JPS63315213A - Manufacture of polyolefin metallic laminated sheet - Google Patents

Manufacture of polyolefin metallic laminated sheet

Info

Publication number
JPS63315213A
JPS63315213A JP62152127A JP15212787A JPS63315213A JP S63315213 A JPS63315213 A JP S63315213A JP 62152127 A JP62152127 A JP 62152127A JP 15212787 A JP15212787 A JP 15212787A JP S63315213 A JPS63315213 A JP S63315213A
Authority
JP
Japan
Prior art keywords
polyolefin
metallic foil
adhesive film
glass fiber
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62152127A
Other languages
Japanese (ja)
Other versions
JPH0710564B2 (en
Inventor
Norio Takahata
紀雄 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP62152127A priority Critical patent/JPH0710564B2/en
Publication of JPS63315213A publication Critical patent/JPS63315213A/en
Publication of JPH0710564B2 publication Critical patent/JPH0710564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To make favorable adhesion of polyolefin, which is inexpensive and superior in dielectric characteristics, to a metallic foil and to contrive an improvement in heat resistance, by a method wherein the metallic foil, a specific adhesive film and a fiber are laminated, to which crosslinking treatment is performed. CONSTITUTION:A metallic foil 1, a polyolefin adhesive film 2, glass fiber cloth 3 and a polyolefin sheet 4 are superposed upon one another in order. After those have been integrated through heating and pressurization, crosslinking treatment is performed by holding them within moisture atmosphere. Copper is favorable as a material of the metallic foil and oxygen-free copper is suitable especially for transmission at a high-frequency zone. A copper foil whose surface has been roughed is preferable from a view point of an improvement in adhesion. Then the polyolefin adhesive film is used to make favorable adhesion between the metallic foil and an insulation base material. The glass fiber cloth is indispensable for prevention of a warp or a twist to be generated on a laminated sheet due to a distortion generated at the time of molding processing such as a difference between thermal expansion coefficients or specific heat between those of the metallic foil and insulation base material or in heating-cooling processes.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、高周波回路基板への適用に好適なポリオレフ
ィン金属積層板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for manufacturing a polyolefin metal laminate suitable for application to high frequency circuit boards.

[従来の技術] 高度情報化社会への移行に伴ない種々の分野で著しい技
術革新かなされており、電子工業、通信工業の分野もそ
の例外ではなく、むしろ最も大きな技術革新がなされて
いるといっても過言ではない。その−例として、使用周
波数帯域が次第に高周波帯域に移行していることがあげ
られ、キロヘルツからメガヘルツへ、そして近年ではキ
ガヘルツ帯域へ移行しつつある。
[Conventional technology] With the transition to an advanced information society, remarkable technological innovations have been made in various fields, and the fields of electronics and communication industries are no exception, and are said to be the fields where the greatest technological innovations have been made. It is no exaggeration to say that. An example of this is that the frequency band in use is gradually shifting to higher frequency bands, from kilohertz to megahertz and, in recent years, to kilohertz.

電子回路用配線基板用としては、従来、紙−フェノール
あるいはエポキシ−ガラスといった絶縁基材と金属箔と
の積層板が最も多く使用されてきている。しかし、これ
らは本質的に誘電率、誘電損失および共振特性(クォリ
ティファクターQ)などが劣るために、高周波領域では
伝送エネルギーの損失、伝送速度の不足、損失歪の増大
といった不利を招くことになる。
Conventionally, laminates made of an insulating base material such as paper-phenol or epoxy glass and metal foil have been most commonly used for wiring boards for electronic circuits. However, since these are inherently inferior in dielectric constant, dielectric loss, and resonance characteristics (quality factor Q), they suffer from disadvantages such as loss of transmission energy, insufficient transmission speed, and increased loss distortion in the high frequency region. .

