with irradiation light. The reflected light from the object to be measured S is collected by a collector 5 and then detected by a light receiver 6. At this time, since the reflected light is dispersed according to the smoothness of the surface of the object S to be measured, the degree of smoothness of the object S to be measured can be determined by measuring the spread of this dispersion. However, although this device is capable of online measurement in which measurements can be taken without contacting the object S to be measured, there is a problem in that the measurement results do not correlate well with printability compared to the Bekk method. Therefore, in order to solve this problem, the applicant of the present application proposed Utility Model Application No. 63-9174 as a technology that has a good correlation with printing suitability and is capable of online measurement.
I proposed No. 4. The structure consists of a means for making the P-polarized light incident on the object to be measured at an incident angle deviated from the Brewster's angle, and a means for making the P-polarized light incident on the object to be measured at an incident angle deviated from the Brewster's angle. The device is equipped with a condenser lens and a photodetector element arranged at the focal point of the condenser lens so that the measurement surface of the object to be measured is perpendicular to the reflected optical axis. And the measurement is
The light detection element receives the specular reflection component reflected by the surface to be measured and the diffuse reflection component reflected inside the object to be measured, and detects the diffused light (with a peak formed on the surface to be measured).
The smoothness and glossiness of the object to be measured can be determined from the cone-shaped spread of light. We confirmed this device through experiments. The measurement result of the smoothness of the object to be measured has a good correlation with the measurement result of the Bekk method when information on the surface smoothness and information on the internal structure of the object is added, and has a good correlation with the printability. At this time, P-polarized light is used as the measurement light, and a part of it is incident inside the object to be measured.
The diffuse reflection component reflected inside the area is used for measurement along with the specular reflection component. The inside of the object to be measured is an aggregate of cellulose. When a large amount of cellulose is contained, the internal structure is dense and the diffuse reflection component increases, and conversely, when the internal structure is rough, the diffuse reflection component decreases. Therefore, the photodetecting element detects the spread of the diffused light formed on the measurement surface by receiving both the specular reflection component and the diffuse reflection component. This is the first thing
The explanation will be made using the principle configuration diagram of an analyzer for non-contact measurement of gloss and smoothness shown in FIG. 0, and the diagrams used for explanation of FIGS.

第10図において、符号Hは、被測定物S上をその幅方
向に往復走行する検出ヘッドである.符号8は、光源7
からの光を千行光とするコリメートレンズである.符号
9は、P隔向のみを投光するように入射光軸A,上に設
けられた偏光子である.符号A2は、入射光軸A1並び
に法線Nを含む面内を通る反射光軸である。符号R,は
、被測定物表面からの正反射戒分である.符号R2は、
被測定物内部からの拡散反射或分である.符号11は、
反射光軸A2上に設けられた集光レンズ10の焦点位置
に測定面11aを反射光軸A2と垂直になるように向け
て配置された、例えばC C. Dアレイセンサ等から
なる光検出素子(ラインセンサ)である。
In FIG. 10, reference numeral H designates a detection head that reciprocates over the object S to be measured in its width direction. Code 8 is light source 7
It is a collimating lens that converts the light from the lens into a thousand lines of light. Reference numeral 9 denotes a polarizer disposed above the incident optical axis A so as to project light only in the P direction. Reference numeral A2 is a reflection optical axis passing through a plane including the incident optical axis A1 and the normal line N. The symbol R is the specular reflection from the surface of the object to be measured. The code R2 is
This is a certain amount of diffuse reflection from inside the object being measured. The code 11 is
For example, a C.C.I. This is a photodetection element (line sensor) consisting of a D array sensor or the like.

第11図においては、Pl光を被測定体に入射角φで入
射させた場合の反射光強度Amを表わす.この時におい
て例えば被測定物を紙とした場合は、図から、ブリュー
スタ角よりずれた角度75゜でPI光を入射させる時に
紙の屈折率を1、52とすると、紙表面からの正反射或
分は約10%となり残り90%が紙の内部に入ることが
分る.紙は内部がセルロースの集合体であるが、この場
合、セルロースが多くまた繊維が細かい場合は内M#I
造が密で拡散反射或分は多くなり、他方、内部構造が粗
の場合は拡散反射戒分が減少するという結果となる. 第10図に戻って説明を続ける。
FIG. 11 shows the reflected light intensity Am when the Pl light is incident on the object to be measured at an incident angle φ. At this time, for example, if the object to be measured is paper, as shown in the figure, when the PI light is incident at an angle of 75 degrees deviated from Brewster's angle, and the refractive index of the paper is 1.52, regular reflection from the paper surface will occur. It can be seen that a certain amount is about 10%, and the remaining 90% goes inside the paper. Paper is an aggregate of cellulose inside, but in this case, if there is a lot of cellulose and the fibers are fine, the inner M#I
If the internal structure is dense, the amount of diffuse reflection will increase, while if the internal structure is coarse, the amount of diffuse reflection will decrease. Returning to FIG. 10, the explanation will be continued.

