JPS63315878A - Gas separator - Google Patents

Gas separator

Info

Publication number
JPS63315878A
JPS63315878A JP62149028A JP14902887A JPS63315878A JP S63315878 A JPS63315878 A JP S63315878A JP 62149028 A JP62149028 A JP 62149028A JP 14902887 A JP14902887 A JP 14902887A JP S63315878 A JPS63315878 A JP S63315878A
Authority
JP
Japan
Prior art keywords
temperature
gas
raw material
heat exchanger
expansion turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62149028A
Other languages
Japanese (ja)
Inventor
茂雄 渡辺
岡林 芳夫
喜多 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP62149028A priority Critical patent/JPS63315878A/en
Publication of JPS63315878A publication Critical patent/JPS63315878A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、深冷分離により高純度製品ガスを供給する装
置に係り、特に膨張タービンの寒冷発生効果を利用して
原料ガスを冷却・液化して精留分離するガス分離装置に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for supplying high-purity product gas through cryogenic separation, and in particular to cooling and liquefying raw material gas by utilizing the cold generation effect of an expansion turbine. This invention relates to a gas separation device that performs rectification separation.

〔従来の技術〕[Conventional technology]

従来の深冷分離法による一酸化炭素回収装置における系
統図を第2図に示す。図において、水素・窒素・メタン
等を含む一酸化炭素(以下COと呼ぶ)を主成分とする
原料ガスは導管15より約35Kp/ciGの圧力で熱
交換器1,2に入り、低温の戻りガスにより約−190
℃程度まで冷却さn1導管17より低温分離a3に入る
。ここで、COより低沸点成分の水素・窒素を主成分と
する未凝縮ガス(以下水素ガスと呼ぶ)は分離され、導
管18を経て熱交換器2にて若干温度回復さnたのち導
管19より膨張タービン5にて約15Ky/dG近くま
で膨張さnる。水素ガスは、この膨張により約−195
℃まで温度低下し、導管加を経て熱交換器2.1を経る
ことにより原料ガスを所定の冷却温度まで下げる寒冷源
となるとともに、常温まで回復さnたのち導管nより送
出さn、水素ガスとして使用さnる。
Figure 2 shows a system diagram of a conventional carbon monoxide recovery device using the cryogenic separation method. In the figure, a raw material gas whose main component is carbon monoxide (hereinafter referred to as CO) containing hydrogen, nitrogen, methane, etc. enters the heat exchangers 1 and 2 from a conduit 15 at a pressure of about 35 Kp/ciG, and returns at a low temperature. Approximately -190 depending on gas
It is cooled to about 0.degree. C. and enters the low-temperature separation a3 through the n1 conduit 17. Here, uncondensed gas (hereinafter referred to as hydrogen gas) whose main components are hydrogen and nitrogen, which are lower boiling point components than CO, is separated, passed through a conduit 18, and slightly recovered in temperature in a heat exchanger 2, and then passed through a conduit 19. It is further expanded in the expansion turbine 5 to approximately 15 Ky/dG. Due to this expansion, hydrogen gas becomes approximately -195
℃, and through conduit addition and heat exchanger 2.1, it becomes a cold source that lowers the raw material gas to a predetermined cooling temperature, and after recovering it to room temperature, it is sent out from conduit n, hydrogen. Used as a gas.