メガヘルツあるいはギガヘルツ帯域で使用される配線基
板には、誘電率、通電損失および共振特性に優れた絶縁
基材を選択する必要があり、ふっ素糸樹脂を絶縁基材と
したものが開発されるに至った。しかし、ふっ素糸樹脂
は高価な材料であることに加えて、金属箔と積層する加
工工程が複雑であるという問題かある。
For wiring boards used in the megahertz or gigahertz bands, it is necessary to select an insulating base material with excellent dielectric constant, conduction loss, and resonance characteristics, and an insulating base material made of fluorine fiber resin has been developed. Ta. However, in addition to being an expensive material, fluorine thread resin has problems in that the processing process for laminating it with metal foil is complicated.

このような状況から、ポリオレフィンを絶縁基材とした
積層板が注目されるようになってきた。
Under these circumstances, laminates using polyolefin as an insulating base material have been attracting attention.

[発明が解決しようとする問題点] しかし、ポリオレフィンは本質的に他の物質との接着性
が悪く、ポリオレフィンと金属箔との接着にポリエステ
ル系、ポリウレタン系あるいはエポキシ系の接着剤を使
用すると、高周波帯域における誘電特性が低下し、実用
性に乏しくなる。
[Problems to be Solved by the Invention] However, polyolefin inherently has poor adhesion to other substances, and when polyester, polyurethane, or epoxy adhesives are used to bond polyolefin and metal foil, The dielectric properties in the high frequency band deteriorate, making it impractical.

また、ポリオレフィンは比較的低い温度で軟化、溶融し
て変形や収縮が生じることから、回路基板の半田処理な
どの高温での処理に耐えることが要求される。
Furthermore, since polyolefins soften and melt at relatively low temperatures, resulting in deformation and shrinkage, they are required to withstand high-temperature processes such as soldering of circuit boards.

本発明は、上記に基づいてなされたものであり、安価で
誘電特性に優れたポリオレフィンと金属箔との接着性を
改良でき、また優れた耐熱性を有するポリオレフィン金
属積層板の製造方法の提供を目的とするものである。
The present invention has been made based on the above, and aims to provide a method for producing a polyolefin metal laminate that is inexpensive and has excellent dielectric properties, can improve the adhesiveness between the polyolefin and metal foil, and has excellent heat resistance. This is the purpose.

[問題点を解決するための手段] 本発明のポリオレフィン金属積層板の製造方法は、金属
箔、ポリオレフィン系接着性フィルム、ガラス繊維布お
よび水架橋性ポリオレフィンシーI・を順次重ね合せ、
これらを加熱、加圧により一体化した後水分雰囲気中に
保持して架橋処理することを特徴とするものである。
[Means for Solving the Problems] The method for producing a polyolefin metal laminate of the present invention includes sequentially laminating metal foil, polyolefin adhesive film, glass fiber cloth, and water-crosslinkable polyolefin sheet I,
It is characterized in that these are integrated by heating and pressurizing, and then maintained in a moisture atmosphere for crosslinking treatment.

金属箔の材料としては、銅か最も好ましく、中でも無酸
素銅は高周波帯域での伝送に適している。
Copper is the most preferable material for the metal foil, and oxygen-free copper is especially suitable for transmission in high frequency bands.

銅箔は、陽極酸化処理、化学処理あるいは交流エッチン
ク処理等により表面を粗化したものが、接着性を向上さ
せる上で好ましい。銅以外の金属箔材料としては、金、
銀、白金、ニッケル、ステンレス、アルミニウム、銅合
金(白銅、青銅、黄銅)なども要求により使用可能であ
る。
It is preferable that the surface of the copper foil be roughened by anodizing treatment, chemical treatment, alternating current etching treatment, or the like in order to improve adhesiveness. Metal foil materials other than copper include gold,
Silver, platinum, nickel, stainless steel, aluminum, copper alloys (cupronickel, bronze, brass), etc. can also be used upon request.