被測定物表面からの正反射成分R,と被測定物内部から
の拡散反射或分R2は、混合されて集光レンズ10に与
えられる.この結果は、ラインセンサ11の測定面11
.上に、第12図で示すような、ピークと広がりを持っ
た光のパターンL1が形戒される。この時の平滑度は、
第12図における例えばピーク値(散乱光のピーク電圧
で表せる)Apの半*(Ap/2)における光の広がり
の幅(以下「半値幅」という)Dを測定して、この半値
幅Dから求める. 第13図は、同一のサンプルを用いて、前記Bekk法
による測定結果と、第10図の非接触式で光沢度と平滑
度を測定する分析計による平滑度の測定結果とを比較し
たものである. 第13図において、縦軸はサンプルのBekk値を表わ
し、横軸は単位坪量当たりの分散度DjSを表わす。こ
の時、分散度I)tsは、ピーク値Apを半値幅Dに相
当する電圧で割り、更に、サンプルの坪量BWに相当す
る電圧で割ったもので、DLs =K (Ap / (
D−Bw ) )     −(1)で表わされる.実
験は、予めBekk法で測定したBe kk値が既知の
複数のサンプル紙を用い、第10図の非接触式で光沢度
と平滑度を測定する分析計により平滑度を測定したもの
である.測定結果は、略直線l,上にプロヅトされる.
ところで、第12図に示す光のパターンし,は、前記し
たように平滑度の測定に用いられているが、他方、被測
定物から反射される散乱光のピーク値(ピーク電圧)A
pは、主として正反射成分によるものであるから、この
ピーク値から被測定物の光沢度を測定することも出来る
. つまり、ピーク値Apを利用することで、非接触式で光
沢度と平滑度を測定する分析計を用いながらも独自の光
沢度を測定する構戒が形成できることとなる(以下この
構成部分についてはここでは「P光沢度計」という).
言替えれば、前記平滑度を得る部分と合せた形で非接触
式で光沢度と平滑度を測定する分析計が#I戒されるこ
ととなる.く発明が解決しようとする課題〉 ところで光沢度計として用いる時にあっては、以下のよ
うな問題点があった. 第14図(A).(B)乃至第15図は第10図の装置
の問題点の説明に供する図であり、特に、第14図(A
)は第10図の被測定物と散乱光及びその検出部分を取
出して示したP光沢度計、第14図(B)は同図(A>
のP光沢度計に対応する部分を図示した周知のラボ光沢
度計を夫々図示したものであり、第15図はこれ等の説
明に供する図である. 第14図(B)において、符号A+−は入射光軸である
.符号R,−は、被測定物表面からの正反射成分である
,符号A2−は、入射光軸A1並びに法線Nを含む面内
を通る反射光軸である.符号100は、反射光軸A2−
上に設けられて反射光(散乱光)を集光させるレンズで
ある.符号12は円形の絞りである.符号13は、反射
光1t[I A 2上に設けられた光検出素子である.
符一号Q−は反射光であるところの散乱光(ちなみに第
14図における散乱光をQで表わす)である. 以下、問題点を説明する. 第14図(A).(B)において、光沢度は、P光沢度
計では前記したようにピーク値Apから求めている.即
ち、P光沢度計で得られるラボ光沢度値は、第15図に
おいて波形のピーク値Apをとって図示しない演算部で
演算して得ている.一方、ラボ光沢度計では、被測定物
Sからの散乱光Q”をレンズ100で集光し、規定の絞
り12を通過させた後に光検出素子13で検出し、図示
しない演算部で光束の積分値を演算して光沢度を求めて
いる.即ち、ラボ光沢度計で得られる測定値(ラボ光゜
沢度値)は、第15図の斜線で示す部分のZ軸を中心と
して回転させた時の体積値〈光束の積分値)である。
The specular reflection component R from the surface of the object to be measured and the diffuse reflection component R2 from inside the object are mixed and applied to the condenser lens 10. This result is based on the measurement surface 11 of the line sensor 11.
.. Above, a light pattern L1 having a peak and a spread as shown in FIG. 12 is formed. The smoothness at this time is
For example, in Fig. 12, measure the width of the spread of light (hereinafter referred to as "half-value width") D at half * (Ap/2) of the peak value (expressed by the peak voltage of scattered light) Ap, and use this half-value width D. demand. Figure 13 shows a comparison between the measurement results using the Bekk method described above and the smoothness measurement results using the analyzer that measures gloss and smoothness in a non-contact manner as shown in Figure 10, using the same sample. be. In FIG. 13, the vertical axis represents the Bekk value of the sample, and the horizontal axis represents the degree of dispersion DjS per unit basis weight. At this time, the degree of dispersion I)ts is obtained by dividing the peak value Ap by the voltage corresponding to the half-value width D, and further dividing by the voltage corresponding to the basis weight BW of the sample, DLs = K (Ap / (
It is expressed as D-Bw ) ) - (1). In the experiment, a plurality of sample papers whose Bekk values were previously measured using the Bekk method were used, and the smoothness was measured using an analyzer that measures gloss and smoothness in a non-contact manner as shown in Figure 10. The measurement results are printed approximately on the straight line l.
By the way, the light pattern shown in FIG. 12 is used to measure the smoothness as described above, but on the other hand, the peak value (peak voltage) A of the scattered light reflected from the object to be measured is
Since p is mainly due to the specular reflection component, the glossiness of the object to be measured can also be measured from this peak value. In other words, by using the peak value Ap, it is possible to form a unique system for measuring glossiness while using an analyzer that measures glossiness and smoothness in a non-contact manner (hereinafter, this component will be described). (herein referred to as "P gloss meter").
In other words, an analyzer that measures gloss and smoothness in a non-contact manner in addition to the part that measures smoothness will be subject to #I. Problems to be Solved by the Invention By the way, when used as a gloss meter, there were the following problems. Figure 14 (A). (B) to FIG. 15 are diagrams for explaining the problems of the device shown in FIG. 10, and in particular, FIG. 14 (A
) is a P gloss meter showing the object to be measured, scattered light, and its detection part in Figure 10, and Figure 14 (B) is the same figure (A>
15 is a diagram for explaining these well-known laboratory gloss meters, showing the parts corresponding to the P gloss meter shown in FIG. In FIG. 14(B), the symbol A+- is the incident optical axis. The symbols R and - are specular reflection components from the surface of the object to be measured, and the symbol A2- is a reflection optical axis passing within a plane containing the incident optical axis A1 and the normal N. Reference numeral 100 indicates the reflection optical axis A2-
This is a lens placed on the top that focuses reflected light (scattered light). Reference numeral 12 is a circular aperture. Reference numeral 13 is a photodetecting element provided on the reflected light 1t[I A 2.
The reference numeral Q- indicates scattered light which is reflected light (incidentally, the scattered light in Fig. 14 is represented by Q). The problems are explained below. Figure 14 (A). In (B), the gloss is determined from the peak value Ap using the P gloss meter as described above. That is, the laboratory gloss value obtained with the P gloss meter is obtained by taking the peak value Ap of the waveform in FIG. 15 and calculating it in a calculation section (not shown). On the other hand, in the laboratory gloss meter, the scattered light Q" from the object to be measured S is collected by a lens 100, passed through a specified aperture 12, detected by a photodetector element 13, and a calculation unit (not shown) The glossiness is determined by calculating the integral value.In other words, the measured value obtained with the lab glossmeter (lab glossiness value) is rotated around the Z axis in the shaded area in Figure 15. is the volume value (integral value of luminous flux) when