また、低温分離器3にて分離さnたCOを主成分とする
液化留分は、導管Uを経て弁101こで大気圧程度まで
減圧さnた後、導管5.熱交換器2を経て導管3よりC
o精留塔4に供給される。ここで精留分離されCO精留
塔4上部より導管n、熱交換器1.導管公を経て常温ま
で回復さnた高純度の製品COガスを導管間より供給す
る。また、塔下部よりメタンを主成分とする燃料ガスが
導管あ、熱交換器1.導管あより送出さnる。Co精留
塔4の寒冷源として、製品COガスの一部をCO圧縮夜
6にて8KP/crlo程度まで上昇させ、導管31よ
り熱交換器lへ送る。熱交換器lにて低温の戻りガスに
て冷却さnた製品COガスは導管℃を経てCo精留塔4
の下部に送らfL、ここでメタンガスを蒸発させるとと
もに製品COガス自体は逆に液化される。次に液化さn
た製品COガスは導管おより塔上部へ送らn、弁14に
て大気圧近くまで減圧さnたのち、Co精留塔4の寒冷
源として供給さn、塔内上昇ガスを精留する液化用とし
て使用さnる。また、膨張タービン5の出口温度を調整
する場合は、遠隔操作器■工08により弁11を徐開又
は徐閉して調整する。なお、弁11を徐閉した場合、そ
のママでは、弁11の一次側圧力が上昇するため、圧力
指示調節計α工07の設定値により弁しを徐開し、弁1
1の一次側圧力を一定に調整する。なお、この種の装置
として関連するものには例えば特開昭59−24168
号が挙げらnる。
The liquefied fraction containing CO as a main component separated in the low-temperature separator 3 passes through the conduit U and is reduced in pressure to approximately atmospheric pressure through the valve 101, and is then reduced to approximately atmospheric pressure through the conduit 5. C from conduit 3 via heat exchanger 2
o Supplied to rectification column 4. Here, the CO is rectified and separated from the top of the rectification column 4 through a conduit n and a heat exchanger 1. High purity product CO gas, which has been recovered to room temperature, is supplied from between the pipes through the pipes. In addition, fuel gas mainly composed of methane is supplied from the lower part of the column to a conduit A and a heat exchanger 1. It is sent out from the conduit. As a cold source for the Co rectification column 4, a part of the product CO gas is raised to about 8 KP/crlo in the CO compression chamber 6, and is sent to the heat exchanger l through the conduit 31. The product CO gas cooled by the low-temperature return gas in the heat exchanger 1 passes through the conduit ℃ to the Co rectification column 4.
is sent to the lower part of fL, where the methane gas is evaporated and the product CO gas itself is conversely liquefied. then liquefied n
The product CO gas is sent to the upper part of the column through a conduit, and the pressure is reduced to near atmospheric pressure by a valve 14.Then, it is supplied as a cold source to the Co rectification column 4, and is liquefied to rectify the gas rising in the column. Used for business purposes. Further, when adjusting the outlet temperature of the expansion turbine 5, the valve 11 is gradually opened or closed using the remote control device 08. Note that when the valve 11 is gradually closed, the pressure on the primary side of the valve 11 increases, so the valve is gradually opened according to the setting value of the pressure indicator controller α
Adjust the primary side pressure of 1 to a constant value. Note that related devices of this type include, for example, Japanese Patent Application Laid-Open No. 59-24168.
The number is listed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術によnば、設計条件の流量および組成をベ
ース1こ製品COガス純度・回収率および副産物の水素
ガス性状・機器仕様を設計するため。
According to the above-mentioned conventional technology, the flow rate and composition of the design conditions are used as the basis for designing the product CO gas purity/recovery rate and by-product hydrogen gas properties/equipment specifications.

原料ガス1tilの変動時にも安定して高純度の製品C
Oガスを供給するという点について配慮がさnていなか
りた。
Stable and high purity product C even when the raw material gas fluctuates by 1 til
Not much consideration was given to the supply of O gas.

このため、原料ガス流量の減少時には熱交換器の熱負荷
が設計ベースの熱負荷に比べ小さくなるが、設計条件と
比較して膨張タービン出口の水素ガス温度は変化しない
ため、熱交換器冷端側の温度差が小さくなり原料ガスを
所定の温度以上に冷却してしまう。このため水素ガスの
純度は良くなるが、低温分離器での液化留分中に含まn
るCOより低沸点成分であるが、沸点の非常に近い窒素
の割合が大きくなりCO精留塔でも精管さnずにそのマ
マ製品COガス中に入り込み、製品COガス純度が低下
してしまう問題があった。
Therefore, when the feed gas flow rate decreases, the heat load on the heat exchanger becomes smaller than the design-based heat load, but the hydrogen gas temperature at the expansion turbine outlet does not change compared to the design conditions, so the heat exchanger cold end The temperature difference between the two sides becomes small, and the raw material gas is cooled to a predetermined temperature or higher. This improves the purity of hydrogen gas, but the liquefied fraction in the low-temperature separator contains n.
Although it has a lower boiling point than CO, the proportion of nitrogen, which has a boiling point very close to that of CO, increases and enters the product CO gas without being passed through the CO rectification column, reducing the purity of the product CO gas. There was a problem.