ポリオレフィン系接着性フィルムは金属箔と絶縁基材と
の接着を良好にするために用いられるものである。具体
的側斜としては、ポリエチレン、ポリプロピレン、エチ
レン−プロピレン共重合体、エチレン−酢酸ビニル共重
合体、エチレン−エチルアクリレート共重合体などのポ
リオレフィンを主体とし、これに無水マレイン酸、アク
リル酸などの不飽和カルボン酸を、共重合、グラフI・
共重合あるいはブレンドなどしたものがあげられる。こ
の場合、カルボン酸の含有量は1%以下で強力に金属と
接着することから、高周波帯域における誘電特性に悪影
響を与えることはない。」1記以外では、ポリオレフィ
ンにポリケトン、クリシジルメタクリレート、シラン類
といったものをクラフト化したものも有用である。
A polyolefin adhesive film is used to improve adhesion between a metal foil and an insulating base material. Specifically, the side slopes are mainly made of polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, and ethylene-ethyl acrylate copolymer. Copolymerization of unsaturated carboxylic acids, graph I・
Examples include copolymerized or blended materials. In this case, since the carboxylic acid content is 1% or less and strongly adheres to the metal, it does not adversely affect the dielectric properties in the high frequency band. In addition to those mentioned above, polyolefins made by crafting polyketones, cricidyl methacrylate, silanes, etc. are also useful.

ガラス繊維布は、後述するポリオレフィンシートと共に
絶縁基材を構成するものであるが、金属箔と絶縁基材と
の間の熱膨張係数や比熱などの差、あるいは加熱〜冷却
など成形加工時に生じる歪などにより積層板に生じるソ
リやネジレの防止に不可欠のものである。ガラス繊維布
の誘電特性も重要であり、Na2OやIり、0といった
アルカリ成分を含まない無アルカリまたは低アルカリガ
ラスを用いたものが好ましい。ガラス繊維布の織り方は
特に制限するものではな(、縦および横糸の本数、密度
、織目の数、布厚なとも積層板にソリやネジレが生じな
いものであれば良く、特に限定しない。また、ガラス繊
維布はポリオレフィンシートなどとの接着を良くするた
めに、ビニルシラン、アミノシラン、アクリルシランと
いったもので表面処理したものを使用してもよい。
The glass fiber cloth constitutes the insulating base material together with the polyolefin sheet described below, but there are differences in thermal expansion coefficient and specific heat between the metal foil and the insulating base material, and distortions that occur during the molding process such as heating and cooling. This is essential for preventing warpage and twisting that occurs in laminates due to such factors. The dielectric properties of the glass fiber cloth are also important, and it is preferable to use alkali-free or low-alkali glass that does not contain alkali components such as Na2O, I, and O. There are no particular restrictions on the weaving method of the glass fiber cloth (the number of warp and weft threads, density, number of weaves, and cloth thickness are not particularly limited as long as the laminate does not warp or twist. Furthermore, the surface of the glass fiber cloth may be treated with vinyl silane, amino silane, acrylic silane, etc. in order to improve adhesion to polyolefin sheets and the like.