このような測定・演算過程において相違があるために、
ラボ光沢度計においては極所の微細な光沢の文化は顕著
に現れないのに対して、P光沢度計においては極所の微
細な光沢の変化を捕えてしまうために必要以上に感度が
鋭敏となる。言替えれば、P光沢度計は、ラボ光沢度値
に比較して見掛け上の安定性が悪く見える。つまり、P
光沢度計は、その構戒上、光沢度と同時に平滑度を同時
に測定するS威となっているために、ピーク値A2と共
に半値幅Dを必要とし、このために前記したように検出
器としてライン状のリニアアレイセンサを用いているた
めである.つまりライン状のりニアアレイセンサを用い
る結果、ラボ光沢度計のように円形状の光束を全てを受
光できないこととなってしまっている. 本発明は、従来の技術の有するこのような問題点に鑑み
てなされたものであり、その目的とするところは、ライ
ン状のりニアアレイセンサを用いる構成の非接触式で光
沢度と平滑度を測定する分析計を用いて、測定されるピ
ーク値及び半値幅を有効活用し、結果的にラボ光沢度計
の測定値との相関を図ることにより、少なくとも光沢度
測定値の安定性を改善するようにした非接触式で光沢度
と平滑度を測定する分析計を提供するものである.又、
必要に応じて比較的狭い範囲での被測定物からの光沢度
変化を捕えて或は得られる平滑度から、被測定物の光沢
度や平滑度のムラをも検出できる非接触式で光沢度と平
滑度を測定する分析計を提供することを目的とするもの
である.く課題を解決するための手段〉 上記目的を達成するために、本発明の非接触式で光沢度
と平滑度を測定する分析計は、ブリュースタ角よりずれ
た入射角でシート状の被測定物にP@光を入射させる手
段,前記P偏光の入射光軸並びに法線を含む面内を通る
反射光軸上に設けられた集光レンズ,該集光レンズの焦
点位置に測定面が前記反射光軸と垂直になるように配置
された光検出素子,及び該光検出素子で受光した前記被
測定物表面で反射された散乱光に基づく検出信号から前
記被測定物の光沢度や平滑度を演算可能な演算部を具備
した非接触式で光沢度と平滑度を測定する分析計にあっ
て、 (イ)前記被測定物の光沢度を、前記演算部において前
記散乱光を正規分布と仮定したときの前記正規分布のピ
ーク(P)及び半値幅(・D)から、“P×D″なる演
算式に基づいて演算して得るようにしたことを特徴とす
るものである.(ロ)そして必要に応じて前記被測定物
の光沢度ムラの大きさを、前記演算部において比較的狭
い範囲での前記被測定物からの光沢度変化を捕えて、光
沢の強い面におけるピーク光をPtaχ、光沢の弱い面
におけるピーク光をPmjuとしたとき、(Pmaχ+
PmLu )/ (Pmax  P’1tt u )と
いう演算式に基づいて演算して得ることができるように
し、更に又、必要に応じて前記被測定物の平滑度のムラ
を、前記演算部において比較的狭い範囲での前記被測定
物からの平滑度変化を捕えて、平滑度<D/P)の高い
面におけるピーク光と半値幅の演算値を(D/P)ma
x、平滑度の低い面におけるピーク光と半値幅の演算値
を(D/ P ) t i TLとしたとき、( (D
/P)負ax+ (D/P)mc TL )/( (D
/Plta’x  (D/P)mt TL )という演
算式に基づいて演算して得ることができるようにしたこ
とを特徴とするものである。
Due to differences in such measurement and calculation processes,
In the laboratory gloss meter, the fine gloss culture in the extreme areas does not appear noticeably, whereas in the P gloss meter, the sensitivity is more sensitive than necessary in order to capture minute changes in the gloss in the extreme areas. becomes. In other words, the P gloss meter appears to have poor apparent stability compared to the lab gloss values. In other words, P
Due to its construction, the gloss meter is designed to measure both gloss and smoothness at the same time, so it requires a peak value A2 as well as a half-width D, and for this reason, as described above, it is used as a detector. This is because a line-shaped linear array sensor is used. In other words, as a result of using a linear linear array sensor, it is not possible to receive all of the circular light flux like a laboratory gloss meter. The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to improve gloss and smoothness in a non-contact manner using a linear linear array sensor. At least improve the stability of glossiness measurements by effectively utilizing the measured peak values and half-widths using a measuring analyzer, and by correlating them with the lab glossmeter measurements. The purpose is to provide an analyzer that measures gloss and smoothness in a non-contact manner. or,
If necessary, it is a non-contact method that can detect variations in gloss or smoothness of the object to be measured by detecting changes in gloss from the object in a relatively narrow range or from the obtained smoothness. The purpose of this project is to provide an analyzer for measuring smoothness and smoothness. Means for Solving the Problems> In order to achieve the above objects, the non-contact type analyzer of the present invention for measuring glossiness and smoothness measures a sheet-like object to be measured at an incident angle deviated from Brewster's angle. means for making the P@ light incident on an object; a condenser lens provided on a reflection optical axis passing within a plane including the incident optical axis and normal line of the P-polarized light; and a measurement surface at the focal position of the condenser lens. The glossiness and smoothness of the object to be measured are determined from a light detection element arranged perpendicular to the reflected optical axis and a detection signal based on the scattered light received by the light detection element and reflected from the surface of the object to be measured. (a) The glossiness of the object to be measured is determined by the calculation section, which calculates the scattered light with a normal distribution. This is characterized in that it is obtained by calculating based on the arithmetic expression "P×D" from the peak (P) and half-width (.D) of the normal distribution when assumed. (b) If necessary, the degree of unevenness in glossiness of the object to be measured is calculated by capturing the change in glossiness from the object to be measured in a relatively narrow range in the calculating section, and determining the level of unevenness in glossiness of the object to be measured, by determining the level of unevenness in glossiness of the object to be measured. When the light is Ptaχ and the peak light on the weakly glossy surface is Pmju, (Pmaχ+
PmLu )/(Pmax P'1tt u ), and if necessary, the unevenness of the smoothness of the object to be measured can be relatively reduced in the calculation section. By capturing the change in smoothness from the object to be measured in a narrow range, the calculated value of the peak light and half-value width on a surface with high smoothness <D/P) is calculated as (D/P)ma.
x, the calculated value of the peak light and half-width on a surface with low smoothness is (D/P) t i TL, ((D
/P) negative ax+ (D/P)mc TL )/( (D
/Plta'x(D/P)mtTL).