本発明の目的は、原料ガス流量が変動しても自動的に原
料ガスを所定の冷却温度に保つようにし、製品ガス純度
の安定した製品COガスを供給するガス分離装置を提供
することにある。
An object of the present invention is to provide a gas separation device that automatically maintains a raw material gas at a predetermined cooling temperature even when the raw material gas flow rate fluctuates, and supplies a product CO gas with stable product gas purity. .

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、原料ガス流量が変動して原料ガスが所定の
温度以上に冷却さnたとき、熱交換器出口の原料ガス温
度を温度調節計で計測し、膨張タービン入口圧力を自動
的に調節し、水素ガスの膨張タービン出口温度を調節し
て熱交換器の負荷に応じた温度差にすることにより達成
される。
The above purpose is to measure the raw material gas temperature at the heat exchanger outlet with a temperature controller and automatically adjust the expansion turbine inlet pressure when the raw material gas flow rate fluctuates and the raw material gas is cooled to a predetermined temperature or higher. This is achieved by adjusting the hydrogen gas expansion turbine exit temperature to create a temperature difference that corresponds to the load on the heat exchanger.

〔作  用〕[For production]

原料ガス流量が変動したとき、例えば、原料ガス流量が
減少した場合は熱交換器の熱負荷は設計ベースの熱負荷
に比べて小さくなる。熱交換器の熱負荷Qと伝熱面A、
総括伝熱係数U、温度差△Tの関係はQ=U−A・△T
である。伝熱面Aは一定であり、総括伝熱係数Uもほぼ
一定と考えれば、上記のようにQが小さ々なnば△Tも
同じ(小さくなる。ここで水素ガスの膨張タービン入口
圧力を低4して出口温度を高くしない限り、膨張タービ
ン出口の水素ガス温度は一定のため温度差△Tが小さく
なるということは原料ガス温度が所定の冷却温度よりも
低下しすぎ、製品COガス純度が悪くなってしまう。
When the raw material gas flow rate fluctuates, for example, when the raw material gas flow rate decreases, the heat load on the heat exchanger becomes smaller than the design-based heat load. The heat load Q of the heat exchanger and the heat transfer surface A,
The relationship between the overall heat transfer coefficient U and the temperature difference △T is Q=U-A・△T
It is. Considering that the heat transfer surface A is constant and the overall heat transfer coefficient U is also almost constant, as mentioned above, if Q is small, △T is also the same (smaller).Here, the hydrogen gas expansion turbine inlet pressure is Unless the outlet temperature is increased by lowering the temperature, the hydrogen gas temperature at the expansion turbine outlet is constant, so if the temperature difference △T becomes small, this means that the raw material gas temperature has fallen too much below the predetermined cooling temperature, and the product CO gas purity becomes worse.

しかし、低温分離器又は熱交換器から低温分離器までの
原料ガスラインおよび低温分離器からの水素ラインに設
けた温度調節計により、原料ガス温度が所定の冷却温度
以下に低下すると膨張タービン入口の水素ガスラインの
圧力調節弁が徐閉さn膨張タービン入口圧力が低(調節
さnる。二〇により膨張タービン出口の水素ガス温度が
高く保たn熱交換器の温度差△Tが小さやなっても冷端
温度が高くなるため、原料ガスは所定の温度に調整さn
る。
However, temperature controllers installed in the raw gas line from the low-temperature separator or heat exchanger to the low-temperature separator and in the hydrogen line from the low-temperature separator determine that when the raw gas temperature drops below a predetermined cooling temperature, the expansion turbine inlet The pressure control valve of the hydrogen gas line is gradually closed, and the pressure at the expansion turbine inlet is low (adjusted).The hydrogen gas temperature at the expansion turbine outlet is kept high by 20, and the temperature difference △T of the heat exchanger is small. Since the cold end temperature will rise even if
Ru.