水架橋性ポリオレフィンシートは、ガラス繊維布と共に
絶縁基利を構成するものであり、ベースポリマの具体的
材料としては、ポリエチレン、ポリプロピレン、ポリブ
テン−1、ポリ4−メチルペンテン−1などのαオレフ
イン系ポリマ、エチレンとプロピレン、ブテン−1、ペ
ンテン−1,4−メチルペンテン−1、ヘプテン−1、
ヘキセン−1、オクテン−1などのαオレフィンとの共
重合体、エチレン−酢酸ビニル共重合体、エチレン−エ
チルアクリレート共重合体などがあげられ、これらは単
独使用あるいは2種以」−の併用でもよい。水架橋性ポ
リオレフィンは、上記したベースポリマに一般式RR’
 5iY2(式中Rはケイ素−炭素結合によりケイ素原
子に結合し、そして炭素、水素および場合によっては酸
素によって構成される一価のオレフィン性の不飽和基、
Yは加水分解可能な有機基、R′ は脂肪酸不飽和基を
含まない一価の炭化水素基または基Yである)であられ
されるシランを、140℃以上の温度でその温度におけ
る半減期が6分以下の遊離ラジカル生成化合物の存在下
においてグラフト反応させたものである。具体的には、
ビニルトリメトキシシラン ンなどのビニルシランを0.5〜5%、ジクミルパーオ
キサイドを0.05〜0.5%含有するポリオレフィン
を200°C近傍の押出機中てグラフ1へ反応させるこ
とにより製造される。この水架橋性ポリオレフィンは、
ジブチル錫ジラウレ−1・などのシラノール縮合触媒の
存在下において水分と接触させることにより架橋反応が
起こり、ポリマの三次元化が達成される。
The water-crosslinkable polyolefin sheet constitutes an insulating base together with glass fiber cloth, and specific materials for the base polymer include α-olefin-based materials such as polyethylene, polypropylene, polybutene-1, and poly-4-methylpentene-1. Polymers, ethylene and propylene, butene-1, pentene-1,4-methylpentene-1, heptene-1,
Examples include copolymers with α-olefins such as hexene-1 and octene-1, ethylene-vinyl acetate copolymers, and ethylene-ethyl acrylate copolymers, which can be used alone or in combination of two or more. good. The water-crosslinkable polyolefin has the above-mentioned base polymer with the general formula RR'
5iY2 (wherein R is a monovalent olefinically unsaturated group bonded to the silicon atom by a silicon-carbon bond and constituted by carbon, hydrogen and optionally oxygen,
Y is a hydrolyzable organic group, R' is a monovalent hydrocarbon group or group Y containing no fatty acid unsaturated group) at a temperature of 140°C or higher, and the half-life at that temperature is The graft reaction was carried out in the presence of a free radical generating compound for 6 minutes or less. in particular,
Manufactured by reacting polyolefin containing 0.5 to 5% of vinyl silane such as vinyltrimethoxysilane and 0.05 to 0.5% of dicumyl peroxide in an extruder at around 200°C according to graph 1. be done. This water-crosslinkable polyolefin is
By contacting with water in the presence of a silanol condensation catalyst such as dibutyltin dilaure-1, a crosslinking reaction occurs and three-dimensionalization of the polymer is achieved.

[発明の実施例] 実施例1 金属箔として無酸素銅を圧延した後表面をエツチング処
理した厚さ35μmの銅箔、ポリオレフィン系接着性フ
ィルムとしてポリエチレンと無水マレイン酸との共重合
体からなる厚さ0.1mmのフィルム、ガラス繊維布と
して厚さO.]mm,密度(25mm長さにおける縦糸
本数×横糸本数)40X32、表面をシラン処理した手
織布、水架橋性ポリオレフィンシートとして、密度0.
94−5の高密度ポリエチレン100重量部にビニルト
リメトキシシラン2重量部、ジクミルパーオキサイド0
.2重量部加えたものをバレル帯域120〜220°C
1ヘツド210°C1ダイ210°Cの押出機に投入し
てグラフト反応を行なわせたものを厚さ0.7mmに成
形したシートをそれぞれ用い、第1図に示すように金属
箔1−ポリオレフィン系接着性フィルム2−ガラス繊維
布3−水架橋性ポリオレフィンシート4−ガラス繊維布
3−水架橋性ポリオレフィンシー1−4の順に重ね合せ
、これを平板プレスにより200°C−10分の条件で
加熱加圧して一体化し、厚さ1.5mmの積層板を製造
した。続いて、積層板の金属箔1がない面にジブチル錫
ジラウレ−1・を塗布し、蒸気圧0.4kg/cm2の
水蒸気中に20時間保持し、除冷して完成品とした。
[Examples of the invention] Example 1 A 35 μm thick copper foil whose surface was etched after rolling oxygen-free copper as a metal foil, and a thick one made of a copolymer of polyethylene and maleic anhydride as a polyolefin adhesive film. A film with a diameter of 0.1 mm and a thickness of 0.1 mm as a glass fiber cloth. ] mm, density (number of warp threads x number of weft threads in 25 mm length) 40 x 32, hand-woven fabric with silane treated surface, density 0.
94-5 high-density polyethylene, 2 parts by weight of vinyltrimethoxysilane, and 0 parts by weight of dicumyl peroxide.
.. 2 parts by weight added to barrel zone 120-220°C
As shown in Fig. 1, metal foil 1-polyolefin-based Adhesive film 2 - glass fiber cloth 3 - water-crosslinkable polyolefin sheet 4 - glass fiber cloth 3 - water-crosslinkable polyolefin sheet 1-4 were stacked in this order, and heated using a flat plate press at 200°C for 10 minutes. They were integrated under pressure to produce a laminate with a thickness of 1.5 mm. Subsequently, dibutyltin dilaure-1 was applied to the surface of the laminate where the metal foil 1 was not present, and the laminate was kept in steam at a vapor pressure of 0.4 kg/cm2 for 20 hours, and slowly cooled to obtain a finished product.