く作用〉 本発明は、ライン状のりニアアレイセンサを用いて被測
定物からの散乱光を受光してピーク値及び半値幅に基づ
く値を得ることができる構成の非接触式で光沢度と平滑
度を測定する分析計にあって、前記リニアアレイセンサ
で受光した散乱光からピーク光と散乱幅即ち半値幅とに
分離して各々独立の出力信号を得、これ等信号値を掛合
わせることによって得られる光沢度(平滑度はピーク光
を半値幅で割ることにより求めることができる)がラボ
光沢度計で得られる光沢度と相関が図られることにより
安定性を向上する。
Function> The present invention uses a linear linear array sensor to receive scattered light from an object to be measured, and is a non-contact method capable of obtaining values based on a peak value and half-width. In an analyzer that measures the intensity, the scattered light received by the linear array sensor is separated into the peak light and the scattered width, that is, the half-width, and independent output signals are obtained for each, and these signal values are multiplied. Stability is improved by correlating the obtained glossiness (smoothness can be determined by dividing the peak light by the half width) with the glossiness obtained with a laboratory glossmeter.

く実施例〉 実施例について図面を参照して説明する。Example Examples will be described with reference to the drawings.

第1図は本発明の説明に供する図である。FIG. 1 is a diagram for explaining the present invention.

この第1図は、縦軸に測定値としてのピーク値(P)に
半値幅値(D)を掛けて得た値“単位電圧(V)”を取
り、横軸にラボ光沢度“JISに規定される表示,Gs
(75゜)χ%”をとった時の、相関特性(VOCP×
D)を示す,この結果から、光沢度は、従来のようにピ
ーク光だけでラボ光沢度と相関をとるよりも、P×Dと
して相関をとることの方が相関係数か高くなる,尚、第
ゴ因において、黒丸は銘柄Aに属する紙についての測定
ポイントを示し、白丸は銘iGに属する紙についての測
定ポイントを夫々示す。このことからも分るように、異
なる銘柄の紙についてその光沢度をとった時においてら
相関がとれていることが分る。
In this Figure 1, the vertical axis is the value "unit voltage (V)" obtained by multiplying the peak value (P) as a measured value by the half-width value (D), and the horizontal axis is the laboratory gloss level (JIS). Specified display, Gs
(75°) χ%”, the correlation characteristic (VOCP×
D) From this result, the correlation coefficient is higher when the glossiness is correlated as P x D than when it is correlated with the lab glossiness using only the peak light as in the past. , in the fifth factor, black circles indicate measurement points for paper belonging to brand A, and white circles indicate measurement points for paper belonging to brand iG, respectively. As can be seen from this, it can be seen that there is a correlation between the gloss levels of different brands of paper.

第2図乃至第6図は本発明の説明に供する図である.尚
、以下の説明に当たっては、必要に応じて前記各図面を
適宜使用するものとする.被測定物Sからの反射光であ
る散乱光は、第2図に示すような正規分布となると仮定
した場合、V−{1/(2π) l/2 ) exp(−(χ2 /2 ) }−(2)と数式化して
表わすことができる。但し、νを散乱光の正規分布をと
った時のピーク方向(縦軸方向)とし、χを散乱光の正
規分布をとった時の横軸方向(散乱幅方向)とする。
FIGS. 2 to 6 are diagrams for explaining the present invention. In the following explanation, the above drawings will be used as appropriate. Assuming that the scattered light that is the reflected light from the object to be measured S has a normal distribution as shown in FIG. 2, V-{1/(2π) l/2 ) exp(-(χ2 /2 ) } -(2).However, ν is the peak direction (vertical axis direction) when the scattered light is normally distributed, and χ is the horizontal axis when the scattered light is normally distributed. direction (scattering width direction).