〔実 施 例] 以下、本発明の一実施例を第1図番こより説明する。〔Example] DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

図において本装置の全体構成は、熱交換器1゜2、低温
分離器3.Co精留塔4.膨張タービン5、Co圧縮機
6.圧力指示調節計7.圧力調節弁11.温度調節計1
3.弁+0.12.14.導管15〜35等からなる。
In the figure, the overall configuration of this device is a heat exchanger 1.2, a low temperature separator 3. Co rectification column 4. Expansion turbine 5, Co compressor 6. Pressure indicating controller7. Pressure control valve 11. Temperature controller 1
3. Valve +0.12.14. It consists of conduits 15 to 35, etc.

原料ガスは導管15より約35に9/alGの圧力で熱
交換器1,2に入り、膨張タービン5により冷却さした
水素ガス等の低温の戻りガスにより冷却さnる。
The feed gas enters the heat exchangers 1 and 2 from the conduit 15 at a pressure of about 35°C/alG, and is cooled by a low temperature return gas such as hydrogen gas cooled by the expansion turbine 5.

この原料ガス流量が変動して熱交換器1.2に過小な負
荷がかかると膨張タービン5の入口圧力を変えない限り
原料ガスは所定の温度以上に冷却さnすぎるために1本
実施例では、低温分離器3暑こ設けた温度調節計13の
設定値以上に原料ガスが冷却さnすぎた場合、温度調節
計13の働きにより、自動的に膨張タービン5の入口圧
力調節弁11が徐り 閉さn膨張タービンμ口圧力が低(調節される。
If the raw material gas flow rate fluctuates and an excessive load is applied to the heat exchanger 1.2, the raw material gas will not be cooled to a predetermined temperature or higher unless the inlet pressure of the expansion turbine 5 is changed. If the raw gas is cooled too much beyond the set value of the temperature controller 13 installed in the low-temperature separator 3, the temperature controller 13 automatically closes the inlet pressure control valve 11 of the expansion turbine 5. Closed n expansion turbine μ mouth pressure is low (adjusted).

該、膨張タービン5の入口圧力の調節に伴ない、圧力指
示調節計σより7が自動設定さn弁12を徐開し、弁1
1の一次側圧力を一定に調整する。前の 湿度は高(なるため、原料ガスは自動的に所定の温度に
調節さnる。
As the inlet pressure of the expansion turbine 5 is adjusted, 7 is automatically set by the pressure indicating controller σ, and the valve 12 is gradually opened.
Adjust the primary pressure of No. 1 to a constant value. Since the initial humidity is high, the raw material gas is automatically adjusted to a predetermined temperature.

本実施例によnば、原料ガス流量が変動しても自動的に
原料ガスを所定の冷却湿度に保ち製品COガス純度を安
定して保つことができる。
According to this embodiment, even if the raw material gas flow rate fluctuates, the raw material gas can be automatically kept at a predetermined cooling humidity and the product CO gas purity can be stably maintained.

〔発明の効果〕〔Effect of the invention〕

本発明によnば、原料ガス流量が変動しても原料ガスの
最終冷却温度を自動的に制御し所定の温度まで冷却する
ため、安定した純度の製品COガスを供給することがで
き、製品COガスを使用する後流設備へ悪影響を及ぼす
ことなく安定した運転を継続できる効果がある。
According to the present invention, even if the raw material gas flow rate fluctuates, the final cooling temperature of the raw material gas is automatically controlled and cooled to a predetermined temperature, so product CO gas of stable purity can be supplied, and the product This has the effect of allowing stable operation to continue without adversely affecting downstream equipment that uses CO gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す一酸化炭素回収装置の
系統図、第2図は従来法による一酸化炭素回収装置の系
統図である。 1.2・・・・・・熱交換器、3・・・・・・低温分離
器、4・・・CO精留塔、5・・・・・・膨張タービン
、6・・・・・・Co圧縮機、7・・・・・・圧力指示
調節計、8・・・・・・遠隔操作器。 11・・・・・・圧力調節弁、13・・・・・・温度調
節計、10,12゜14・・・・・・弁、15〜35・
・・・・・導管代理人 弁理士  /JN  川 勝 
男−1¥l 図
FIG. 1 is a system diagram of a carbon monoxide recovery apparatus showing an embodiment of the present invention, and FIG. 2 is a system diagram of a carbon monoxide recovery apparatus according to a conventional method. 1.2... Heat exchanger, 3... Low temperature separator, 4... CO rectification column, 5... Expansion turbine, 6... Co compressor, 7...Pressure indicating controller, 8...Remote controller. 11...Pressure control valve, 13...Temperature controller, 10,12°14...Valve, 15-35.
...Conduit agent Patent attorney / JN Masaru Kawa
Man-1¥l Figure