実施例2 水架橋性ポリオレフィンシートのベースポリマを高密度
ポリエチレンに代えてポリプロピレンとした以外は実施
例1と同様にして積層板を製造した。
Example 2 A laminate was produced in the same manner as in Example 1, except that the base polymer of the water-crosslinkable polyolefin sheet was polypropylene instead of high-density polyethylene.

比較例1 ポリオレフィン系接着性フィルムの材料をポリエチレン
と無水マレイン酸との共重合体に代えてポリエステル系
接着剤(ポリエチレンテレフタレートベース)とした以
外は実施例1と同様にして積層板を製造した。
Comparative Example 1 A laminate was produced in the same manner as in Example 1, except that a polyester adhesive (based on polyethylene terephthalate) was used instead of the copolymer of polyethylene and maleic anhydride as the material for the polyolefin adhesive film.

比較例2 水架橋性ポリオレフィンシートに代えて高密度ポリエチ
レンからなる非架橋性のシートとした以外は実施例1と
同様にして積層板を製造した。
Comparative Example 2 A laminate was produced in the same manner as in Example 1, except that a non-crosslinkable sheet made of high-density polyethylene was used in place of the water-crosslinkable polyolefin sheet.

実施例および比較例の積層板についての評価結果は第1
表に示す通りである。常態引き剥し強さおよび耐半田性
はJIS−C−64.81に準拠して測定し、誘電率お
よび誘電正接はJIS−に−6760に準拠し3 0 
M H zの周波数で測定した。
The evaluation results for the laminates of Examples and Comparative Examples are as follows.
As shown in the table. Normal peel strength and solder resistance were measured in accordance with JIS-C-64.81, and dielectric constant and dielectric loss tangent were measured in accordance with JIS-6760.
Measurements were made at a frequency of MHz.

第    1    表 [発明の効果」 以上の説明から明らかな通り、本発明によれば安価で優
れた誘電特性を有するポリオレフィンを絶縁基板に使用
した場合であっても金属箔との接着性を確保てきると共
に優れた耐熱性を示すようになり、高周波回路基板への
適用に好適なポリオレフィン金属積層板が得られるよう
になる。
Table 1 [Effects of the Invention] As is clear from the above explanation, according to the present invention, even when polyolefin, which is inexpensive and has excellent dielectric properties, is used for an insulating substrate, adhesiveness with metal foil can be ensured. It also shows excellent heat resistance, making it possible to obtain a polyolefin metal laminate suitable for application to high-frequency circuit boards.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明における各層の積層状態の一例を示す
断面説明図である。 1:金属箔 2:ポリオレフィン系接着性フィルム 3ニガラス繊維布
FIG. 1 is an explanatory cross-sectional view showing an example of the laminated state of each layer in the present invention. 1: Metal foil 2: Polyolefin adhesive film 3: Glass fiber cloth