このように表わすことができる正規分布において、ラボ
光沢度計で求めることができるラボ光沢度、即ち、υ軸
を中心にABOCDが回転する時の体M (J I S
の光沢度光量)■は、■=πχ+”J+πf  /(y
)2dυ  ・・・(3)J’ として表わすことができる.但し、yOをy軸上のピー
ク値、χ,をその時の半値@値、y,をこの半値幅のV
軸上の値とする。ここで、χをyの関数で表示すると、 χ=(In7/(2π) I/2 } 1/2    
    ・・・(4)となるから、(3)式の右辺第2
項は、π戸’f(y)’d”/ J = π /    [(/n  1/ (2  π )
  I/2 )  I/2 コ ’d yブ ?なる。一方、yOは(2)式のχ−0の時の値である
から、 ’!/o = ( 1/ (2π) V2)exp (
 − (02/2)) =1/(2π}1l2            ・・・
(6)となり、′y1は、 ’!l,= ( 1/ (2π) 1/2 )expf
−(χ12/2)}・・・(7)となる。この(6)式
及び(7)式を〔5)式に代入すると、πf f(y)
2dy =−2rr [ (1/ (2g)1/2)■ lTL
 (1/e )−(1/(2π)””)  ・ (lT
L (1/e }・exp(−(χ12/2)] =−2π [−{1/(’2π) l/2 1  +(
1/(2π)  I/2 } exp(−(χ,’ / 2 )  ){(χ+2/2
)+1)] = {2π/(2π}V2} [1−exp(一(χ12/ 2 )  1{(χ12
/2)+1)]・・・(8)となる.ここで、{2π/
《2π)I/2}:fiとして、この(8)式を(3)
式の右辺第2項に代入し、更にこの(3)式のyに(7
)式め関係を代入した時には、V=−rZ1’  ( 
1/ (2g)”1exp{−(χ,’/2))+ ft ・[1−exp { − (χ+’/F)){(
χ+2/2)+111 =1 [1−exp (  (χ1’/2)11  −
(9)が得られる.これは、結局のところ、正規分布で
“0≦χ≦■”の回転体の体積に相当することとなる. 第3図は、反射光を正規分布とした,時の、その正規分
布の大きさが相似的に■から■,■,■のように変化し
た時における、規定幅χAの幅内(±χA)に入る面積
の変化(体積の変化)状況を示したものである。この第
3図は、正規分布がピーク(yの高さ)の増減で変化し
た場合に、第4図に示すように、規定開き間(2〜一Z
間〉に占める面積の割合が2及び−2を中心方向に向か
い変化させたことと同様になる。反射光を正規分布とし
た時のピークと体積の関係から、反射光が正規分布であ
れば、その相対値が変化しても光分布は正規分布である
から、第3図の斜線に含まれる面積は標準正規分布の■
式のVをχに対して積分したものであり、それの回転体
の体積がピーク光変化によるラボ光沢度値に相当するこ
ととなる.従って、反射光は(2)式の正規分布に山の
高さを変化させる係数(即ちピーク値P)を掛けたもの
ν=P・ (1/(2π) I72 )exp(−(χ
2/2)}・・・0■ として表わすことができる. ところで(9)式は、ラボ光沢度計で測定する際に、反
射光が正規分布であると仮定する際のV軸方向の変化が
ピーク光強度Pに比例するものとした時の、ピーク強度
固定時(1とした時〉の標準正規分布体積を表わす.従
って、(9)式にPを掛けた値、V=P−It [1−
expl−(χ2/2)1]・・・01)が一般的な反
射光の体積を示す数式となる.これは、体積Vがピーク
強度Pと散乱幅方向χの関数であることを意味する. 第5図は、aT)式のPを1として、横軸に標準正規分
布のχ軸をとり、縦軸に体積Vをとり、この時の標準正
規分布のV軸を中心として回転した時の半値幅方向に対
する体積変化をグラフ化したものである。この時に、被
測定物が鏡面物体である時は、反射光はラボ光沢度計の
絞り12の受光開き角内に全て入射するから、χ軸方向
の特性が■に近付くことである.又、被測定物の表面が
荒い時の反射光は、散乱光の度合が大きくなるから、ラ
ボ光沢度計の絞り12の規定受光開き角内には余り光束
が入射しないこととなり、従ってχ−0の方向(χがゼ
ロに近い側〉に移行して体積が減少することを意味する
.又、ピーク光の増減は正規分杢の形状を変化させるこ
となく、その比率のみ変化させる.従って、第5図の縦
軸をラボ光沢度計とし、横軸をP光沢度計の光沢度とし
て見ることができるので、ラボ光沢度計とP光沢度計と
の相関が高光沢域で曲がることが分る. 第6図は反射光を正規分布とした時のラボ光沢度計とP
光沢度計の相関を計算してプロットした図であるが、こ
の第6図においては、正規分布の半値幅位置での積分は
、全体積の1/2になる(面積は76.2%を占める)
.従って、@準正規分布の形状がピーク(χ=O)に比
例するとするなら、ピーク(P)と半値幅(D)とを掛
けた値は標準正規分布の体積の常に1/2となり、ラボ
光沢度に比例することとなる(但し、ラボ光沢度計の開
き角内に被測定物から反射光束が全て含まれる場合を前
提とする). ところで、非接触式で光沢度と平滑度を測定する分析計
は、前記したように半値幅とピーク値が得られるから、
この得られるピーク値と半値幅を用いて演算によりラボ
光沢度計の体積に近似した光沢度(即ち散乱光の大きさ
)を求めることができる。即ち、受光する散乱光の大き
さは、ピーク光強度Pに半値@Dを掛けて、ラボ光沢度
計で求めた体積Vと近似して表わすことができる.Vo
c P x D               −(1
2)これか光沢度値として得られる値となる。
In the normal distribution that can be expressed in this way, the lab glossiness that can be determined with a lab gloss meter, that is, the body M when ABOCD rotates around the υ axis (J I S
The glossiness (light amount) is: ■=πχ+”J+πf
)2dυ ... (3) J'. However, yO is the peak value on the y-axis, χ is the half value @ value at that time, y is the V of this half value width
Value on axis. Here, when χ is expressed as a function of y, χ=(In7/(2π) I/2 } 1/2
...(4), so the second right-hand side of equation (3)
The term is
I/2) I/2 Co'd ybu? Become. On the other hand, since yO is the value at χ-0 in equation (2), '! /o = (1/ (2π) V2)exp (
- (02/2)) =1/(2π}1l2...
(6), and 'y1 is '! l, = (1/ (2π) 1/2)expf
−(χ12/2)} (7). Substituting these equations (6) and (7) into equation [5], πf f(y)
2dy = -2rr [ (1/ (2g) 1/2) ■ lTL
(1/e) - (1/(2π)"") ・ (lT
L (1/e }・exp(-(χ12/2)) =-2π [-{1/('2π) l/2 1 +(
1/(2π) I/2} exp(-(χ,'/2)) {(χ+2/2
)+1)] = {2π/(2π}V2} [1-exp(1(χ12/ 2 ) 1{(χ12
/2)+1)]...(8). Here, {2π/
Assuming <<2π)I/2}: fi, this equation (8) can be transformed into (3)
Substitute it into the second term on the right side of the equation, and then add (7
) When substituting the equational relationship, V=-rZ1' (
1/ (2g)"1exp{-(χ,'/2))+ft ・[1-exp{-(χ+'/F)){(
χ+2/2)+111 =1 [1-exp ((χ1'/2)11-
(9) is obtained. After all, this corresponds to the volume of a rotating body with a normal distribution of "0≦χ≦■". Figure 3 shows the normal distribution within the specified width χA (±χA ) shows changes in area (changes in volume). This figure 3 shows that when the normal distribution changes as the peak (y height) increases or decreases, as shown in figure 4, the specified gap (2 to 1 Z