Claims (1)

【特許請求の範囲】 1、水素・窒素およびメタン等の不純物を含む一酸化炭
素を主成分とする原料ガスから一酸化炭素を精留回収す
るために、原料ガスを冷却・液化させ所定の温度まで冷
却させる熱交換器、装置に必要な寒冷を発生させる膨張
タービン、液とガスを分離する低温分離器および一酸化
炭素を精留分離するCO精留塔から成るガス分離装置に
おいて、低温分離器に温度調節計を設け、該温度調節計
を膨張タービン入口に設けた圧力調節弁に連絡したこと
を特徴とするガス分離装置。 2、特許請求の範囲第1項において、温度調節計を熱交
換器から低温分離器の原料ガスライン、または低温分離
器からの水素ガスラインに設けたことを特徴とするガス
分離装置。
[Claims] 1. In order to rectify and recover carbon monoxide from a raw material gas whose main component is carbon monoxide containing impurities such as hydrogen, nitrogen and methane, the raw material gas is cooled and liquefied to a predetermined temperature. In gas separation equipment, a low-temperature separator consists of a heat exchanger that cools the device to a temperature of A gas separation device characterized in that a temperature controller is provided at the expansion turbine, and the temperature controller is connected to a pressure control valve provided at the inlet of the expansion turbine. 2. A gas separation device according to claim 1, characterized in that a temperature controller is provided in the raw material gas line from the heat exchanger to the low-temperature separator, or in the hydrogen gas line from the low-temperature separator.
JP62149028A 1987-06-17 1987-06-17 Gas separator Pending JPS63315878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62149028A JPS63315878A (en) 1987-06-17 1987-06-17 Gas separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62149028A JPS63315878A (en) 1987-06-17 1987-06-17 Gas separator

Publications (1)

Publication Number Publication Date
JPS63315878A true JPS63315878A (en) 1988-12-23

Family

ID=15466090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62149028A Pending JPS63315878A (en) 1987-06-17 1987-06-17 Gas separator

Country Status (1)

Country Link
JP (1) JPS63315878A (en)

Similar Documents

Publication Publication Date Title
US3735599A (en) Process for automatic control of air separation apparatus
JPS6146747B2 (en)
US2849867A (en) Cooling by evaporation of a liquid at a very low temperature
US20100071411A1 (en) Method And Device For Separating A Mixture of At Least Hydrogen, Nitrogen, and Carbon Monoxide By Cryogenic Distillation
Chang et al. Sidestream analysis and optimization of full tower internal thermally coupled air separation columns
US4696689A (en) Method and apparatus for separating of product gas from raw gas
JPS63315878A (en) Gas separator
US3721098A (en) Cooling by mixing gaseous streams
JPH04126988A (en) Separating method for air using external cold source
US7452393B2 (en) Installation for hydrogen production and methods for using same
US5430223A (en) Process for separating higher hydrocarbons from a gas mixture
JPH0784982B2 (en) Gas separator
JPH01111189A (en) Gas separator
JP3328749B2 (en) Method and apparatus for liquefying gas containing low boiling impurities
KR102139990B1 (en) Method for operating air separation plant
JPH05306885A (en) Pressure type air separating device
US2788638A (en) Process of and apparatus for separation of gas mixtures
JP2816197B2 (en) Method and apparatus for producing ultra-high purity nitrogen
JPH01273982A (en) Gas separating method and gas separating device
JP3331416B2 (en) Air liquefaction separation apparatus and method
JPS63194163A (en) Cryogenic refrigerator
JPS63197870A (en) Air separator
JPH01269891A (en) Gas separating device
JPS63131978A (en) Gas separator
JPS62142984A (en) Method of separating gas