Claims (1)

【特許請求の範囲】[Claims] (1)金属箔、ポリオレフィン系接着性フィルム、ガラ
ス繊維布および水架橋性ポリオレフィンシートを順次重
ね合せ、これらを加熱、加圧により一体化した後水分雰
囲気中に保持して架橋処理することを特徴とするポリオ
レフィン金属積層板の製造方法。
(1) Metal foil, polyolefin adhesive film, glass fiber cloth, and water-crosslinkable polyolefin sheet are layered one after another, integrated by heating and pressure, and then held in a moisture atmosphere for crosslinking treatment. A method for producing a polyolefin metal laminate.
JP62152127A 1987-06-18 1987-06-18 Method for manufacturing polyolefin metal laminate Expired - Lifetime JPH0710564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62152127A JPH0710564B2 (en) 1987-06-18 1987-06-18 Method for manufacturing polyolefin metal laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62152127A JPH0710564B2 (en) 1987-06-18 1987-06-18 Method for manufacturing polyolefin metal laminate

Publications (2)

Publication Number Publication Date
JPS63315213A true JPS63315213A (en) 1988-12-22
JPH0710564B2 JPH0710564B2 (en) 1995-02-08

Family

ID=15533650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62152127A Expired - Lifetime JPH0710564B2 (en) 1987-06-18 1987-06-18 Method for manufacturing polyolefin metal laminate

Country Status (1)

Country Link
JP (1) JPH0710564B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10070521B2 (en) 2012-03-29 2018-09-04 Jx Nippon Mining & Metals Corporation Surface-treated copper foil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10070521B2 (en) 2012-03-29 2018-09-04 Jx Nippon Mining & Metals Corporation Surface-treated copper foil

Also Published As

Publication number Publication date
JPH0710564B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JP2019178326A (en) Production method of thermoplastic liquid crystal polymer film, circuit board and method for manufacturing the same
JP4827446B2 (en) Electronic circuit board and manufacturing method thereof
US5071702A (en) Laminated plate for high frequency
JPS63315213A (en) Manufacture of polyolefin metallic laminated sheet
JPS63315214A (en) Manufacture of polyolefin metallic laminated sheet
JPS63315228A (en) Manufacture of polyolefin metallic laminated sheet
JP3514656B2 (en) Surface smooth wiring board and its manufacturing method
JPS63315233A (en) Manufacture of polyolefin metallic laminated sheet
JPS63315212A (en) Manufacture of polyolefin metallic laminated sheet
JP2002137231A (en) Mold release film and its manufacturing method
CN112351592B (en) Method for preparing flexible circuit board based on liquid crystal polymer film
JPS63315234A (en) Polyolefin metallic laminated sheet
CN113727832A (en) Thermoplastic liquid crystal polymer film, laminate, molded body, and method for producing same
JP4860855B2 (en) Film-covered semiconductor element and method for manufacturing the same
JPS58128846A (en) Manufacture of polyimide group resin one-sided copper lined laminated board
JPS62199437A (en) Printed substrate
JPS62217698A (en) Metal base multilayer printed board
JPH0311307B2 (en)
JP3951696B2 (en) Multilayer circuit board
JPS61193845A (en) Metal lined board for high-frequency circuit
JPS62183592A (en) Flexible printed circuit substrate
KR20230089183A (en) Flexible metal laminate, and manufacturing method for the same
JP2022181861A (en) Metallic foil laminated resin sheet and method for manufacturing the same
JPS6011354A (en) Composite laminated board
JPS59221324A (en) Manufacture of composite laminate board