This is the same as changing the area ratio of 2 and -2 toward the center. Based on the relationship between the peak and the volume when the reflected light is normally distributed, if the reflected light is normally distributed, the light distribution is normal even if its relative value changes, so it is included in the diagonal line in Figure 3. The area is a standard normal distribution ■
It is obtained by integrating V in the equation with respect to χ, and the volume of the rotating body corresponds to the laboratory glossiness value due to peak light change. Therefore, the reflected light is obtained by multiplying the normal distribution in equation (2) by the coefficient for changing the mountain height (i.e., the peak value P) ν=P・(1/(2π) I72 )exp(−(χ
2/2)}...0■. By the way, equation (9) is the peak intensity when measuring with a lab gloss meter, assuming that the reflected light has a normal distribution and that the change in the V-axis direction is proportional to the peak light intensity P. It represents the standard normal distribution volume when fixed (when set to 1). Therefore, the value obtained by multiplying equation (9) by P, V=P-It [1-
expl-(χ2/2)1]...01) is a general formula that indicates the volume of reflected light. This means that the volume V is a function of the peak intensity P and the scattering width direction χ. Figure 5 shows the rotation around the V-axis of the standard normal distribution, with P in the aT) equation set to 1, the x-axis of the standard normal distribution on the horizontal axis, and the volume V on the vertical axis. This is a graph of volume changes in the half-width direction. At this time, when the object to be measured is a specular object, all of the reflected light enters within the receiving aperture angle of the aperture 12 of the laboratory gloss meter, so the characteristic in the χ axis direction approaches ■. In addition, when the surface of the object to be measured is rough, the reflected light has a large degree of scattered light, so not much of the light flux falls within the specified acceptance angle of the aperture 12 of the laboratory gloss meter, and therefore χ- It means that the volume decreases as it shifts to the direction of 0 (the side where χ is close to zero).Also, the increase or decrease of the peak light does not change the shape of the normal heather, but only its ratio changes.Therefore, Since the vertical axis in Figure 5 can be seen as the lab gloss meter and the horizontal axis as the gloss of the P gloss meter, the correlation between the lab gloss meter and the P gloss meter can be seen to be curved in the high gloss range. Figure 6 shows the laboratory gloss meter and P when the reflected light is normally distributed.
This is a diagram in which the correlation of the gloss meter is calculated and plotted. In this figure, the integral at the half-width position of the normal distribution is 1/2 of the total volume (the area is 76.2%). occupy)
.. Therefore, if the shape of the quasi-normal distribution is proportional to the peak (χ = O), the value multiplied by the peak (P) and the half-width (D) is always 1/2 of the volume of the standard normal distribution, and the laboratory It is proportional to the glossiness (provided that all the reflected light flux from the object to be measured is included within the opening angle of the laboratory glossmeter). By the way, the analyzer that measures gloss and smoothness in a non-contact manner can obtain the half-width and peak value as described above.
Using the obtained peak value and half-value width, it is possible to calculate the glossiness (that is, the size of the scattered light) that approximates the volume of the laboratory glossmeter. That is, the magnitude of the received scattered light can be expressed approximately by multiplying the peak light intensity P by the half value @D, and by approximating the volume V determined by a laboratory gloss meter. Vo
c P x D − (1
2) This is the value obtained as the glossiness value.

ところで、以上説明した光沢度の測定において、ピーク
光のみを用いて“光沢度のムラ”を測定することもでき
る. 第7図は本発明のその他の実施例の説明に供する図であ
る。
By the way, in the gloss measurement described above, it is also possible to measure "unevenness in gloss" using only the peak light. FIG. 7 is a diagram for explaining another embodiment of the present invention.

第7図において、ピーク光は、光沢の変化についてはラ
ボ光沢度計より敏感であるから、比較的狭い範囲での被
測定物Sからの光沢度変化を捕え、(Pmaχ+PmL
TL )/ (Ptaχ Pat TL )・・−(1
3) として被測定物Sの光沢度ムラの大きさを演算し、検出
できる。但し、Ptaχは光沢の強い面sAにおけるピ
ーク光、P1ltTLは光沢の弱い面SBにおけるピー
ク光とする. ところで平滑度のムラら、前記と同様に(4)式から求
めることができる。
In FIG. 7, the peak light is more sensitive to changes in gloss than a lab gloss meter, so it captures changes in gloss from the object S in a relatively narrow range, and (Pmaχ+PmL
TL ) / (Ptaχ Pat TL )・・−(1
3) The magnitude of the uneven glossiness of the object S to be measured can be calculated and detected as follows. However, Ptaχ is the peak light on the surface sA with high gloss, and P1ltTL is the peak light on the surface SB with low gloss. Incidentally, unevenness in smoothness can be determined from equation (4) in the same manner as described above.

( (D/P)tax+ (D/P)xLu }/((
D/P)tax  (D/PluLul”f14)く発
明の効果〉 本発明は、以上説明したように構或されているので、次
に記載するような効果を奏する。
( (D/P)tax+ (D/P)xLu }/((
D/P) tax (D/PluLul"f14) Effects of the Invention> Since the present invention is constructed as described above, it produces the following effects.

被測定物の光沢度と平滑度は、ラインセンサで検出する
ピーク出力と半値幅出力とから同時に1第の装置で測定
でき、且つ前記光沢度から前記被測定物の光沢度のムラ
をも測定でき、 前記光沢度は、ピーク光のみを!l1察することでラボ
光沢度計より鋭敏な測定が可能となり、且つ前記被測定
物の光沢度のムラをも測定でき、前記光沢度は、前記ピ
ーク出力及び前記半値幅出力の掛算により求めることが
でき、 この時の演算結果は、前記ラボ光沢度計で得られる光沢
度との関係において非常に高い相関係数となるから、複
雑な演算をする必要が無く、この演算による光沢度の結
果は、安定した測定結果、即ち、極微的な光沢の変化に
影響されない測定結果を得ることができる.
The glossiness and smoothness of the object to be measured can be simultaneously measured by the first device from the peak output and half-width output detected by the line sensor, and the unevenness of the glossiness of the object to be measured can also be measured from the glossiness. The gloss level can only be used for peak light! 11, it is possible to perform more sensitive measurements than with a laboratory gloss meter, and it is also possible to measure the unevenness of the gloss of the object to be measured, and the gloss can be determined by multiplying the peak output and the half-width output. The calculation result at this time has a very high correlation coefficient in relation to the glossiness obtained with the laboratory glossmeter, so there is no need to perform complicated calculations, and the glossiness result from this calculation is , it is possible to obtain stable measurement results, that is, measurement results that are not affected by minute changes in gloss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の説明に供する図、第2図乃至第6図は
本発明の説明に供する図、第7図は本発明のその他の実
施例の説明に供する図、第8図はBe kk法を示す原
理図、第9図は従来の公知の技術である光学式平滑度を
測定する分析計の原理構成図、第10図は非接触式で光
沢度と平滑度を測定する分析計の原理構成図、第11図
乃至第13図は第10図の説明に供する図、第14図乃
至第15図は第10図の装置の問題点の説明に供する図
である. H・・・検出ヘッド、S・・・被測定物、7・・・光源
、8・・・コリメートレンズ、9・・・偏光子、10・
・・集光レンズ、11・・・光検出素子(ラインセンサ
).第 7 図 事 6 図 第 9 図 填 10 図 S 箔 1 1 図 苓 12 図 第 l3 図
FIG. 1 is a diagram for explaining the present invention, FIGS. 2 to 6 are diagrams for explaining the present invention, FIG. 7 is a diagram for explaining other embodiments of the present invention, and FIG. 8 is a diagram for explaining the present invention. A diagram showing the principle of the kk method, Figure 9 is a diagram showing the principle configuration of an analyzer that measures optical smoothness, which is a conventional well-known technique, and Figure 10 shows an analyzer that measures gloss and smoothness using a non-contact method. FIGS. 11 to 13 are diagrams used to explain FIG. 10, and FIGS. 14 to 15 are diagrams used to explain problems with the apparatus shown in FIG. H...Detection head, S...Measurement object, 7...Light source, 8...Collimating lens, 9...Polarizer, 10...
... Condensing lens, 11... Photodetection element (line sensor). Figure 7 Figure 6 Figure 9 Figure 10 Figure S Foil 1 1 Figure 12 Figure l3 Figure

Claims (3)

【特許請求の範囲】[Claims] (1)ブリュースタ角よりずれた入射角でシート状の被
測定物にP偏光を入射させる手段、前記P偏光の入射光
軸並びに法線を含む面内を通る反射光軸上に設けられた
集光レンズ、該集光レンズの焦点位置に測定面が前記反
射光軸と垂直になるように配置された光検出素子、及び
該光検出素子で受光した前記被測定物表面で反射された
散乱光に基づく検出信号から前記被測定物の光沢度や平
滑度を演算可能な演算部を具備した非接触式で光沢度と
平滑度を測定する分析計にあって、前記被測定物の光沢
度を、前記演算部において前記散乱光を正規分布と仮定
したときの前記正規分布のピーク(P)及び半値幅(D
)から、“P×D”なる演算式に基づいて演算して得る
ようにしたことを特徴とする非接触式で光沢度と平滑度
を測定する分析計。
(1) A means for making P-polarized light incident on a sheet-like object at an incident angle deviated from Brewster's angle, provided on a reflection optical axis passing within a plane including the incident optical axis and normal line of the P-polarized light. a condenser lens, a photodetection element disposed at the focal position of the condenser lens so that the measurement surface is perpendicular to the reflected optical axis, and scattered light received by the photodetection element and reflected on the surface of the object to be measured. An analyzer for measuring glossiness and smoothness of the object in a non-contact manner, which is equipped with a calculation unit capable of calculating the glossiness and smoothness of the object to be measured from a detection signal based on light. is the peak (P) and half-width (D) of the normal distribution when the scattered light is assumed to be a normal distribution in the calculation unit.
), an analyzer for measuring glossiness and smoothness in a non-contact manner, characterized in that the results are calculated based on the formula "P×D".
(2)請求範囲1項記載の非接触式で、光沢度と平滑度
を測定する分析計にあって、前記被測定物の光沢度ムラ
の大きさを、前記演算部において比較的狭い範囲での前
記被測定物からの光沢度変化を捕えて、光沢の強い面に
おけるピーク光をP_m_a_xとし、光沢の弱い面に
おけるピーク光P_m_i_nとしたときに、 (P_m_a_x+P_m_i_n)/(P_m_a_
x−P_m_i_n)からなる演算式に基づいて演算し
て得ることができるようにしたことを特徴とする非接触
式で光沢度と平滑度を測定する分析計。
(2) In the non-contact type analyzer for measuring glossiness and smoothness according to claim 1, the magnitude of glossiness unevenness of the object to be measured is determined in a relatively narrow range in the calculation section. When the change in glossiness from the object to be measured is taken, and the peak light on the highly glossy side is P_m_a_x and the peak light on the weakly glossy side is P_m_i_n, then (P_m_a_x+P_m_i_n)/(P_m_a_
1. An analyzer for measuring glossiness and smoothness in a non-contact manner, characterized in that glossiness and smoothness can be obtained by calculation based on an arithmetic expression consisting of x-P_m_i_n).
(3)請求範囲1項記載の非接触式で光沢度と平滑度を
測定する分析計にあつて、前記被測定物の平滑度のムラ
を、前記演算部において比較的狭い範囲での前記被測定
物からの平滑度変化を捕えて、平滑度(D/P)の高い
面におけるピーク光と半値幅の演算値を(D/P)_m
_a_xとし、平滑度の低い面におけるピーク光と半値
幅の演算値を(D/P)_m_i_nとしたときに {(D/P)_m_a_x+(D/P)_m_i_n}
/{(D/P)_m_a_x−(D/P)_m_i_n
}なる演算式に基づいて演算して得ることができるよう
にしたことを特徴とする非接触式で光沢度と平滑度を測
定する分析計。
(3) In the non-contact type analyzer for measuring glossiness and smoothness according to claim 1, the unevenness of the smoothness of the object to be measured is determined in the calculation section by measuring the unevenness of the object in a relatively narrow range. By capturing the change in smoothness from the object to be measured, calculate the calculated value of peak light and half width on a surface with high smoothness (D/P) (D/P)_m
When _a_x is the calculated value of peak light and half-width on a surface with low smoothness is (D/P)_m_i_n, {(D/P)_m_a_x+(D/P)_m_i_n}
/{(D/P)_m_a_x-(D/P)_m_i_n
} An analyzer for measuring gloss and smoothness in a non-contact manner, characterized by being able to calculate and obtain the results based on the calculation formula.
JP1311113A 1989-11-30 1989-11-30 Noncontact analyzer for measuring glossiness and smoothness Pending JPH03170810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1311113A JPH03170810A (en) 1989-11-30 1989-11-30 Noncontact analyzer for measuring glossiness and smoothness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311113A JPH03170810A (en) 1989-11-30 1989-11-30 Noncontact analyzer for measuring glossiness and smoothness

Publications (1)

Publication Number Publication Date
JPH03170810A true JPH03170810A (en) 1991-07-24

Family

ID=18013302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311113A Pending JPH03170810A (en) 1989-11-30 1989-11-30 Noncontact analyzer for measuring glossiness and smoothness

Country Status (1)

Country Link
JP (1) JPH03170810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177145A1 (en) * 2018-03-16 2019-09-19 コニカミノルタ株式会社 Gloss value calculating device, gloss value measuring device, color tone quantifying device for glossy color, and gloss value calculating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177145A1 (en) * 2018-03-16 2019-09-19 コニカミノルタ株式会社 Gloss value calculating device, gloss value measuring device, color tone quantifying device for glossy color, and gloss value calculating method

Similar Documents

Publication Publication Date Title
US5162660A (en) Paper roughness or glass sensor using polarized light reflection
RU2153160C1 (en) Process of detection of position of bending line on packing cloth and device for its implementation
US4650330A (en) Surface condition measurement apparatus
JP2930710B2 (en) Particle size analysis using differential polarization intensity scattering
US4134679A (en) Determining the volume and the volume distribution of suspended small particles
US4092068A (en) Surface sensor
US7508509B2 (en) Measurement of an object from an image consisting of a pixel matrix
US20010035954A1 (en) Method and apparatus for measuring particle size distributions using light scattering
US4760271A (en) Apparatus and process for measuring formation and roughness of a paper web
KR20070121820A (en) Glass inspection systems and methods for using same
US4213708A (en) Graininess sensor
US4167335A (en) Apparatus and method for linearizing a volume loading measurement utilizing particle scattering
US20080018893A1 (en) Instrument using near-field intensity correlation measurements for characterizing scattering of light by suspensions
US4890926A (en) Reflectance photometer
US20020113975A1 (en) Method and measuring arrangement for measuring paper surface
CA1046152A (en) Apparatus for determining the position of a surface
JPH04157339A (en) Particle diameter and velocity measuring instrument
JPH03170810A (en) Noncontact analyzer for measuring glossiness and smoothness
Takai et al. An effect of curvature of rotating diffuse objects on the dynamics of speckles produced in the diffraction field
CN108759689B (en) coating thickness meter based on double-light-path infrared reflection method
US4190367A (en) Device for establishing a condition at the surface of a subject
JPS5972012A (en) Method and device for detecting gap and angle
JPH032544A (en) Rain drop measuring instrument
JPH0541407Y2 (en)
US5212393A (en) Sample cell for diffraction-scattering measurement of particle size distributions